Geometric Series and a Probability Problem
Author(s): Curtis Cooper
Source: The American Mathematical Monthly, Vol. 93, No. 2 (Feb., 1986), pp. 126-127
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2322711
Accessed: 13/01/2011 13:41

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

Let $p_{1}=2, p_{2}=3, \ldots$ be the sequence of primes. We will need the following two lemmas.
Lemma 1. $\prod_{i=1}^{m}\left(1-1 / p_{t}\right) \geqslant 1 / p_{m}, m=1,2, \ldots$.
Lemma 2. If the prime factors of the positive integer $b>1$ are $p_{1}, p_{2}, \ldots, p_{m}$, then

$$
\sum_{d \mid b} 1 / d<1 / \prod_{l=1}^{m}\left(1-1 / p_{l}\right) .
$$

Lemma 1 follows from the result $p_{\imath-1} \leqslant p_{t}-1, i \geqslant 2$, and Lemma 2 follows from the result

$$
\sum_{d \mid b} 1 / d<\prod_{l=1}^{m}\left(\sum_{k=0}^{\infty}\left(1 / p_{\imath}\right)^{k}\right) .
$$

Using these two lemmas we now proceed to settle the conjecture by induction. Since $f(1)=f(2)=f(3)=1$, the conjecture holds for the first few positive integers. Suppose the conjecture holds for all positive integers less than n. If $n=q_{1}^{a_{1}} q_{2}^{a_{2}} \cdots q_{m}^{a_{m}}, a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{m}$, is the prime factorization of n and $c=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a_{m}}$, then $f(n)=f(c)$ and $c \leqslant n$. Thus if $c<n$, then $f(n)=f(c) \leqslant c<n$ by the induction hypothesis and we would be done.

There remains the case $n=c$. We further subdivide this case into the subcases $a_{m}=1$ and $a_{m}>1$. If $m=a_{m}=1$, then $n=2$, a value of n for which we know the conjecture to be true. If $a_{m}=1$ and $m \geqslant 2$, then every factorization of n has precisely one factor divisible by p_{m} so that, if $b=n / p_{m}$, we have

$$
f(n)=\sum_{d \mid b} f(b / d) \leqslant b \sum_{d \mid b} 1 / d<b / \prod_{i=1}^{m-1}\left(1-1 / p_{i}\right) \leqslant b \cdot p_{m-1}<n,
$$

by the induction hypothesis and the two lemmas.
Finally, if $a_{m}>1$, then set $e=\left(n / p_{m}\right) p_{m+1}$. For any factorization of n, say $n=d_{1} d_{2} \cdots d_{s}$, where d_{1} is a largest factor divisible by p_{m}, then $\left(\left(d_{1} / p_{m}\right) p_{m+1}\right) d_{2} d_{3} \cdots d_{s}=e$. Thus essentially different factorizations of n yield in this manner essentially different factorizations of e, so we have $f(n) \leqslant f(e)$. Similar to before, if $b=e / p_{m+1}$, we have

$$
f(n) \leqslant f(e)=\sum_{d \mid b} f(b / d) \leqslant b \sum_{d \mid b} 1 / d<b / \prod_{i=1}^{m}\left(1-1 / p_{i}\right) \leqslant b \cdot p_{m}=n
$$

and the induction is complete.

Reference

1. J. F. Hughes and J. O. Shallit, On the number of multiplicative partitions, this Monthly, 90 (1983) 468-471.

GEOMETRIC SERIES AND A PROBABILITY PROBLEM

Curtis Cooper

Department of Mathematics and Computer Science, Central Missouri State University, Warrensburg, MO 64093
Suppose

$$
a_{1}+a_{2}+a_{3}+\cdots
$$

is a geometric series with ratio $r,|r|<1$. We know that the sum of this series is

$$
\frac{a_{1}}{1-r} .
$$

Now if n and $k_{1}, k_{2}, \ldots, k_{n}$ are positive integers, what is $\sum_{t_{1}<l_{2}<\cdots<l_{n}} a_{t_{1}}^{k_{1}} a_{t_{2}}^{k_{2}} \cdots a_{t_{n}}^{k_{n}}$? In this
note we will answer this question and then use the result to solve a probability problem.
Theorem. Let

$$
a_{1}+a_{2}+a_{3}+\cdots
$$

be a geometric series with ratio $r,|r|<1$. Let n and $k_{1}, k_{2}, \ldots, k_{n}$ be positive integers. Then

