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Abstract. The first moment of the number of 1’s function in the β = (1 +

√
5)/2-expansion of the positive integers will be studied.

1. Introduction. In [2], Coquet and van den Bosch studied the first moment

of the number of 1’s function in the Zeckendorf decomposition [3,5] of the positive

integers.

The Fibonacci sequence is defined by F0 = 0, F1 = 1, and Fi = Fi−1 +

Fi−2 for i ≥ 2. The Zeckendorf decomposition of a natural number n is the unique

expression of n as a sum of Fibonacci numbers with nonconsecutive indices and

with each index greater than 1. For example, the Zeckendorf decomposition of one

million is
1000000 = 832040 + 121393 + 46368 + 144 + 55

= F30 + F26 + F24 + F12 + F10.

Therefore, if we have

n =
m∑

k≥2

bkFk

then we write n = bmbm−1 . . . b2Z
. Thus,

1000000 = 10001010000000000010100000000Z.
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Representing numbers by their Zeckendorf decomposition is referred to as the Zeck-

endorf number system. The representation of the first 56 natural numbers in the

Zeckendorf number system is given in the following table.

1 = 1Z 29 = 1010000Z

2 = 10Z 30 = 1010001Z

3 = 100Z 31 = 1010010Z

4 = 101Z 32 = 1010100Z

5 = 1000Z 33 = 1010101Z

6 = 1001Z 34 = 10000000Z

7 = 1010Z 35 = 10000001Z

8 = 10000Z 36 = 10000010Z

9 = 10001Z 37 = 10000100Z

10 = 10010Z 38 = 10000101Z

11 = 10100Z 39 = 10001000Z

12 = 10101Z 40 = 10001001Z

13 = 100000Z 41 = 10001010Z

14 = 100001Z 42 = 10010000Z

15 = 100010Z 43 = 10010001Z

16 = 100100Z 44 = 10010010Z

17 = 100101Z 45 = 10010100Z

18 = 101000Z 46 = 10010101Z

19 = 101001Z 47 = 10100000Z

20 = 101010Z 48 = 10100001Z

21 = 1000000Z 49 = 10100010Z

22 = 1000001Z 50 = 10100100Z

23 = 1000010Z 51 = 10100101Z

24 = 1000100Z 52 = 10101000Z

25 = 1000101Z 53 = 10101001Z

26 = 1001000Z 54 = 10101010Z

27 = 1001001Z 55 = 100000000Z

28 = 1001010Z 56 = 100000001Z

The Zeckendorf Decomposition of the First 56 Natural Numbers.

Definition 1. Let n be a positive integer. Then sZ(n) is defined to be the digital

sum of (number of 1’s in) the Zeckendorf decomposition of the natural number n.

For example, sZ(56) = 2 and sZ(1000000) = 5.
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Coquet and van den Bosch [2] found that for any positive integer n,

∑

k<Fn

sZ(k) =
5 − 9

√
5

50

(
1 +

√
5

2

)n

+
−1 +

√
5

10

(
1 +

√
5

2

)n

(n + 1)

+
5 + 9

√
5

50

(
1 −

√
5

2

)n

+
−1 −

√
5

10

(
1 −

√
5

2

)n

(n + 1), (1)

and also for any positive x,

∑

k<x

sZ(k) =
3 − β

5 log β
x logx + xG

(
log x

log β

)

+ O(logx). (2)

Here, β = (1 +
√

5)/2, log x denotes the natural logarithm of x, and G: R → R is a

continuous, nowhere differentiable function of period 1. In this paper we will study

a sum similiar to (1) involving the β-expansion [1,4] of the positive integers.

