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Music with unusual characteristics has been of interest to composers of all musical 

periods. For example, the theme 

? -fy-e- (i) 

has been used by J. S. Bach in The Art of the Fugue, Robert Schumann in Sechs 

Fugen uber Bach, and in Fantasy and Fugue on B.A.C.H. by Franz Liszt. Note that 
the German names of the musical notes of (1) spell B (B flat), A, C, and H (B 
natural). Without accidentals, this motif sounds the same when it is played right-side 
up or upside down. Thus, we have what could be called " 

upside-down" music. In 
Paul Hindemith's Ludus Tonalis, the postlude can be played by turning the pages of 
the prelude upside-down and vice versa, when allowance is made for accidentals. 

Thinking about the structure of such music led us to investigate what may be 
called "upside-down" numbers. Although any base may be used, we will be 
concerned only with base-ten integers. It can be shown that musically, this would 
mean that we are concerned only with musical strings of the nine whole notes, which 
are completely in the musical staff. 
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Upside-Down Numbers. We call a positive integer an "upside-down" number if 
its Ah leftmost digit and its /th rightmost digit are complements?that is, their sum 
is 10. Thus, 5465 is upside down since 5 + 5 = 4 + 6 = 10. The definition of an 

upside-down number implies that it has no zero digit. Note also that the middle 

digit must be 5 for an upside-down number having an odd number of digits. 
For any positive integer m, we denote by m the integer formed by reversing the 

digits of m. Thus (by the definition) m is upside down if and only if 

d 
m + m= YL 10*, 

k = l 

where d is the number of digits of m. Since 10d~l <m<10d, 

rf=[log/n] + l, (2) 

where (the base of the logarithm is 10) the square brackets denote the integral part 
operator. 

The following partial list of upside-down numbers may be helpful for obtaining a 
better grasp of their properties. Observe that the nth column can be generated using 
the numbers in the (n ? 2)nd and the 2nd columns. 

d=l d = 2 d = 3 d = 4 d=5 

19 159 1199 11599 
28 258 1289 12589 
37 357 
46 456 
55 555 
64 654 1919 19519 
73 753 2198 21598 
82 852 2288 22588 
91 951 

5465 54565 

9911 99511 

There are other ways to construct upside-down numbers. In fact, for any positive 
integer having no zero digit, one can easily construct an upside-down number using 
the given integer as its initial digits. For example, consider the integer 54. The 

upside-down number 5465, using 54 as the initial two digits, is obtained by annexing 
the reversal of the two-digit number formed by subtracting each digit of 54 from 10. 

How many upside-down numbers not exceeding x are there! 

To consider this and other related questions, we henceforth let U(x) denote the 
number of upside-down numbers not exceeding the real number x. 

The Order of Magnitude of U(x). Let k be a positive integer greater than or 

equal to 3. By our observation preceding the list of upside-down numbers, we have 

U(l0k) 
- 

U(l0k~l) = 
9(u(lOk~2) 

- 
U(lOk~3)). (3) 
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Using (3) and mathematical induction, one can readily establish that 

1/(10") 
- 

^(lO*-1) = 9[n/2] (4) 

for every positive integer n. Summing each side of (4), from n = 1 to n = m, we 
obtain the exact value 

m 

U(lOm)= ?9[w/2] (5) 
? = i 

for each positive integer m. 
To determine the asymptotic behavior of U(x), first observe that (5) and (4) yield 

[log*]+l [log?] + l 3[logx] + 2_3 
U(x)< ? 9^2U ? 3*=- (6) 

k=i k=i ^ 

for each real number x > 0. Since 

[log x ] < log x and 3log * = jc log3, 

we see that U(x)/xlog3 is bounded. This is frequently expressed in "big oh" 
notation: 

U(x) = 0(xl?*3). (7) 
From (5), we also have 

I n-1 \ 

u{\o2n) u{\o2n) Lri J 

(102?)lQ83 32n 32n 

Therefore, 

[/(102?) (-5/4) + (5/4)(32") 5 
lim -r-r = hm --^-= ?. (8) 
"-oo (I02w)log3 ?->oo 32n 4 w 

Similarly, 

C/(102"+1) (-5/4) + (3/4)(32"+1) 3 

?,_ (102. 
+ 
l)-?.3 

= 
Ji? -P^-=4- ^ 

Thus, (7) is confirmed as the correct order of magnitude for U{x). However, (8) and 
(9) show that U(x) is not asymptotic to any constant multiple of ;elog3. That is, the 
ratio C/(x)/xlog3 does not approach a fixed constant as x increases without bound. 

