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Abstract. The first moment of the number of 1’s function in the § = (1 +

V/5)/2-expansion of the positive integers will be studied.

1. Introduction. In [2], Coquet and van den Bosch studied the first moment
of the number of 1’s function in the Zeckendorf decomposition [3,5] of the positive
integers.

The Fibonacci sequence is defined by Fy = 0, F} = 1, and F; = F;_1 +
F;_5 for i > 2. The Zeckendorf decomposition of a natural number n is the unique
expression of n as a sum of Fibonacci numbers with nonconsecutive indices and
with each index greater than 1. For example, the Zeckendorf decomposition of one

million is
1000000 = 832040 + 121393 + 46368 + 144 + 55

= F30 + Fog + Foy + Fi2 + Fip.

Therefore, if we have

n = ibka

k>2

then we write n = b,,b,,—1...b2,. Thus,

1000000 = 10001010000000000010100000000 .
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Representing numbers by their Zeckendorf decomposition is referred to as the Zeck-
endorf number system. The representation of the first 56 natural numbers in the

Zeckendorf number system is given in the following table.

1= 1z 29 = 1010000z

2 = 10z 30 = 1010001z

3= 100z 31 = 1010010z

4 = 101, 32 = 10101007

5= 10007 33 = 1010101

6 = 10017 34 = 10000000z
7= 1010z 35 = 10000001 z
8 = 10000~ 36 = 10000010z
9= 10001z 37 = 100001007
10 = 100107 38 = 10000101 z
11 = 10100, 39 = 10001000 z
12 = 10101, 40 = 10001001 z
13 = 100000z 41 = 10001010
14 = 100001 z 42 = 100100007
15 = 1000104 43 = 10010001 z
16 = 100100~ 44 = 10010010
17 = 100101z 45 = 100101007
18 = 1010007 46 = 10010101z
19 = 101001z 47 = 101000007
20 = 1010104 48 = 10100001 z
21 = 1000000~ 49 = 101000107
22 = 1000001z o0 = 101001007
23 = 1000010z 51 = 10100101z
24 = 1000100z 52 = 101010007
25 = 1000101z 53 = 10101001z
26 = 1001000 54 = 10101010
27 = 1001001z 55 = 100000000z
28 = 1001010z 56 = 100000001z

The Zeckendorf Decomposition of the First 56 Natural Numbers.

Definition 1. Let n be a positive integer. Then sz (n) is defined to be the digital

sum of (number of 1’s in) the Zeckendorf decomposition of the natural number n.

For example, sz(56) = 2 and sz(1000000) = 5.



Coquet and van den Bosch [2] found that for any positive integer n,

k; sz (k) = 5—;))@(1 +2¢5)"+ —11+0¢5(1+2¢S)"(n+ )

+5+5?)\/5<1_2\/5)n+ _11_0\/3(1_2\/3)71(71—#1), (1)

and also for any positive x,

3—0 log x
k)= 1 1 . 2
;sz( ) 518 5° oga:—ka(lOgﬁ) + O(log z) (2)
Here, 3 = (1 ++/5)/2, log x denotes the natural logarithm of x, and G:R — R is a

continuous, nowhere differentiable function of period 1. In this paper we will study

a sum similiar to (1) involving the f-expansion [1,4] of the positive integers.

2. (-Expansion. The Lucas sequence is defined as follows. Let Ly = 2,
Li=1,and L; = L;_1 + L;_5 for i > 2. Let 3 = (14 +/5)/2. The 3-expansion of
a natural number n is the unique finite sum of integral, nonconsecutive powers of

( that equals n. For example, the (B-expansion of one million is
710647 — 3178115 271443 — 121393+/5 n 15127 — 6765v/5

1000000 = 5 + 5 5

2207 — 987v/5 843 —377v/5  —199 + 895

+ + +
2 2 2

—76+34v5 7-3vV5 2+0V5 T7+3V5

N VB T=3V5  240V5  T+3V5
2 2 2 2

47 +21v5 521 +233v5 2207 + 9875

+ + +
2 2 2

15127 + 67655 271443 + 121393v5 710647 + 3178115

+ 2 + 2 + 2

— 6—28 +ﬁ_26 +ﬁ_20 +ﬁ_16 +ﬁ_14
+ﬁ—11+ﬁ—9+6—4+60+64+68
+ ﬁl?) + ﬁlG + ﬁ20 + ﬁ26 + 628'
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Therefore, if we have

n = i bkﬁk

k=—m

then we write n = b_,,b_p,41...0-1bgb1 ... bp_1by 3. Note that the coefficient of

