THE FIRST MOMENT OF THE NUMBER OF 1'S FUNCTION IN THE β -EXPANSION OF THE POSITIVE INTEGERS

Curtis Cooper and Robert E. Kennedy Department of Mathematics and Computer Science Central Missouri State University Warrensburg, MO 64093-5045 U.S.A. email: cnc8851@cmsu2.cmsu.edu email: rkenedy@cmsuvmb.cmsu.edu

Abstract. The first moment of the number of 1's function in the $\beta = (1 + \sqrt{5})/2$ -expansion of the positive integers will be studied.

1. Introduction. In [2], Coquet and van den Bosch studied the first moment of the number of 1's function in the Zeckendorf decomposition [3,5] of the positive integers.

The Fibonacci sequence is defined by $F_0 = 0$, $F_1 = 1$, and $F_i = F_{i-1} + F_{i-2}$ for $i \ge 2$. The Zeckendorf decomposition of a natural number n is the unique expression of n as a sum of Fibonacci numbers with nonconsecutive indices and with each index greater than 1. For example, the Zeckendorf decomposition of one million is

1000000 = 832040 + 121393 + 46368 + 144 + 55

$$= F_{30} + F_{26} + F_{24} + F_{12} + F_{10}$$

Therefore, if we have

$$n = \sum_{k \ge 2}^{m} b_k F_k$$

then we write $n = b_m b_{m-1} \dots b_{2_Z}$. Thus,

$1000000 = 10001010000000001010000000_Z.$

Representing numbers by their Zeckendorf decomposition is referred to as the Zeckendorf number system. The representation of the first 56 natural numbers in the Zeckendorf number system is given in the following table.

1 =	1_Z	29 =	1010000_Z
2 =	10_Z	30 =	1010001_Z
3 =	100_{Z}	31 =	1010010_Z
4 =	101_{Z}	32 =	1010100_Z
5 =	1000_{Z}	33 =	1010101_Z
6 =	1001_{Z}	34 =	10000000_Z
7 =	1010_{Z}	35 =	1000001_Z
8 =	10000_Z	36 =	10000010_Z
9 =	10001_Z	37 =	10000100_Z
10 =	10010_{Z}	38 =	10000101_Z
11 =	10100_{Z}	39 =	10001000_Z
12 =	10101_{Z}	40 =	10001001_Z
13 =	100000_Z	41 =	10001010_Z
14 =	100001_Z	42 =	10010000_Z
15 =	100010_Z	43 =	10010001_Z
16 =	100100_Z	44 =	10010010_Z
17 =	100101_Z	45 =	10010100_Z
18 =	101000_Z	46 =	10010101_Z
19 =	101001_Z	47 =	10100000_Z
20 =	101010_Z	48 =	10100001_Z
21 =	1000000_Z	49 =	10100010_Z
22 =	1000001_Z	50 =	10100100_Z
23 =	1000010_Z	51 =	10100101_Z
24 =	1000100_Z	52 =	10101000_Z
25 =	1000101_Z	53 =	10101001_Z
26 =	1001000_Z	54 =	10101010_Z
27 =	1001001_Z	55 =	100000000_Z
28 =	1001010_Z	56 =	10000001_Z

The Zeckendorf Decomposition of the First 56 Natural Numbers.

<u>Definition 1</u>. Let n be a positive integer. Then $s_Z(n)$ is defined to be the digital sum of (number of 1's in) the Zeckendorf decomposition of the natural number n.

For example, $s_Z(56) = 2$ and $s_Z(1000000) = 5$.

Coquet and van den Bosch [2] found that for any positive integer n,

$$\sum_{k < F_n} s_Z(k) = \frac{5 - 9\sqrt{5}}{50} \left(\frac{1 + \sqrt{5}}{2}\right)^n + \frac{-1 + \sqrt{5}}{10} \left(\frac{1 + \sqrt{5}}{2}\right)^n (n+1) + \frac{5 + 9\sqrt{5}}{50} \left(\frac{1 - \sqrt{5}}{2}\right)^n + \frac{-1 - \sqrt{5}}{10} \left(\frac{1 - \sqrt{5}}{2}\right)^n (n+1), \quad (1)$$

and also for any positive x,

$$\sum_{k < x} s_Z(k) = \frac{3 - \beta}{5 \log \beta} x \log x + x G\left(\frac{\log x}{\log \beta}\right) + O(\log x).$$
(2)

Here, $\beta = (1 + \sqrt{5})/2$, log x denotes the natural logarithm of x, and $G: \mathbb{R} \to \mathbb{R}$ is a continuous, nowhere differentiable function of period 1. In this paper we will study a sum similiar to (1) involving the β -expansion [1,4] of the positive integers.

