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In Fitch Cheney’s 5-card trick, a volunteer chooses 5 cards at random from a stan-
dard deck and hands them to the magician’s assistant. The assistant hides one of the
cards and shows the other four to the magician, who promptly identifies the hidden
card. Properly done, this trick puzzles the viewer who typically cannot conceive how
information on the hidden card can possibly have been transmitted to the magician.

Here we extend Cheney’s 5-card trick to what we call an n-card trick. An n-card
trick works as follows: n cards are chosen by the audience from a standard deck of
52 cards and one card is hidden. The assistant arranges the cards in a row (including
the hidden card, face-down) and the magician names the hidden card after viewing the
arrangement of cards. Note that the lower the number n, the more dramatic the trick,
because the fewer the number of cards, the less information can be conveyed to the
magician.

We shall vary two significant factors: whether the hidden card is chosen by the
audience or by the assistant, and whether the magician watches the assistant arrange
the cards (timing) or not. We shall determine the minimum number n so that such an n-
card trick is possible, and also present several relatively easy n-card tricks for readers
to perform. Our purpose is to improve, if that be possible, what some have called the
“best card trick” [2, 3].

The audience picks the hidden card
Let the audience pick n cards, and then select a single card to hide by turning it face-
down, after showing it to the assistant. The assistant arranges the n cards in a row,
behind the magician’s back. We will consider arrangements with timing later. The
magician views the arrangement of cards and names the hidden card.
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Here is an example of a 5-card trick. The audience picks five cards and selects the
hidden card. The assistant arranges the five cards, as shown, for example, in Figure 1.

Figure 1. The hidden card is the queen of clubs.

The magician and assistant use a pre-agreed upon ordering of the deck of cards to
interpret the arrangement. Many orderings are in use today, but suppose the following
system is used. The order of cards is given first by an ordering of the ranks: 2 < 3 <

· · · < K < A; and then, within rank, by an ordering of the suits: ♣ < ♦ < ♥ < ♠.
Therefore, the whole deck of cards, in order, is:

♣2 < ♦2 < ♥2 < ♠2 < ♣3 < ♦3 < ♥3 < ♠3 < · · ·
< ♣K < ♦K < ♥K < ♠K < ♣A < ♦A < ♥A < ♠A.

The leftmost card of the layout indicates the suit of the hidden card. If the first card is
the smallest of the four face-up cards, then the hidden card is a club (as in our ordering
of the suits above); if it is the second-smallest, then the hidden card is a diamond; etc.
In the example (Figure 1), the leftmost card is the smallest of the four face-up cards,
so the hidden card is a club. The leftmost card is also the base for determining the rank
of the hidden card.

The second card indicates whether the rank of the hidden card is above or below the
rank of the leftmost card. If the second card is the smallest among the remaining face-
up cards, it indicates that the hidden card’s rank is between 1 and 6 lower than the first
card’s rank. If the second card is the highest card among the three, then it indicates that
the hidden card’s rank is higher than the first card. The middle face-up card indicates
that the hidden card has the same rank as the first card. A circular ordering convention
is used to calculate the rank of the hidden card: the rank of ace is both one higher
than king and one lower than 2. In Figure 1, the 5 of clubs is the smallest among the
remaining cards, so the hidden card’s rank is lower than 2, the rank of the first card.

The remaining three cards form a permutation based on the ordering of the deck.
There is a high (H), middle (M) and low (L) card. The permutation signifies a number
from 1 to 6 according to the convention: LMH = 1, LHM = 2, MLH = 3, MHL = 4,
HLM = 5, and HML = 6. For this purpose, the face-down (hidden) card, if used in
the permutation, is considered higher than all 52 cards, although not assigned a rank.

In our example the last three cards form the permutation representing the number
three. The rank of the hidden card is, therefore, three lower than the first card’s rank
(2), and thus is a queen. The magician concludes that the hidden card is the queen of
clubs.

A minimum of five cards is required for such a trick, if the audience picks the
hidden card. If we attempt to use four cards, then only 24 permutations of them can
be formed. But there are 49 (= 52 − 3) possibilities for the hidden card. Therefore, it
is impossible to perform a 4-card trick with the hidden card picked by the audience
unless timing is used.
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The assistant picks the hidden card
In this case, the audience selects n cards and the assistant chooses the hidden card.
This variation makes a 4-card trick possible. Here is an example. For any given four
cards, the assistant applies the following rules with top-down priority, namely, the first
rule that applies is used.

1. Two or more spades are among the four cards selected.
The assistant hides a spade chosen so that its rank is from 1 to 6 ranks higher
than the highest of the remaining (face-up) spades. The hidden card is placed at
the 4th position to indicate the 4th suit—spades. The three face-up cards form a
permutation to indicate a number from 1 to 6. The magician adds this number to
the rank of the highest face-up spade to determine the rank of the hidden spade.