3% is underlined. Thus,
1000000 = 101000001000101001010000100010001000100001001000100000101 g

is the [B-expansion of 1000000. Representing numbers in their f-expansion will be
referred to as the base 8 number system. The representation of the first 56 natural

numbers in base 3 is given in the table below.



— o — —
—HrArA A A A A TA A A A A A A A A A O O O OO OO0 O

HreA A A A A A A A A A A O O OO0 OO OO0 OO O OO OO OO OO OO OO OoO O

rHreA A A A T O O OO O OO OO0 OO0 OO O OO0 OCO ™ rdrd OO0 OO0 OO0 O

HreEA A AT OO OO OO OO OO OCOCO T IO OO i O OO0 OO0 OO
—HHOOOOOOOOO 100 OO 100000 OC OO —"r1000O0 OO 10000 O—H—HOOO
—HHOOOOO " 1O0OO 1000001100000 1100100000 A OO "0 OO0 O
—HOOO—HOO—HOOO—1OOO—HOOHOOO OO OO OO0 —HOOHOOO OO OO OO0 —HOO
—OIOIHIOICIOIHIOIOI—IOICIOI—ICIOIOIHICIOHIOICIOIHIOIOIHIOICIOIHICICIOIHIOIOI—IOIOIOIHICIOIOIHICIOHIOIOICI—ICI
OO 1O OO OO HO OO 1O OO OOHOOOOOOHOOOHHOOOOOOHOOOHHOOODOOOoOHOOOO
—HrHAA O OO A" IO OO0 A" IO OO0 "m0 "0 —
OO OO AT HOOODOODODODODOOOOOOOCO T 1000000 AT 1000000 Oo0O
HrAA—TA A A1 OO OO O OO OO0 AT A0 OO0 OO0 OO OO OO A A+

OO OO OO0 rdrdr 100000000

—HrA A A A A A A A A A A A A A A AT O O OO OO OO DO OO OO DO OO OO0 o

OO OO OO OO OO OO OO0 OoOOoOoOoOoO

O AN F IO~ O
— o~ —

NHFLOOI~0DHO
AN AN

— N
AN OO~ AN

The Base 8 Representation of the First 56 Natural Numbers.



Definition 2. Let n be a positive integer. Then sg(n) is defined to be the

number of 1’s in the (-expansion of the natural number n.
For example, s3(56) = 6 and s3(1000000) = 16.

Definition 3. Let

3. Results.

Lemma 1. Let n be an integer. Then

_ Lo+ Fu5

g" 5

Here, for n > 0,

F ,=(-1D)""F,and L_, = (=1)"L,.

Lemma 2.

Lon =10---000---01g for n > 1,
—— T N——

2n—1 2n—1

Loy—1=10---10101---01 g for n > 2,
—_—— T ——
n—1 n—1
Lop_1+1=1001---0L00---01g for n > 2,
—— T N~
n—1 2n—2
2L3p,—2 =10010---000---010013 for n > 3,
—— T ——
2n—4 2n—>5
Lop—1 + Lop—3 =10010010---10101---01 0014 for n > 3,
n—3 n—2
Lop—1+ Loy—3+1=100001---0100---01015 for n > 3.
n—2 2n—4
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Lemma 3. 61 =1, B2 =5, B3 =8, 64 = 16, and 35 = 32. For n > 3,

Ban = Pan—1 + 202n—2 — 2B2pn—3 + Bon—5 + 2L2p—1 —4Lop_4

and

Bont1 = Ban + Bon—1 +2Lap_1.

Theorem. Let n be a positive integer. Then

B = k; sa(k)
= é—é(—m +1 _2\/5 <1 +2\/3)" L1 +2¢3(1 —2x/3)”
+3 _5ﬁ(1 +2\/3)n(”+ D+ 5+5ﬁ(1 _Qﬁ)n(vw 1)
4. Proofs.