2. β -Expansion. The Lucas sequence is defined as follows. Let $L_0 = 2$, $L_1 = 1$, and $L_i = L_{i-1} + L_{i-2}$ for $i \ge 2$. Let $\beta = (1 + \sqrt{5})/2$. The β -expansion of a natural number n is the unique finite sum of integral, nonconsecutive powers of β that equals n. For example, the β -expansion of one million is

$$\begin{split} 1000000 &= \frac{710647 - 317811\sqrt{5}}{2} + \frac{271443 - 121393\sqrt{5}}{2} + \frac{15127 - 6765\sqrt{5}}{2} \\ &+ \frac{2207 - 987\sqrt{5}}{2} + \frac{843 - 377\sqrt{5}}{2} + \frac{-199 + 89\sqrt{5}}{2} \\ &+ \frac{2207 - 987\sqrt{5}}{2} + \frac{843 - 377\sqrt{5}}{2} + \frac{-199 + 89\sqrt{5}}{2} \\ &+ \frac{-76 + 34\sqrt{5}}{2} + \frac{7 - 3\sqrt{5}}{2} + \frac{2 + 0\sqrt{5}}{2} + \frac{7 + 3\sqrt{5}}{2} \\ &+ \frac{47 + 21\sqrt{5}}{2} + \frac{521 + 233\sqrt{5}}{2} + \frac{2207 + 987\sqrt{5}}{2} \\ &+ \frac{15127 + 6765\sqrt{5}}{2} + \frac{271443 + 121393\sqrt{5}}{2} + \frac{710647 + 317811\sqrt{5}}{2} \\ &= \beta^{-28} + \beta^{-26} + \beta^{-20} + \beta^{-16} + \beta^{-14} \\ &+ \beta^{-11} + \beta^{-9} + \beta^{-4} + \beta^{0} + \beta^{4} + \beta^{8} \\ &+ \beta^{13} + \beta^{16} + \beta^{20} + \beta^{26} + \beta^{28}. \end{split}$$

Therefore, if we have

$$n = \sum_{k=-m}^{m} b_k \beta^k$$

then we write $n = b_{-m}b_{-m+1}\dots b_{-1}\underline{b_0}b_1\dots b_{m-1}b_{m\beta}$. Note that the coefficient of β^0 is underlined. Thus,

is the β -expansion of 1000000. Representing numbers in their β -expansion will be referred to as the base β number system. The representation of the first 56 natural numbers in base β is given in the table below.

$\begin{array}{l}1=2\\3=3=8\\5=7\\8\\9\\11\\12\\13\\14\\15\\16\\17\\18\\19\\21\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\$
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
$1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1$
$\begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
$1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
$\begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
$1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
$\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$
$\begin{array}{c}1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\1\\0\\0\\0\\0\\1\\0$
$\begin{array}{c}1\\1\\0\\0\\0\\0\\1\\1\\0\\0\\0\\0\\0\\1\\1\\0\\0\\0\\0\\0$
$\begin{array}{c}1\\1\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$
$1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
$1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
$1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1$
$1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\0\\0\\0\\0\\0\\0$
$ 1 \\ $

The Base β Representation of the First 56 Natural Numbers.

<u>Definition 2</u>. Let n be a positive integer. Then $s_{\beta}(n)$ is defined to be the number of 1's in the β -expansion of the natural number n.

For example, $s_{\beta}(56) = 6$ and $s_{\beta}(1000000) = 16$.

Definition 3. Let

$$\beta_n = \sum_{k \le L_n} s_\beta(k).$$

3. Results.

<u>Lemma 1</u>. Let n be an integer. Then

$$\beta^n = \frac{L_n + F_n \sqrt{5}}{2}.$$

Here, for n > 0,

$$F_{-n} = (-1)^{n+1} F_n$$
 and $L_{-n} = (-1)^n L_n$.

