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1. Introduction and Notation. Sometimes in resolving a particular open question, 
the method used can be generalized in order to investigate other questions. For 
example, in [1] the concept of a "Niven number" was introduced and investigated. 
(A Niven number is a positive integer which is divisible by its digital sum.) In [2], it 
was shown that the natural density of the set of Niven numbers is 0. In what 
follows, we generalize the method used in [2] to give sufficient conditions in order 
that certain sets of integers, namely integers n divisible by a function f(n), have a 
natural density zero. First, we give the following notation and definitions. 

Let f be an integer valued function. For an integer x, define the following sets of 
nonnegative integers: 

S= {n: f(n) divides n}, 

[O,x) = {n:0 < n < x 

and the integer 
S(x) = #(S n [0, x)). 

Let the sequence f(O), f(l), f(2),..., f(x - 1) be denoted by f([O, x)). Note that 
f([O, x)) is a random variable taking on the values of the above sequence. That is, 
we are interested not only in f(k), but also in the frequency of f(k). Then, letting ,u 
and a2 be the mean and variance of f([O, x)), respectively, we may write 

E f(k) 
X O<k<x 

118 



CHEBYSHEV'S INEQUALITY AND NATURAL DENSITY 119 

and 

a2= 1 E (f(k))2 
X O<k<x 

For k > 0, we let 

Ik= EnEf ([?, x)): I -ju <ka} k 
A {n E [O, x): n is a multiple of a member of Ik}, 
B= {n E [O, x): If(n) - Al > k). 

2. An Upper Bound for S(x) / x. Here, we recall Chebyshev's Inequality 
[3; Chapter 8]: 

Let X be a random variable with mean , and variance a 2. Then for each k > 0 

Prob[ IX- -l > ka] <k 

Stating this theorem in terms of the notation given above, we see, that for any 
k > O,gvnaoe 

e e,ta o n 

x 

It also follows by the description of A that 

test 

where as usual, the square brackets denote the integral part operator. We will 
henceforth restrict k so that k < a/a in order that u - ka > 0. 

Referring to the definitions of S, A, and B, we see that 

S n [0, x) C A U B 

for any positive integer x. This follows since if n is an element of S nl [0, x), then 
f(n) is a factor of n less than x. If f(n) is an element of Ik, then n is an element of 
A, while on the other hand, f(n) not an element of Ik implies that n is an element 
of B. So, in either case, n is an element of A U B. 

Thus, it is immediate that 

S(x)< #A + #B. 

Therefore, for each k such that 0 < k < A/a, we have 

S(x) Ks k[t] ]+ (2.1) 
tEC_Ik 

Continuing, we remove the square brackets and integrate to obtain 

S(X) < "| k (tdt + + (2.2) 
f-kg t p- ka 

The second term on the right side of (2.2) is necessary since the summands of (2.1) 
are strictly decreasing and hence, the first term of (2.1) is not taken into considera- 
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tion when the sum is replaced by an integral. Hence, we now have 
S(x) 1 I + ka 1 1 

x u - ka J u - ka k2' 

which gives an upper bound for S(x)/x. 

3. The Natural Density of S. Using (2.1), we can prove the following theorem 
which gives sufficient conditions in order that 

S(x) 
lim )=0, 

x -* 00x 

where x ranges over the integers. That is, sufficient conditions in order that the 
natural density of S is zero will be given. 

THEOREM 1. Let f, S, ,t, and a be as defined above. If 

lim - = oC 
x -00 a 

and 
lim y = 00, 

x -*00 

then 
S(x) 

lim =0. 
x -- C x 

Proof. (outline) The theorem follows by letting k = (I/a)l/2 in (2.3) and taking 
the limit of each side. Actually, we may choose the exponent to be any positive 
number less than one. 

If an is the nth term of an increasing sequence, a more general, and sometimes 
more useful, theorem can be similiarly proven. Its proof is based upon observing 
that for an < X <a0+1, we have 

S(x) S(an+1) an+1 S(an+1) an+1 
x an an+1 an+1 an 

THEOREM 2. Let an be the nth term of an increasing sequence and for each n, let 
,= mean f([O, an)) and a2 = variance f([O, a)) for an integer valued function f. 
Then for S and S(x) as defined above, 

lim jt = 00, 
n - oo 

lim - = so, 
n - oo CJ 

and if an+ 1/an is bounded, then 

S(x) 
lim ( =0. 

x -* 00x 

4. The Natural Density of the Niven Numbers. Hence, sufficient conditions have 
been given for sets such as S to have a natural density of zero. Here, an outline of 
the proof that the natural density of the Niven numbers is zero will be given. This 
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was proven in [2] but the outline given here makes use of the "big-O" notation 
which, in our opinion makes for a more elegant proof. 

We let s(n) be the digital sum of n and for an integer x, consider the set [0, x). 
Then the mean t, and variance a2, of s([O, x)) are given by 

I = 4.5 log x + 0(1) (4.1) 
and 

a2 = O(log x), (4.2) 
respectively, where log x denotes the common logarithm. The proof of these 
statistics is found in [41 and [5]. 