Proof of Lemma 1. By induction on n (both ways).

Proof of Lemma 2. Lemma 2 is Lemma 3.2 and 3.3 in [4].

Proof of Lemma 3. We will first prove that

Bant+1 = Bon + Ban—1 +2Lap_1.

We first note that

Loypt1

Bons1 =Pan+ Y spk).

k=L2,+1

Since by Lemma 2

Lop =10---000---01g,
—— T N——

2n—1 2n—1
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L2n - ﬁ_2n + 5271‘

Hence for 1 < k < Lg,_1, the base 3 representation of Ls, + k is the base 3
representation of k plus 372" plus 32". The recurrence relation follows.

Next, we will prove that
Ban = Poan—1 + 202n—2 — 2B2pn—3 + Bon—5 + 2L2y—1 — 4Lop_4.

We note that
L2n

Bon =Ban-1+ Y sa(k).

k:LQn—1+1

We first note that the base (3 representation of all the numbers from Lo, 1 +1

to Lo, — 1 include the expression
ﬂ—Qn + 6271—1

and the base 3 representation of Lo, includes the expression
ﬂ—Qn +62n

There are Lo, _s numbers in this list. In addition, the base (3 representation of

Loy, 1+ 1to Lay,_1 + Lojp_3 includes the expression

ﬁ—2n+3‘

Also, the base 3 representation of 2L, o to Loy, _1 + Lo,_3 and Lo,,_1 + Lo,_3+1

to Lo, — 1 includes the expression

#=% and %773, respectively.
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In each of these lists there are Lo, _3 numbers. Note that the base (3 representation
of Lo, is precisely

ﬁ—Qn + ﬁ2n‘

Counting the number of terms above gives

2L2y 92 +2Lop_3=2Lop_1.

Next, we wish to examine the middle terms of the base (3 representations of
Lo, 1+ 1 to Ly,. We will divide these numbers into three parts; Lo,_1 + 1 to
2L, _9,2Lo,_o+1to Lop_1+ Lo,_3, and Loy, 1 + Lop_3+ 1 to Lo,.

Consider the first group Lo, 1 + 1 to 2Lo,_o. There are Ls,_4 numbers in
this group. Let 1 < k < Lg,_4. To investigate the middle terms in the base [
representation of Lo, 1 + k, we will compare these terms to the middle terms in
the base [ representation of Lo, 3 + k. (There are no 1’s in the middle terms
in Lop_1 4+ Lop_4 and Loy, _3 + Lo,y = Loy _o so we don’t need to worry about
k = La,—_4.) By Lemma 2,

Lop 1+ k= ﬁ—Qn + /6’_2”"‘3 Lo+ 6271—1

L2n—3 + k= ﬁ—2n+2 + Y +ﬁ2n—3
where z and y are unknown middle expressions involving powers of 3. However, by
comparing the expressions

T = L2n—1 +k— ﬁ—Qn . B—2n+3 o BQn—l

y = L2n—3 + k— 6271—3 . 6—271-1—2



and using Lemma 1, it follows that the two right-hand sides of the above equations
are equal. Therefore, the base (3 representations of x and y are equal. Since we
know the number of 1’s in the base 3 representation of y, we know the number of
1’s in the base 3 representation of x. Therefore, the number of 1’s in the middle

terms of this first group is

Bon—2 — Ban—3 — 2Lop_4.

The third group is analogous to the first. The third group consists of the
numbers Loy, _3 + Loy_1 + 1 to Ls,. There are Lo, _4 numbers in this group. Let
1 < k < Lg,_4. To investigate the middle terms in the base [ representation of
Loy, 3+ Lo, 1+ k, we will compare these terms to the middle terms in the base
B representation of Lo,_3 + k. (Again, there are no 1’s in the middle terms in
Lop—1 + Lop—4 and Lg, so we don’t need to worry about k = Ly, _4.) By Lemma

2,
Lon_3+ Loy 1 +k=p3"2"+x+ 33 g2t

L2n—3 + k= 5—271—1—2 + y +62n—3

where x and y are unknown middle expressions involving powers of 3. However, by
comparing the expressions

= Loy 3+ Loy 1+k—p72"—p>3 gt

y=Lap_s+k— 22— g3
and using Lemma 1, it follows that the two right-hand sides of the above equations
are equal. Therefore, the base (3 representations of x and y are equal. Since we
know the number of 1’s in the base [ representation of y, we know the number of
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1’s in the base 3 representation of x. Therefore, the number of 1’s in the middle

terms of this first group is

Bon—2 — Ban—3 — 2Lop_4.