2. β-Expansion. The Lucas sequence is defined as follows. Let L0 = 2,

L1 = 1, and Li = Li−1 + Li−2 for i ≥ 2. Let β = (1 +
√

5)/2. The β–expansion of

a natural number n is the unique finite sum of integral, nonconsecutive powers of

β that equals n. For example, the β-expansion of one million is

1000000 =
710647 − 317811

√
5

2
+

271443 − 121393
√

5

2
+
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√

5

2

+
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√
5

2
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√

5

2
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√

5
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√
5

2
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√

5

2
+

2 + 0
√

5

2
+

7 + 3
√

5

2

+
47 + 21

√
5

2
+

521 + 233
√

5

2
+

2207 + 987
√

5

2

+
15127 + 6765

√
5

2
+

271443 + 121393
√

5

2
+

710647 + 317811
√

5

2

= β−28 + β−26 + β−20 + β−16 + β−14

+ β−11 + β−9 + β−4 + β0 + β4 + β8

+ β13 + β16 + β20 + β26 + β28.
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Therefore, if we have

n =

m∑

k=−m

bkβk

then we write n = b−mb−m+1 . . . b−1b0b1 . . . bm−1bmβ . Note that the coefficient of

β0 is underlined. Thus,

1000000 = 101000001000101001010000100010001000100001001000100000101β

is the β-expansion of 1000000. Representing numbers in their β-expansion will be

referred to as the base β number system. The representation of the first 56 natural

numbers in base β is given in the table below.
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1 = 1
2 = 1 0 0 1
3 = 1 0 0 0 1
4 = 1 0 1 0 1
5 = 1 0 0 1 0 0 0 1
6 = 1 0 0 0 0 1 0 1
7 = 1 0 0 0 0 0 0 0 1
8 = 1 0 0 0 1 0 0 0 1
9 = 1 0 1 0 0 1 0 0 1
10 = 1 0 1 0 0 0 1 0 1
11 = 1 0 1 0 1 0 1 0 1
12 = 1 0 0 1 0 1 0 0 0 0 0 1
13 = 1 0 0 1 0 0 0 1 0 0 0 1
14 = 1 0 0 1 0 0 0 0 1 0 0 1
15 = 1 0 0 1 0 0 1 0 1 0 0 1
16 = 1 0 0 0 0 1 0 0 0 1 0 1
17 = 1 0 0 0 0 0 0 1 0 1 0 1
18 = 1 0 0 0 0 0 0 0 0 0 0 0 1
19 = 1 0 0 0 0 0 1 0 0 0 0 0 1
20 = 1 0 0 0 1 0 0 1 0 0 0 0 1
21 = 1 0 0 0 1 0 0 0 1 0 0 0 1
22 = 1 0 0 0 1 0 1 0 1 0 0 0 1
23 = 1 0 1 0 0 1 0 0 0 1 0 0 1
24 = 1 0 1 0 0 0 0 1 0 1 0 0 1
25 = 1 0 1 0 0 0 0 0 0 0 1 0 1
26 = 1 0 1 0 0 0 1 0 0 0 1 0 1
27 = 1 0 1 0 1 0 0 1 0 0 1 0 1
28 = 1 0 1 0 1 0 0 0 1 0 1 0 1
29 = 1 0 1 0 1 0 1 0 1 0 1 0 1
30 =1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1
31 =1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1
32 =1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1
33 =1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1
34 =1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
35 =1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1
36 =1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
37 =1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1
38 =1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
39 =1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1
40 =1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1
41 =1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
42 =1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1
43 =1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1
44 =1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1
45 =1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1
46 =1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
47 =1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
48 =1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
49 =1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
50 =1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
51 =1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1
52 =1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1
53 =1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1
54 =1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
55 =1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
56 =1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1

The Base β Representation of the First 56 Natural Numbers.

5



Definition 2. Let n be a positive integer. Then sβ(n) is defined to be the

number of 1’s in the β-expansion of the natural number n.

For example, sβ(56) = 6 and sβ(1000000) = 16.

Definition 3. Let

βn =
∑

k≤Ln

sβ(k).

3. Results.

Lemma 1. Let n be an integer. Then

βn =
Ln + Fn

√
5

2
.