<u>Lemma 2</u>.

$$L_{2n} = 1 \underbrace{0 \cdots 0}_{2n-1} \underbrace{0}_{2n-1} \underbrace{0 \cdots 0}_{2n-1} 1_{\beta} \text{ for } n \ge 1,$$

$$L_{2n-1} = \underbrace{10\cdots 10}_{n-1} \underbrace{101\cdots 01}_{n-1}{}_{\beta} \text{ for } n \ge 2,$$

$$L_{2n-1} + 1 = \underbrace{1001\cdots 01}_{n-1} \underbrace{00\cdots 01}_{2n-2} \underbrace{1001}_{2n-2} \underbrace{00\cdots 01}_{n-1} \operatorname{for } n \ge 2,$$

$$2L_{2n-2} = \underbrace{1001}_{2n-4} \underbrace{00\cdots 01}_{2n-5} \underbrace{001}_{2n-5} \operatorname{for } n \ge 3,$$

$$L_{2n-1} + L_{2n-3} = \underbrace{100100}_{n-3} \underbrace{10\cdots 01}_{n-2} \underbrace{001}_{n-2} \operatorname{for } n \ge 3,$$

$$L_{2n-1} + L_{2n-3} + 1 = \underbrace{1000}_{n-2} \underbrace{00\cdots 01}_{2n-4} \underbrace{101}_{\beta} \text{ for } n \ge 3.$$

<u>Lemma 3</u>. $\beta_1 = 1, \ \beta_2 = 5, \ \beta_3 = 8, \ \beta_4 = 16, \ \text{and} \ \beta_5 = 32.$ For $n \ge 3$,

$$\beta_{2n} = \beta_{2n-1} + 2\beta_{2n-2} - 2\beta_{2n-3} + \beta_{2n-5} + 2L_{2n-1} - 4L_{2n-4}$$

and

$$\beta_{2n+1} = \beta_{2n} + \beta_{2n-1} + 2L_{2n-1}.$$

<u>Theorem</u>. Let n be a positive integer. Then

$$\beta_n = \sum_{k \le L_n} s_\beta(k)$$

= $\frac{3}{2} - \frac{3}{2}(-1)^n + \frac{1 - \sqrt{5}}{2} \left(\frac{1 + \sqrt{5}}{2}\right)^n + \frac{1 + \sqrt{5}}{2} \left(\frac{1 - \sqrt{5}}{2}\right)^n$
+ $\frac{5 - \sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2}\right)^n (n+1) + \frac{5 + \sqrt{5}}{5} \left(\frac{1 - \sqrt{5}}{2}\right)^n (n+1)$

4. Proofs.

<u>Proof of Lemma 1</u>. By induction on n (both ways).

Proof of Lemma 2. Lemma 2 is Lemma 3.2 and 3.3 in [4].

<u>Proof of Lemma 3</u>. We will first prove that

$$\beta_{2n+1} = \beta_{2n} + \beta_{2n-1} + 2L_{2n-1}.$$

We first note that

$$\beta_{2n+1} = \beta_{2n} + \sum_{k=L_{2n}+1}^{L_{2n+1}} s_{\beta}(k).$$

Since by Lemma 2

$$L_{2n} = 1 \underbrace{0 \cdots 0}_{2n-1} \underbrace{0}_{2n-1} \underbrace{0 \cdots 0}_{2n-1} \mathbf{1}_{\beta},$$

$$L_{2n} = \beta^{-2n} + \beta^{2n}$$

Hence for $1 \leq k \leq L_{2n-1}$, the base β representation of $L_{2n} + k$ is the base β representation of k plus β^{-2n} plus β^{2n} . The recurrence relation follows.