The second group is the last one we have to do. This group consists of the
middle terms of 2L9,_o + 1 to Lo, _1 + Lo,_3. There are Lo, _5 numbers in this

group. Since by Lemma 2 we have

2L2,—2 =10010---000---01001g,
—— T ——
2n—4 2n—>5

it follows

2L2n—2 — 6—271 +6—2n—|—3 + 6271—4 +62n—1.

Now let 1 < k < Lo, _5. To investigate the middle terms in the base 3 representation
of 2Ls,,_o+k, we will compare these terms to the base 3 representation of k. Because
of absence of 3 terms in the middle of 2L5,,_5, the middle terms in Ls,,_o + k are
precisely the base 3 representation of k. Therefore the number of 1’s in the middle

terms of the second group is
62n—5~

Putting this all together we have that
6271 = 6271—1

+2L2y, 1
+ 2(Ban—2 — Poan—3 —2Lay_4)

+ ﬁ?n—5-

The result follows.
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Proof of the Theorem. From Lemma 3 we have that 8, = 1, 6o = 5, 3 = 8§,

B4 =16, B5 = 32 and for n > 3,

Bon = Pon—1 + 202n—2 — 2B2p—3 + Ban—s5 + 2L2y—1 — 4Lop_4

and
Bont+1 = Pan + Bon—1 +2Lap_1.
Let
n>1
and
L(z) =Y Lpa"
n>0

We note that

and

(% -5 - ”%2)5(:@ + (—% -5+ ”%2)5(—93) —a+ 2x2<L(x) _QL(_x)).




Using the fact that
2—=x
1—x— 22

L(x) =

we can solve these two equations in two variables 3(z) and ((—x) simultaneously

to obtain

2 4 5 8 10
%+5i+ac__19x _7%_}_161:6_'_4237_21; _|_39c2

2
(3 — 222 + 22 — %6)(1—:B—:v2)(1+:1:—:1:2)

Simplifying ((x) results in

2(325 + 62* — 623 — 422 + 32 + 1)

B(x) = — (—14+z+22)2(x—1)(z+1)

Expanding this into partial fractions gives

Blz) = =3 2(x — 1) 2(x+1)+(2x+1—\/5)+(2w+1+\/5)
40 — 1615 40 + 16V/5

e+ 1— V5P | a1+ V)

Using the power series expansions of the 6 series

2a:+11—\/3 1_\[2( 5)x’

1 —V5
2¢+1+ V5 1+f2>:0(

1 1 1+5
(22 +1—+5)2  (1—+/5)2 n>0< 2 ) (n+ 1)z
1 1 -5
(22 + 1 ++/5)2 (1+f) < ) (n+ 1)z
1 = —1z™ and
xr — "0
1 n_.n
x_’_lznzo(_l)xa



we conclude that

3 3 1—¢3<1+¢3)”+1+¢3(1—¢3)"

=53 T 2 2 2

+ 5_5\/3(1+2\/3)n(n+ 1)+ 5+5\/3(1 _2\/5)“(

n+1)

In fact, a new recurrence relation which combines both the even and odd parts of
the above recurrence relation is 3; =1, 2 = 5, 83 =8, B4 = 16, 85 = 32, s = 59,

and for n > 7

671 = 2671—1 + 2671—2 - 4ﬁn—3 - 2ﬁn—4 + 2ﬁn—5 + 6n—6~

5. Questions. Several questions remain unanswered. For example, can a
closed form formula be discovered for the second moment, i.e.
Z sz(k)? or Z sg(k)??
k<F, k<L,
What can be said about higher moments of either the function sz or sg? Finally,
can a formula similar to (2) be found for

Z Sﬁ(k).

k<z
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