Here, for n > 0,

F−n = (−1)n+1Fn and L−n = (−1)nLn.

Lemma 2.

L2n = 1 0 · · ·0
︸ ︷︷ ︸

2n−1

0 0 · · · 0
︸ ︷︷ ︸

2n−1

1β for n ≥ 1,

L2n−1 = 10 · · ·10
︸ ︷︷ ︸

n−1

1 01 · · ·01
︸ ︷︷ ︸

n−1

β for n ≥ 2,

L2n−1 + 1 = 10 01 · · ·01
︸ ︷︷ ︸

n−1

0 0 · · · 0
︸ ︷︷ ︸

2n−2

1β for n ≥ 2,

2L2n−2 = 1001 0 · · ·0
︸ ︷︷ ︸

2n−4

0 0 · · ·0
︸ ︷︷ ︸

2n−5

1001β for n ≥ 3,

L2n−1 + L2n−3 = 100100 10 · · ·10
︸ ︷︷ ︸

n−3

1 01 · · · 01
︸ ︷︷ ︸

n−2

001β for n ≥ 3,

L2n−1 + L2n−3 + 1 = 1000 01 · · ·01
︸ ︷︷ ︸

n−2

0 0 · · · 0
︸ ︷︷ ︸

2n−4

101β for n ≥ 3.
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Lemma 3. β1 = 1, β2 = 5, β3 = 8, β4 = 16, and β5 = 32. For n ≥ 3,

β2n = β2n−1 + 2β2n−2 − 2β2n−3 + β2n−5 + 2L2n−1 − 4L2n−4

and

β2n+1 = β2n + β2n−1 + 2L2n−1.

Theorem. Let n be a positive integer. Then

βn =
∑

k≤Ln

sβ(k)

=
3

2
−

3

2
(−1)n +

1 −
√

5

2

(
1 +

√
5

2

)n

+
1 +

√
5

2

(
1 −

√
5

2

)n

+
5 −

√
5

5

(
1 +

√
5

2

)n

(n + 1) +
5 +

√
5

5

(
1 −

√
5

2

)n

(n + 1)

4. Proofs.

Proof of Lemma 1. By induction on n (both ways).

Proof of Lemma 2. Lemma 2 is Lemma 3.2 and 3.3 in [4].

Proof of Lemma 3. We will first prove that

β2n+1 = β2n + β2n−1 + 2L2n−1.

We first note that

β2n+1 = β2n +

L2n+1∑

k=L2n+1

sβ(k).

Since by Lemma 2

L2n = 1 0 · · ·0
︸ ︷︷ ︸

2n−1

0 0 · · ·0
︸ ︷︷ ︸

2n−1

1β,

7



L2n = β−2n + β2n.

Hence for 1 ≤ k ≤ L2n−1, the base β representation of L2n + k is the base β

representation of k plus β−2n plus β2n. The recurrence relation follows.

Next, we will prove that

β2n = β2n−1 + 2β2n−2 − 2β2n−3 + β2n−5 + 2L2n−1 − 4L2n−4.

We note that

β2n = β2n−1 +

L2n∑

k=L2n−1+1

sβ(k).

We first note that the base β representation of all the numbers from L2n−1 +1

to L2n − 1 include the expression

β−2n + β2n−1

and the base β representation of L2n includes the expression

β−2n + β2n.

There are L2n−2 numbers in this list. In addition, the base β representation of

L2n−1 + 1 to L2n−1 + L2n−3 includes the expression

β−2n+3.

Also, the base β representation of 2L2n−2 to L2n−1 +L2n−3 and L2n−1 +L2n−3 +1

to L2n − 1 includes the expression

β2n−4 and β2n−3, respectively.
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In each of these lists there are L2n−3 numbers. Note that the base β representation

of L2n is precisely

β−2n + β2n.

Counting the number of terms above gives

2L2n−2 + 2L2n−3 = 2L2n−1.