It is possible to determine bounds for U(x)/xlog3. In fact, let us show that for 

any x > 0: 
16 U(x) 15 , x ? <?r4<?. (io) 
81 xlog3 4 

v ' 

We begin by determining n such that 

10"-1<x<10". 

Then n - 1 < log x < n, and (since 3log x = xlog3) 

[/(IO""1) U(x) U(10") 

3" 
- 

xiog3 
K 

3?-i 
' 

which can be written as 

llUilO"'1)] U(x) JU(10") 
3 (-3TT--I^^r<3(^-|. 

dD 
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Since, by (8) and (9), the respective maximum and minimum of U(10k)/3k is f and 

Yj, our bounds in (10) follow. 

Remark. In terms of how spread out upside-down numbers are, (10) demonstrates 
that the natural density of upside-down numbers is zero. Specifically, 

U(x) 
Urn ?^? = 0. 

.x-?oo X 

Suppose un denotes the nth upside-down number. In the next section, we will 
give bounds for un as well as an algorithm for determining un for any given n. 

Bounds and an Algorithm for un. Letting x = un in (10), we have 

16 

81 

Since U(un) = n, the above inequalities can be recast as 

u^3<u(u?)<^y^. 

4M\iA>g3 /81n\1/log3 

is J ^hrj 
? <I2) 

Noting that ?1/log3 = nl?^10 and ?1/log3 ? n2, we see that 

un=0(nl0^10) (13) 

and 

v 
1 

L 
? 

converges. 

To find the nth upside-down number, we use (4) to determine the positive integer 
d such that U(lOd~l) <n< U(lOd). The following algorithm illustrates how to find 

un for any given n. 

Step 1. Find d such that t/(10^_1) < n < U(lOd). 

Step 2. Let m = n - U(10d~l). 

Step 3. Change m to base 9, and subtract 1 using base 9 arithmetic. 

Step 4. Consider the result of Step 3 as a base 10 number and add (10^/2] - 
l)/9. 

Call this result L. 

Step 5. If d is even, the nth upside-down number is found by annexing L with the 
complement of L. If d is odd, the nth upside-down number is found by annexing L 
with 5 annexed with the complement of L. 

Example. Let us find u59. Since ?/(103) = 19 and ?/(104) = 100, we have that 
d = 4. Thus, the value of m in Step 2 is 40. Since m in base 9 is 44, the result of 

Step 3 is 43. Thus, L = 54 by Step 4. From this and the fact that d is even, it 
follows, by Step 5, that the 59th upside-down number is 5465. (Note that the digits 
of 5465, respectively, represent the levels of the staff that the musical notes B, A, C, 
and H lie on.) 
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To clarify this algorithm, note that Step 1 calculates the number d of digits of un. 
Step 2 locates un in the interval (10d~\ 10d). To explain Steps 3 and 4, consider the 

following columns from our generated list of upside-down numbers: 

d=2j d = 2j + l 

111...19...999 111...159...999 
111...28...999 111...258...999 

111...91...999 111...951...999 

555...55...555 555...555...555 

999...91...Ill 999...951...Ill 

Note that the leftmost halves of d-digit upside-down numbers constitute the set 
of numbers, having no zero digit, from 

(10^/2] _i)/9 to lo^-l. (14) 

So, after subtracting one from each digit of each integer in (14), we have all the 
base 9 numbers from 

0 to (8)(l0^-l)/9. (15) 

Therefore, Steps 3 and 4 construct L, the leftmost half of un, by finding the mth 
number in (14). Finally, Step 5 tells what digits to annex to L to determine un. 

Conclusion. Although the algorithm given above determines un for any given 
positive integer n, a formula for un has not been found by the authors. In view of 

(8) and (9), the authors feel that no asymptotic formula exists for U(x). 
Just as "upside-down" music has interesting musical aspects, we see that the 

mathematical analogue?upside-down numbers?also yields mathematical ques? 
tions. 

Acknowledgement. The authors wish to thank the referees and, in particular, the Editor for their 
many suggestions toward the improvement and preparation of this article. 

Mathematics is on the artistic side a creation of new rhythms, orders, designs, harmonies, 
and on the knowledge side, is a systematic study of various rhythms, orders, designs and 
harmonies. 

William L. Schaaff 
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