A NOTE ON A DIFFERENTIAL EQUATION

Russell Euler
Northwest Missouri State University

If $a \neq b$, then two linearly independent solutions of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-(a+b) y^{\prime}+a b y=0 \tag{1}
\end{equation*}
$$

are $e^{a x}$ and $e^{b x}$ and the general solution of (1) is

$$
\begin{equation*}
y=c_{1} e^{a x}+c_{2} e^{b x} \tag{2}
\end{equation*}
$$

When $a=b$, the two fundamental solutions are $y_{1}=e^{a x}$ and $y_{2}=x e^{a x}$. This is easy to check but not so easy to motivate, especially y_{2}. The motivation of the form of the general solution in the case of equal roots of the characteristic equation can be accomplished by considering the case when $a \neq b$, renaming the constants in equation (2), and considering the limit as b approaches a.

Letting

$$
c_{1}=c_{3}-\frac{c_{4}}{b-a} \quad \text { and } \quad c_{2}=\frac{c_{4}}{b-a}
$$

in (2) leads to

$$
\begin{equation*}
y=c_{3} e^{a x}+c_{4} \frac{e^{b x}-e^{a x}}{b-a} \tag{3}
\end{equation*}
$$

as the general solution of (1).

Notice that when $a=b$ the second term in equation (3) is of the indeterminate form $\frac{0}{0}$. So, employing L'Hospital's rule to compute the limit as b approaches a in (3) yields

$$
y=c_{3} e^{a x}+c_{4} x e^{a x}
$$

which is the general solution of (1) when $a=b$ and the technique utilized clearly shows how $y_{2}=x e^{a x}$ arises.