Next, we wish to examine the middle terms of the base β representations of

L2n−1 + 1 to L2n. We will divide these numbers into three parts; L2n−1 + 1 to

2L2n−2, 2L2n−2 + 1 to L2n−1 + L2n−3, and L2n−1 + L2n−3 + 1 to L2n.

Consider the first group L2n−1 + 1 to 2L2n−2. There are L2n−4 numbers in

this group. Let 1 ≤ k < L2n−4. To investigate the middle terms in the base β

representation of L2n−1 + k, we will compare these terms to the middle terms in

the base β representation of L2n−3 + k. (There are no 1’s in the middle terms

in L2n−1 + L2n−4 and L2n−3 + L2n−4 = L2n−2 so we don’t need to worry about

k = L2n−4.) By Lemma 2,

L2n−1 + k = β−2n + β−2n+3 + x + β2n−1

L2n−3 + k = β−2n+2 + y + β2n−3

where x and y are unknown middle expressions involving powers of β. However, by

comparing the expressions

x = L2n−1 + k − β−2n − β−2n+3 − β2n−1

y = L2n−3 + k − β2n−3 − β−2n+2

9



and using Lemma 1, it follows that the two right-hand sides of the above equations

are equal. Therefore, the base β representations of x and y are equal. Since we

know the number of 1’s in the base β representation of y, we know the number of

1’s in the base β representation of x. Therefore, the number of 1’s in the middle

terms of this first group is

β2n−2 − β2n−3 − 2L2n−4.

The third group is analogous to the first. The third group consists of the

numbers L2n−3 + L2n−1 + 1 to L2n. There are L2n−4 numbers in this group. Let

1 ≤ k < L2n−4. To investigate the middle terms in the base β representation of

L2n−3 + L2n−1 + k, we will compare these terms to the middle terms in the base

β representation of L2n−3 + k. (Again, there are no 1’s in the middle terms in

L2n−1 + L2n−4 and L2n so we don’t need to worry about k = L2n−4.) By Lemma

2,
L2n−3 + L2n−1 + k = β−2n + x + β2n−3 + β2n−1

L2n−3 + k = β−2n+2 + y + β2n−3

where x and y are unknown middle expressions involving powers of β. However, by

comparing the expressions

x = L2n−3 + L2n−1 + k − β−2n − β2n−3 − β2n−1

y = L2n−3 + k − β−2n+2 − β2n−3

and using Lemma 1, it follows that the two right-hand sides of the above equations

are equal. Therefore, the base β representations of x and y are equal. Since we

know the number of 1’s in the base β representation of y, we know the number of
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1’s in the base β representation of x. Therefore, the number of 1’s in the middle

terms of this first group is

β2n−2 − β2n−3 − 2L2n−4.

The second group is the last one we have to do. This group consists of the

middle terms of 2L2n−2 + 1 to L2n−1 + L2n−3. There are L2n−5 numbers in this

group. Since by Lemma 2 we have

2L2n−2 = 1001 0 · · ·0
︸ ︷︷ ︸

2n−4

0 0 · · ·0
︸ ︷︷ ︸

2n−5

1001β,

it follows

2L2n−2 = β−2n + β−2n+3 + β2n−4 + β2n−1.

Now let 1 ≤ k ≤ L2n−5. To investigate the middle terms in the base β representation

of 2L2n−2+k, we will compare these terms to the base β representation of k. Because

of absence of β terms in the middle of 2L2n−2, the middle terms in L2n−2 + k are

precisely the base β representation of k. Therefore the number of 1’s in the middle

terms of the second group is

β2n−5.

Putting this all together we have that

β2n = β2n−1

+ 2L2n−1

+ 2(β2n−2 − β2n−3 − 2L2n−4)

+ β2n−5.

The result follows.

11



Proof of the Theorem. From Lemma 3 we have that β1 = 1, β2 = 5, β3 = 8,

β4 = 16, β5 = 32 and for n ≥ 3,

β2n = β2n−1 + 2β2n−2 − 2β2n−3 + β2n−5 + 2L2n−1 − 4L2n−4

and

β2n+1 = β2n + β2n−1 + 2L2n−1.