Next, we will prove that

$$\beta_{2n} = \beta_{2n-1} + 2\beta_{2n-2} - 2\beta_{2n-3} + \beta_{2n-5} + 2L_{2n-1} - 4L_{2n-4}.$$

We note that

$$\beta_{2n} = \beta_{2n-1} + \sum_{k=L_{2n-1}+1}^{L_{2n}} s_{\beta}(k).$$

We first note that the base β representation of all the numbers from $L_{2n-1} + 1$ to $L_{2n} - 1$ include the expression

$$\beta^{-2n} + \beta^{2n-1}$$

and the base β representation of L_{2n} includes the expression

$$\beta^{-2n} + \beta^{2n}.$$

There are L_{2n-2} numbers in this list. In addition, the base β representation of $L_{2n-1} + 1$ to $L_{2n-1} + L_{2n-3}$ includes the expression

$$\beta^{-2n+3}$$
.

Also, the base β representation of $2L_{2n-2}$ to $L_{2n-1} + L_{2n-3}$ and $L_{2n-1} + L_{2n-3} + 1$ to $L_{2n} - 1$ includes the expression

$$\beta^{2n-4}$$
 and β^{2n-3} , respectively.

In each of these lists there are L_{2n-3} numbers. Note that the base β representation of L_{2n} is precisely

$$\beta^{-2n} + \beta^{2n}.$$

Counting the number of terms above gives

$$2L_{2n-2} + 2L_{2n-3} = 2L_{2n-1}.$$

Next, we wish to examine the middle terms of the base β representations of $L_{2n-1} + 1$ to L_{2n} . We will divide these numbers into three parts; $L_{2n-1} + 1$ to $2L_{2n-2}$, $2L_{2n-2} + 1$ to $L_{2n-1} + L_{2n-3}$, and $L_{2n-1} + L_{2n-3} + 1$ to L_{2n} .

Consider the first group $L_{2n-1} + 1$ to $2L_{2n-2}$. There are L_{2n-4} numbers in this group. Let $1 \leq k < L_{2n-4}$. To investigate the middle terms in the base β representation of $L_{2n-1} + k$, we will compare these terms to the middle terms in the base β representation of $L_{2n-3} + k$. (There are no 1's in the middle terms in $L_{2n-1} + L_{2n-4}$ and $L_{2n-3} + L_{2n-4} = L_{2n-2}$ so we don't need to worry about $k = L_{2n-4}$.) By Lemma 2,

$$L_{2n-1} + k = \beta^{-2n} + \beta^{-2n+3} + x + \beta^{2n-1}$$
$$L_{2n-3} + k = \beta^{-2n+2} + y + \beta^{2n-3}$$

where x and y are unknown middle expressions involving powers of β . However, by comparing the expressions

$$x = L_{2n-1} + k - \beta^{-2n} - \beta^{-2n+3} - \beta^{2n-1}$$
$$y = L_{2n-3} + k - \beta^{2n-3} - \beta^{-2n+2}$$

and using Lemma 1, it follows that the two right-hand sides of the above equations are equal. Therefore, the base β representations of x and y are equal. Since we know the number of 1's in the base β representation of y, we know the number of 1's in the base β representation of x. Therefore, the number of 1's in the middle terms of this first group is

$$\beta_{2n-2} - \beta_{2n-3} - 2L_{2n-4}.$$

The third group is analogous to the first. The third group consists of the numbers $L_{2n-3} + L_{2n-1} + 1$ to L_{2n} . There are L_{2n-4} numbers in this group. Let $1 \le k < L_{2n-4}$. To investigate the middle terms in the base β representation of $L_{2n-3} + L_{2n-1} + k$, we will compare these terms to the middle terms in the base β representation of $L_{2n-3} + L_{2n-1} + k$. (Again, there are no 1's in the middle terms in $L_{2n-1} + L_{2n-4}$ and L_{2n} so we don't need to worry about $k = L_{2n-4}$.) By Lemma 2,

$$L_{2n-3} + L_{2n-1} + k = \beta^{-2n} + x + \beta^{2n-3} + \beta^{2n-3}$$
$$L_{2n-3} + k = \beta^{-2n+2} + y + \beta^{2n-3}$$

where x and y are unknown middle expressions involving powers of β . However, by comparing the expressions

$$x = L_{2n-3} + L_{2n-1} + k - \beta^{-2n} - \beta^{2n-3} - \beta^{2n-1}$$
$$y = L_{2n-3} + k - \beta^{-2n+2} - \beta^{2n-3}$$

and using Lemma 1, it follows that the two right-hand sides of the above equations are equal. Therefore, the base β representations of x and y are equal. Since we know the number of 1's in the base β representation of y, we know the number of 1's in the base β representation of x. Therefore, the number of 1's in the middle terms of this first group is