So, using (4.1), (4.2) and Theorem 1, we have the following theorem. 

THEOREM 3. Let N(x) be the number of Niven numbers not exceeding x. Then the 
natural density of N is zero, that is 

N(x) 
lim =0O. 

x - 00x 

Proof. By (4.1) and (4.2), we have that 

lim ,t = 00 
X - 00 

and 

I-L2 20.25 log2x + O(logx) 
lim 2 ~ lim - g- = o 

x 00 x -*00 O(log x) 

Therefore, 

lim -= 00, 
x 00 a 

and by Theorem 1, the natural density of the Niven numbers is zero. 

5. Little X numbers, log numbers and square root numbers. We observe that 
Theorems 1 and 2 can be used to study the natural density of other sets of numbers. 
Consider the following integer valued functions of the set of nonnegative integers. 

w(n) = number of distinct prime factors of n where co(1) is defined to be 1, 
I(n) = [logbn], for n > 1 and 

r(n) = [n1"2]. 

Here, we will investigate the sets 

W = { n: (n) dividesn} = {1, 2, 3, 4,... ,14,16, ...}, 

L = {n: l(n) dividesn} = {b, b + 1, b + 2,..., b2 1,...} 
and 

R {n: r(n) divides n} = 1,2,3,4,6,8,...} 

with respect to the question of natural density. In what follows, W, L, and R are 
called the set of "little Xo numbers," "log numbers," and "square root numbers," 
respectively. 
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For any x, it can be shown [6, pp. 355-357] that 

, w (n) = x ln(ln x) + O(x) 
n x 

and 

E (w(n))2 = x(ln(ln x))2 + O(x ln(ln x)). 
n x 

Hence, it follows that the mean, IL, and variance, a2, of w ([0, x)) are ln(ln x) + 0(1) 
and O(ln(ln x)) respectively. Thus, 

lim ,u= oo 
X -*+00 

and since 

/2 
lim 2 =? 

x -1 00 

we also have that 

lim - 0= 
x -* 00 

Therefore, by Theorem 1, the natural density of W is 0. 
In considering the set, L, of log numbers base b, we investigate the interval 

[1, bl] for any positive integer n. Then 

I= meanof l([1,bJ]) 1 b(x) 

n-1 b (+n-1 

b t=O x=bt 

hn-e br+ol 

bnE F, t + n 

= + + -)?bt+(n-) b 
t=O b- - 

b= -l + ) bn tbt 1 +b-- ) 

bn t= 1 

bn-1 (n- 1)2 bnl-(b - 1)2 b + (n) 
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Therefore, 

a2 = variance of 1([1, b n]) 

= n2 + O(n) - (n + 0(1))2 = O(n). 
Since 

lim tt= oo, n t oo 

lim -= 0, 
n - = 

and bn+'/bl = b is bounded, we have by Theorem 2 that the natural density of L is 
zero. 

Finally, to demonstrate that the conditions given by Theorem 1 and Theorem 2 
are not necessary, we consider the square root numbers. Let n be a positive integer. 
Then 

1 n2-i 

IL= mean r([O, n2)) = E r(x) 
n x=O 

1 n-1 (t+1)2-1 

= _2E , r(x) n t=O x=t2 

1 n-I 
= -2 E t(2t + 1) 

t=O 

2n 1 1 
3 2 6n 

which we write as 2n/3 + 0(1). By a similar technique, it can be shown that 

1n2 - 1 
r(xj))2 - )n2 + O(n). 

nx=O2 

Therefore 

1n2_ 
2 = variance r([0, n2)) = 21E (r( - 

x=O 

n 2 
- + O(n). 18 

Noting that 

lim,u= oo, 
n oo 

but that 

lim -= 2V, 
n-40oo U 

we see that Theorem 1 cannot be applied in the investigation of the square root 
numbers with respect to natural density. However, that the natural density of R is 
zero follows from [7, Solution to E 2491, pp. 854-855] which notes that the nth 
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square root number is given by the formula 

a=[ 3 ]1( [3 ] 
from which it follows that the natural density of R is zero. 

6. Conclusion. It is possible to investigate other integer valued functions with 
respect to natural density by using Theorems 1 and 2. In particular, another set 
which we believe could be investigated is what could be called the set of "big omega 
numbers." To describe this set, let 

n =-p n, n7 . . . e 

be the canonical representation of the positive integer n and define the integer 
valued function 

U(n) = ni + n2 + n3 + *-? +nm. 

Thus, we call an integer n a big omega number if U(n) divides n. It is known 
[6; pp. 355-357] that for any x 

mean Qi?([1, x)) = ln(ln x) + 0(1). 

However, we have not determined the variance of Q([1, x)) at this time. So, we 
cannot make use of Theorem 1 or Theorem 2 yet. We leave the question of the 
natural density of the set of big omega numbers as an open question. 

The authors thank the referee for the many helpful and valuable comments, corrections, and 
suggestions. 
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