$$
\begin{aligned}
\sum_{l_{1}<i_{2}<\cdots<i_{n}} a_{l_{1}}^{k_{1}} a_{l_{2}}^{k_{2}} \cdots a_{t_{n}}^{k_{n}}= & a_{1}^{k_{1}+k_{2}+\cdots+k_{n} r^{k_{2}+2 k_{3}+\cdots+(n-1) k_{n}} \frac{1}{1-r^{k_{1}+\cdot}+k_{n}}} \\
& \times \frac{1}{1-r^{k_{2}+\cdots+k_{n}}} \cdots \frac{1}{1-r^{k_{n}}} .
\end{aligned}
$$

Proof. By induction on n.

$$
a_{1}^{k}+a_{2}^{k}+a_{3}^{k}+\cdots=\frac{a_{1}^{k}}{1-r^{k}},
$$

so the result is true for $n=1$.
Assume the result is true for $n=m$. Then

$$
\begin{aligned}
& \sum_{l_{1}<l_{2}<\cdots<l_{m+1}} a_{1_{1}}^{k_{1}} a_{t_{2}}^{k_{2}} \cdots a_{t_{m+1}}^{k_{m+1}}=\sum_{t_{1}<l_{2}<\cdots<l_{m}} a_{l_{1}}^{k_{1}} a_{i_{2}}^{k_{2}} \cdots a_{t_{m}}^{k_{m}}\left(a_{l_{m}+1}^{k_{m+1}}+a_{t_{m}+2}^{k_{m+1}}+\cdots\right) \\
& =\sum_{l_{1}<l_{2}<\cdots<l_{m}} a_{t_{1}}^{k_{1}} a_{t_{2}}^{k_{2}} \cdots a_{t_{m}}^{k_{m}} l_{t_{m}+1}^{k_{m+}}\left(1+r^{k_{m+1}}+\cdots\right) \\
& =\sum_{l_{1}<l_{2}<\cdots<l_{m}} a_{i_{1}}^{k_{1}} a_{t_{2}}^{k_{2}} \cdots a_{t_{m}}^{k_{m}}\left(r a_{l_{m}}\right)^{k_{m+1}}\left(1+r^{k_{m+1}}+\cdots\right) \\
& =\frac{r^{k_{m+1}}}{1-r^{k_{m+1}}} \sum_{l_{1}<l_{2}<\cdots<l_{m}} a_{1_{1}}^{k_{1}} a_{l_{2}}^{k_{2}} \cdots a_{t_{m}}^{k_{m}+k_{m+1}}
\end{aligned}
$$

$$
\begin{aligned}
& \times \frac{1}{1-r^{k_{2}+\cdots+k_{m+1}}} \cdots \frac{1}{1-r^{k_{m+1}}} .
\end{aligned}
$$

Thus, the theorem is true by induction.
We now use this theorem to solve the following problem:
Three players, A, B, and C, take turns throwing a single die, A leads. As soon as a player tosses a one, that player drops out of the game and the remaining players continue rolling the die until everyone has rolled a one. What is the probability that A tosses the first one, B tosses the second one, and C tosses the third one?

To solve this problem, let

$$
\frac{1}{6}+\frac{1}{6} \cdot \frac{5}{6}+\frac{1}{6} \cdot\left(\frac{5}{6}\right)^{2}+\cdots
$$

be the geometric series $a_{1}+a_{2}+a_{3}+\cdots$, where a_{1} is the probability that player $\mathrm{A}(, \mathrm{B}$, or C$)$ throws a one for the first time on the i th toss. The probability that the game ends after A's i th toss, B's j th toss, and C's k th toss is $a_{1} a_{j} a_{k}$. In addition, A will roll the first one, B will roll the second one, and C will roll the third one if and only if $i<j<k, i<j=k, i=j<k$, or $i=j=k$. Therefore, applying the theorem, the probability that the order of finish is A, B, and C is

$$
\sum_{i<j<k} a_{l} a_{l} a_{k}+\sum_{i<j} a_{l} a_{j}^{2}+\sum_{l<k} a_{l}^{2} a_{k}+\sum_{l} a_{l}^{3}=\frac{125}{1001}+\frac{25}{1001}+\frac{5}{91}+\frac{1}{91}=\frac{216}{1001} .
$$