$$\beta_{2n-2} - \beta_{2n-3} - 2L_{2n-4}.$$

The second group is the last one we have to do. This group consists of the middle terms of $2L_{2n-2} + 1$ to $L_{2n-1} + L_{2n-3}$. There are L_{2n-5} numbers in this group. Since by Lemma 2 we have

$$2L_{2n-2} = 1001 \underbrace{0 \cdots 0}_{2n-4} \underbrace{0 \underbrace{0 \cdots 0}_{2n-5}}_{2n-5} 1001_{\beta},$$

it follows

$$2L_{2n-2} = \beta^{-2n} + \beta^{-2n+3} + \beta^{2n-4} + \beta^{2n-1}.$$

Now let $1 \le k \le L_{2n-5}$. To investigate the middle terms in the base β representation of $2L_{2n-2}+k$, we will compare these terms to the base β representation of k. Because of absence of β terms in the middle of $2L_{2n-2}$, the middle terms in $L_{2n-2} + k$ are precisely the base β representation of k. Therefore the number of 1's in the middle terms of the second group is

$$\beta_{2n-5}.$$

Putting this all together we have that

$$\beta_{2n} = \beta_{2n-1} + 2L_{2n-1} + 2(\beta_{2n-2} - \beta_{2n-3} - 2L_{2n-4}) + \beta_{2n-5}.$$

The result follows.

<u>Proof of the Theorem</u>. From Lemma 3 we have that $\beta_1 = 1, \beta_2 = 5, \beta_3 = 8,$ $\beta_4 = 16, \beta_5 = 32$ and for $n \ge 3$,

$$\beta_{2n} = \beta_{2n-1} + 2\beta_{2n-2} - 2\beta_{2n-3} + \beta_{2n-5} + 2L_{2n-1} - 4L_{2n-4}$$

and

$$\beta_{2n+1} = \beta_{2n} + \beta_{2n-1} + 2L_{2n-1}.$$

Let

$$\beta(x) = \sum_{n \ge 1} \beta_n x^n$$

and

$$L(x) = \sum_{n \ge 0} L_n x^n.$$

We note that

$$\sum_{n\geq 1}\beta_{2n}x^{2n} = \frac{\beta(x) + \beta(-x)}{2}$$

and

$$\sum_{n \ge 1} \beta_{2n-1} x^{2n-1} = \frac{\beta(x) - \beta(-x)}{2}.$$

Therefore, it follows that the odd recurrence relation yields

$$\left(\frac{1}{2} - \frac{x}{2} - \frac{x^2}{2}\right)\beta(x) + \left(-\frac{1}{2} - \frac{x}{2} + \frac{x^2}{2}\right)\beta(-x) = x + 2x^2\left(\frac{L(x) - L(-x)}{2}\right).$$

The even recurrence relation produces

$$\left(\frac{1}{2} - \frac{x}{2} - x^2 + x^3 - \frac{x^5}{2}\right)\beta(x) + \left(\frac{1}{2} + \frac{x}{2} - x^2 - x^3 + \frac{x^5}{2}\right)\beta(-x) = 2x^2 + 2x\left(\frac{L(x) - L(-x)}{2}\right) - 4x^4\left(\frac{L(x) + L(-x)}{2}\right).$$

Using the fact that

$$L(x) = \frac{2 - x}{1 - x - x^2}$$

we can solve these two equations in two variables $\beta(x)$ and $\beta(-x)$ simultaneously to obtain

$$\beta(x) = \frac{\frac{x}{2} + \frac{5x^2}{2} + \frac{x^3}{2} - \frac{19x^4}{2} - \frac{7x^5}{2} + 16x^6 + 4x^7 - \frac{21x^8}{2} + \frac{3x^{10}}{2}}{\left(\frac{1}{2} - 2x^2 + 2x^4 - \frac{x^6}{2}\right)(1 - x - x^2)(1 + x - x^2)}.$$

Simplifying $\beta(x)$ results in

$$\beta(x) = -\frac{x(3x^5 + 6x^4 - 6x^3 - 4x^2 + 3x + 1)}{(-1 + x + x^2)^2(x - 1)(x + 1)}.$$

