Trees and Tennis Rankings
Author(s): Curtis Cooper
Source: The College Mathematics Journal, Vol. 17, No. 1 (Jan., 1986), pp. 76-78
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2686877
Accessed: 13/01/2011 13:38

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The College Mathematics Journal.

$$
\begin{equation*}
\frac{2}{\frac{1}{a}+\frac{1}{b}}<\sqrt{a b}<\frac{b-a}{\ln b-\ln a}<\frac{a+b}{2}<\sqrt{\frac{a^{2}+b^{2}}{2}} \quad(0<a<b) \tag{4}
\end{equation*}
$$

relating the harmonic, geometric, logarithmic, arithmetic, and root-mean-square means.

For a rigorous proof of (1), observe that

$$
\cosh x-1 \equiv\left(\frac{e^{x / 2}-e^{-x / 2}}{2}\right)^{2}>0 \quad \text { for } \quad x>0
$$

Therefore,

$$
\frac{1}{\cosh ^{2} x}<1<\cosh x \quad \text { for } \quad x>0
$$

and (1) follows by integrating the preceding inequality from $x=0$ to $x=t$. The other inequalities of (3) are obvious.

Trees and Tennis Rankings

Curtis Cooper, Central Missouri State University, Warrensburg, MO
Everyone is familiar with the usual kind of "elimination" tennis tournament in which losers drop out and winners continue to play until one undefeated player remains. Such a tournament is nicely described by a tree whose vertices $1,2, \ldots, n$ represent the n players and whose edges represent the matches that were playedthe direction of each edge pointing toward the loser. In the tournament of Figure 1, for example, player 4 won by beating player 6 (who beat 11 and 1), player 10, and player 3 (who beat 8,2 , and 5). In addition, player 8 beat player 9 (who beat 7 and 12).

Figure 1.
Suppose we wanted to rank the players of this tournament, subject to the rule: for each edge of T, player i precedes player j if and only if i beats j. There is clearly no unique way to do so since T does not contain enough information for a full account
of the players' relative strengths. Indeed, although 4 (the root of tree T) must begin the list, the next member of the ranking could be 6,10 , or 3 . Therefore, the general question to be asked is:

How many rankings can be generated by a given rooted (directed) tree?
Let us first show that for the tournament in Figure 1, the answer is 158400 . The analysis of the general case is simple and pretty.

T_{c}
Figure 2a.

Figure 2b.

Let (Figure 2a) a, b, c be the players who lost to 4 . Then a, b, c are the roots of subtrees T_{a}, T_{b}, T_{c} of T. Knowing the number of rankings $R\left(T_{a}\right), R\left(T_{b}\right), R\left(T_{c}\right)$ for these subtrees will enable us to compute the number of rankings $R(T)$ for T itself.

There $\operatorname{are}\left(\begin{array}{rrr} & 11 & \\ 3 & 1 & 7\end{array}\right)=\frac{11}{3!1!7!}$ ways to string 11 beads using 3 amber, 1 blue, and 7 crimson beads. Assume that these colored beads are precisely the numbered vertices of T_{a}, T_{b}, T_{c}. Then for any particular color arrangement on the string, there are respective $R\left(T_{a}\right), R\left(T_{b}\right), R\left(T_{c}\right)$ rankings for each color. (Figure 2 b depicts one possible color arrangement and one possible ranking for that given color arrangement.) Thus,

$$
R(T)=\frac{11!}{3!1!7!} \times R\left(T_{a}\right) \times R\left(T_{b}\right) \times R\left(T_{c}\right)
$$

Clearly, $R\left(T_{a}\right)=2$ and $R\left(T_{b}\right)=1$. To obtain $R\left(T_{c}\right)$, we can invoke the preceding argument, applied to subtrees T_{8}, T_{2}, T_{5} of T_{c}. This yields

$$
R\left(T_{c}\right)=\frac{6!}{4!1!1!} \times 2 \times 1 \times 1 .
$$

All together, we obtain

$$
R(T)=\frac{11!}{3!1!7!} \times 2 \times 1 \times\left(\frac{6!}{4!1!1!} \times 2 \times 1 \times 1\right)=158400
$$

Turning now to the general case, we assume that the tournament-representing tree T can be arranged so that the root r occurs by itself at the top, in "level 0 ," of the tree (Figure 3). Let the players $w_{1}, w_{2}, \ldots, w_{k}$ who lost to winner r be placed (in any order) in level 1 of the tree.

Figure 3.
Each vertex w_{i} is the root of a subtree $T_{w_{i}}$ of T; each $T_{w_{i}}$ represents a subtournament, the ranking of whose players provides us with a problem that is identical to the kind of problem we started with. Let us show that, if we can solve the problem for the subtrees $T_{w_{i}}$, we can succeed with T itself.

Every ranking for T has a place for each of the n players and, because the first position must go to winner r, our freedom extends only through the remaining $n-1$ positions. We don't care how the vertices of the various subtrees get interlaced, so long as the vertices of each $T_{w_{i}}$, considered alone, satisfy " i before j means i beat j." Consequently, a ranking for T is constructed by the double procedure:
(1) For each i, select $\left|T_{w_{i}}\right|$ places among the $n-1$ open positions for the vertices of $T_{w_{i}}$;
(2) Enter in these places the $\left|T_{w_{i}}\right|$ vertices of $T_{w_{i}}$ in any acceptable $R\left(T_{w_{i}}\right)$ ranked order.

Practically by definition, the number of ways of achieving (1) is the multinomial coefficient

$$
\binom{n-1}{\left|T_{w_{1}}\right|\left|T_{w_{2}}\right| \cdots\left|T_{w_{k}}\right|}=\frac{(n-1)!}{\left|T_{w_{1}}\right|!\left|T_{w_{2}}\right|!\cdots\left|T_{w_{k}}\right|!} .
$$

And for each of these partitions, the number of ways of doing (2) is $R\left(T_{w_{1}}\right) \times$ $R\left(T_{w_{2}}\right) \times \cdots \times R\left(T_{w_{k}}\right)$. Therefore, the total number of rankings for T is given by the recurrence relation

$$
R(T)=\frac{(n-1)!}{\left|T_{w_{1}}\right|!\left|T_{w_{2}}\right|!\cdots\left|T_{w_{k}}\right|!} \cdot R\left(T_{w_{1}}\right) R\left(T_{w_{2}}\right) \cdots R\left(T_{w_{k}}\right)
$$

with the obvious initial value $R(T)=1$ for $|T|=1$.