Let

β(x) =
∑

n≥1

βnxn

and

L(x) =
∑

n≥0

Lnxn.

We note that

∑

n≥1

β2nx2n =
β(x) + β(−x)

2

and

∑

n≥1

β2n−1x
2n−1 =

β(x) − β(−x)

2
.

Therefore, it follows that the odd recurrence relation yields

(
1

2
−

x

2
−

x2

2

)

β(x) +

(

−
1

2
−

x

2
+

x2

2

)

β(−x) = x + 2x2

(
L(x) − L(−x)

2

)

.

The even recurrence relation produces
(

1

2
−

x

2
− x2 + x3 −

x5

2

)

β(x)

+

(
1

2
+

x

2
− x2 − x3 +

x5

2

)

β(−x)

= 2x2 + 2x

(
L(x) − L(−x)

2

)

− 4x4

(
L(x) + L(−x)

2

)

.
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Using the fact that

L(x) =
2 − x

1 − x − x2

we can solve these two equations in two variables β(x) and β(−x) simultaneously

to obtain

β(x) =
x
2

+ 5x2

2
+ x3

2
− 19x4

2
− 7x5

2
+ 16x6 + 4x7 − 21x8

2
+ 3x10

2
(

1

2
− 2x2 + 2x4 − x6

2

)
(1 − x − x2)(1 + x − x2)

.

Simplifying β(x) results in

β(x) = −
x(3x5 + 6x4 − 6x3 − 4x2 + 3x + 1)

(−1 + x + x2)2(x − 1)(x + 1)
.

Expanding this into partial fractions gives

β(x) = −3 −
3

2(x − 1)
−

3

2(x + 1)
+

3 −
√

5

(2x + 1 −
√

5)
+

3 +
√

5

(2x + 1 +
√

5)

+
40 − 16

√
5

5(2x + 1 −
√

5)2
+

40 + 16
√

5

5(2x + 1 +
√

5)2
.

Using the power series expansions of the 6 series

1

2x + 1 −
√

5
=

1

1 −
√

5

∑

n≥0

(
1 +

√
5

2

)n

xn,

1

2x + 1 +
√

5
=

1

1 +
√

5

∑

n≥0

(
1 −

√
5

2

)n

xn,

1

(2x + 1 −
√

5)2
=

1

(1 −
√

5)2

∑

n≥0

(
1 +

√
5

2

)n

(n + 1)xn,

1

(2x + 1 +
√

5)2
=

1

(1 +
√

5)2

∑

n≥0

(
1 −

√
5

2

)n

(n + 1)xn,

1

x − 1
=

∑

n≥0

−1xn and

1

x + 1
=

∑

n≥0

(−1)nxn,
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we conclude that

βn =
3

2
−

3

2
(−1)n +

1 −
√

5

2

(
1 +

√
5

2

)n

+
1 +

√
5

2

(
1 −

√
5

2

)n

+
5 −

√
5

5

(
1 +

√
5

2

)n

(n + 1) +
5 +

√
5

5

(
1 −

√
5

2

)n

(n + 1)

In fact, a new recurrence relation which combines both the even and odd parts of

the above recurrence relation is β1 = 1, β2 = 5, β3 = 8, β4 = 16, β5 = 32, β6 = 59,

and for n ≥ 7

βn = 2βn−1 + 2βn−2 − 4βn−3 − 2βn−4 + 2βn−5 + βn−6.

5. Questions. Several questions remain unanswered. For example, can a

closed form formula be discovered for the second moment, i.e.

∑

k<Fn

sZ(k)2 or
∑

k≤Ln

sβ(k)2?

What can be said about higher moments of either the function sZ or sβ? Finally,

can a formula similar to (2) be found for

∑

k≤x

sβ(k).
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