Expanding this into partial fractions gives

$$\begin{split} \beta(x) &= -3 - \frac{3}{2(x-1)} - \frac{3}{2(x+1)} + \frac{3 - \sqrt{5}}{(2x+1 - \sqrt{5})} + \frac{3 + \sqrt{5}}{(2x+1 + \sqrt{5})} \\ &+ \frac{40 - 16\sqrt{5}}{5(2x+1 - \sqrt{5})^2} + \frac{40 + 16\sqrt{5}}{5(2x+1 + \sqrt{5})^2}. \end{split}$$

Using the power series expansions of the 6 series

$$\frac{1}{2x+1-\sqrt{5}} = \frac{1}{1-\sqrt{5}} \sum_{n\geq 0} \left(\frac{1+\sqrt{5}}{2}\right)^n x^n,$$

$$\frac{1}{2x+1+\sqrt{5}} = \frac{1}{1+\sqrt{5}} \sum_{n\geq 0} \left(\frac{1-\sqrt{5}}{2}\right)^n x^n,$$

$$\frac{1}{(2x+1-\sqrt{5})^2} = \frac{1}{(1-\sqrt{5})^2} \sum_{n\geq 0} \left(\frac{1+\sqrt{5}}{2}\right)^n (n+1)x^n,$$

$$\frac{1}{(2x+1+\sqrt{5})^2} = \frac{1}{(1+\sqrt{5})^2} \sum_{n\geq 0} \left(\frac{1-\sqrt{5}}{2}\right)^n (n+1)x^n,$$

$$\frac{1}{x-1} = \sum_{n\geq 0} -1x^n \text{ and}$$

$$\frac{1}{x+1} = \sum_{n\geq 0} (-1)^n x^n,$$

we conclude that

$$\beta_n = \frac{3}{2} - \frac{3}{2}(-1)^n + \frac{1 - \sqrt{5}}{2} \left(\frac{1 + \sqrt{5}}{2}\right)^n + \frac{1 + \sqrt{5}}{2} \left(\frac{1 - \sqrt{5}}{2}\right)^n + \frac{5 - \sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2}\right)^n (n+1) + \frac{5 + \sqrt{5}}{5} \left(\frac{1 - \sqrt{5}}{2}\right)^n (n+1)$$

In fact, a new recurrence relation which combines both the even and odd parts of the above recurrence relation is $\beta_1 = 1$, $\beta_2 = 5$, $\beta_3 = 8$, $\beta_4 = 16$, $\beta_5 = 32$, $\beta_6 = 59$, and for $n \ge 7$

$$\beta_n = 2\beta_{n-1} + 2\beta_{n-2} - 4\beta_{n-3} - 2\beta_{n-4} + 2\beta_{n-5} + \beta_{n-6}.$$

5. Questions. Several questions remain unanswered. For example, can a closed form formula be discovered for the second moment, i.e.

$$\sum_{k < F_n} s_Z(k)^2 \text{ or } \sum_{k \le L_n} s_\beta(k)^2?$$

What can be said about higher moments of either the function s_Z or s_β ? Finally, can a formula similar to (2) be found for

$$\sum_{k \le x} s_{\beta}(k).$$

<u>References</u>

- 1. G. Bergman, "A Number System With an Irrational Base," *Mathematics Magazine*, 31 (1957), 98–110.
- 2. J. Coquet and P. van den Bosch, "A Summation Formula Involving Fibonacci Digits," *Journal of Number Theory*, 22 (1986), 139–146.
- 3. R. L. Graham, D. E. Knuth, and O. Patashnik, *Concrete Mathematics*, 2nd ed., Addison-Wesley Publishing Company, Reading, Massachusetts, 1994.
- 4. E. Hart and L. Sanchis, "On the Occurrence of F_n in the Zeckendorf Decomposition of nF_n , The Fibonacci Quarterly, 37.1 (1999), 21–33.
- 5. C. G. Lekkerkerker, "Voorstelling van Natuurlijke Getallen door een Som van Getallen van Fibonacci," Simon Stevin, 29 (1952), 190–195.

Keywords and phrases: Zeckendorf number system, β -expansion, moment

AMS Classification Numbers: 11A63.