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126 CURTIS COOPER [February 

Let Pi = 2, P2 = 3,... be the sequence of primes. We will need the following two lemmas. 
in 

LEMMA 1. 1[[(1 - l/p, ) > l/pnl,7m = 1, 2 ... 

LEMMA 2. If the prime factors of the positive integer b > 1 are PI, P2, Ap, then 
ni 

Z1/d<1/ Hl(1-1/p,). 
dlb 1=1 

Lemma 1 follows from the result P,- 1 p, - 1, i > 2, and Lemma 2 follows from the result 
m x 0 1 

EIl/d <11rl E (lp') k 
dlb 1=1 k=O 

Using these two lemmas we now proceed to settle the conjecture by induction. Since 
f(1) = f(2) = f(3) = 1, the conjecture holds for the first few positive integers. Suppose the 
conjecture holds for all positive integers less than n. If n = qal qa2 ... q",,, a, > a2 >* > a,,,, 
is the prime factorization of n and C = p11p2l2 ... p,t,?,, then f(n) = f( c) and c < n. Thus if 
c < n, then f (n) = f (c) < c < n by the induction hypothesis and we would be done. 

There remains the case n = c. We further subdivide this case into the subcases aM, = 1 and 
a., > 1. If m = a,l = 1, then n = 2, a value of n for which we know the conjecture to be true. If 
a,= 1 and m -> 2, then every factorization of n has precisely one factor divisible by p,,, so that, 
if b = n/p,, we have 

f(n) = f(b/d) < bLE/d < b (I - 1/p,) < b -An _ < 
dlb dhb 

by the induction hypothesis and the two lemmas. 
Finally, if a,, > 1, then set e = (n/p,,,)p,,, 1. For any factorization of n, say n = d1 d2 ... d, 

where di is a largest factor divisible by pm, then ((d1/p,1 )p,,, + 1) d2d3 ... d = e. Thus essentially 
different factorizations of n yield in this manner essentially different factorizations of e, so we 
have f(n) < f(e). Similar to before, if b = e/pn,+ , we have 

in 

f ( n) < f ( e) = f ( bd) < bE 1/d < b /7(1 - lpi) < b p,A = n, 
dib dlh /=1 

and the induction is complete. 
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Suppose 
a, + a2 + a3 + * 

is a geometric series with ratio r, Irl < 1. We know that the sum of this series is 

-a, 
1 - r 

Now if n and k1, k2,... , k,, are positive integers, what is a k1a 2 a>k,? In this 
1<72< 11 
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note we will answer this question and then use the result to solve a probability problem. 

THEOREM. Let 
al + a2 + a3 + * 

be a geometric series with ratio r, IrI < 1. Let n and kl, k2, . . , k,, be positite integers. Then 

E akl ak 2 ... a, k = akl +k2+ +rk2 +k2+2k3+ +(n-I)k, 1 

1 1 x 
1-rk2?+ -+k, 1_rk, 

Proof. By induction on n. 

aA 
a&' + a2k + a3k + = 

so the result is true for n = 1. 
Assume the result is true for n = m. Then 

E a k 1 aA 2 .. a nka .. k 

a-2 . . .+ 

a aI 2 .Ia , a1 a 2 1 ( (1 + r1M + ) 
11 < 12 < < 1, 

- a, a,.akla a ... ( rai ) ak (1 + r k,, + .) 
11 <12< 1 

r Z 1 < 1 a a . 

- akj1?k2? ?Z +k,?+krk2?2A3? --kR 1+l 1 
a'l a12 ... a1 ra 1 + r 

1 1 
1 - rk2 kA+1 1 - 

Thus, the theorem is true by induction. 

We now use this theorem to solve the following problem: 

Three players, A, B, and C, take turns throwing a single die, A leads. As soon as a player tosses 
a one, that player drops out of the game and the remaining players continue rolling the die until 
everyone has rolled a one. What is the probability that A tosses the first one, B tosses the second 
one, and C tosses the third one? 

To solve this problem, let 

1 k 15 1(5I\2-) I 7 

6 66 + 6+ 61 + 
be the geolmetric series al + a2 + a3 + . , where a, is the probability that player A (,B, or C) 
throws a one for the first time on the ith toss. The probability that the game ends after A's ith 
toss, B's jth toss, and C's kth toss is ata ak. In addition, A will roll the first one, B will roll the 
second one, and C will roll the third one if and only if i <j < k, i <j = k, i =j < k, or 
be= j = k. Therefore, applying the theorem, the probability that the order of finish is A, B, and C 
is 

2 La1ak+Za3 125 25 5 1 216 aaak+ Za + < k 1001 + 1001 + 91 + 91 1001 
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