2. Exactly one spade is selected.
(a) If all four cards have the same rank x , then the assistant hides the ♣x and

makes this special arrangement: ♦x ♥x [♣x] ♠x , where the card in square
brackets is the hidden card.

(b) If the selected cards are ♦x , ♥x , ♥(x + 1), and ♠x , then the assistant hides
♥x and makes this special arrangement: ♦x ♠x [♥x] ♥(x + 1).

(c) If the ranks of the three non-spades are from 0 to 6 (not all 0) lower than the
spade, the assistant hides the spade at the 4th position to indicate the spades
suit, and forms a permutation with the three face-up cards. The magician
counts up from the lowest non-spade card to determine the rank of the hidden
spade.

(d) If the rank of one non-spade is from 1 to 6 higher than the spade, the assistant
hides the lowest such card, and places it in its suit position—the first position
is for clubs, the second for diamonds, the third for hearts, and the fourth for
spades. The magician notes the permutation formed with the face-up cards,
and counts up from rank of the spade to determine the rank of the hidden
card.

3. No spade is selected.
Therefore, two cards are of the same non-spade suit. The assistant hides one
card of that suit, so that its rank is from 1 to 6 higher than the highest rank of the
face-up cards in the suit. The placement of the hidden card indicates its suit. The
magician notes the permutation formed by the face-up cards and counts up from
rank of the highest card of the suit indicated by the face-down card to identify
the hidden card.

Figure 2. The hidden card is the eight of clubs.

It is very important that the first applicable rule is used, both to make and to interpret
the arrangement. If Figure 2 is interpreted according to rule 2-(a), the hidden card is
♣8. However, if we interpret it using 2-(d), we would mistakenly conclude that the
hidden card is the ♥9. There is another tricky case. In Figure 3, the arrangement should
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be interpreted using 2-(b) and we conclude that the hidden card is the ♥8. However,
if the arrangement is interpreted using 2-(d), the hidden card would be mistakenly
identified as the ♥9. Keep in mind that the hidden card is picked by the assistant. If
the selected cards are ♦x , ♥x , ♥(x + 1), and ♠x , we never hide the ♥(x + 1). Other
than these two cases, it should be fairly straightforward to make and to interpret an
arrangement.

Figure 3. The hidden card is the eight of hearts.

This demonstrates that a 4-card trick with the hidden card picked by the assistant
is possible. However, the following theorem shows that 4 is the minimum number
without using timing.

Theorem 1. A 3-card trick without timing is impossible.

Proof. Contrary to what we want to prove, assume a 3-card trick can be accom-
plished. Then for every selection of 3 cards out of 52, there is a way to use 2 of these
cards and a permutation (indicating a number from 1 to 6) to identify the third card (the
hidden card) in the selection. Out of a standard deck of cards, there are

(
52
3

) = 22100
ways to select 3 cards. On the other hand, there are only 6

(
52
2

) = 7956 possible com-
binations of 2 cards and a number from 1 to 6. Therefore, there exist 2 different 3-card
selections, for which the assistant would have to use the same 2 face-up cards and the
same permutation to identify the third card. Since the two 3-card selections are distinct
and the 2 face-up cards are the same, the third cards have to be different. The magician
would not be able to identify the hidden card.

Displaying cards with timing
Finally, we consider an n-card trick with timing. Here the magician watches the as-
sistant place the cards in a row. Given a permutation of n cards, we can sequence the
placement of the cards to indicate different interpretations of the same card arrange-
ments. If we partition the n cards into k nonempty subsets, we may put down subsets
of cards at k different times. This allows us to communicate more information.

The following Pascal-like triangle tabulates the number of partitions of a set of n
elements into k non-empty subsets. (These are Stirling numbers of the second kind [1,
p. 286].)

Table 1.

n \ k 0 1 2 3

0 1
1 0 1
2 0 1 1
3 0 1 3 1
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Using Table 1, one easily proves,

Theorem 2. There are 78 arrangements of 3 cards in a row with timing. There are
6 arrangements of 2 cards with timing.

Since there are more arrangements of three cards with timing than there are cards
in a standard deck, one can perform a 3-card trick even allowing the audience to pick
the hidden card.

Here is an example. The audience chooses three cards and picks one of them to
hide. The hidden card is turned face-down. The magician appears and the assistant
(with the magician watching) places the three cards in a row as follows:

The face-down card is placed first, second or third (in time order) to indicate that
the suit of the hidden card is clubs, diamonds or hearts.

Of the two face-up cards, the assistant puts either the high card down first, to indi-
cate the hidden card’s rank is higher than 8, or puts the low card down first to indicate
it is lower than 8. To indicate the hidden card is an 8, the assistant puts the two face-up
cards down simultaneously. But in this way, the assistant can only identify the 8 of
clubs or the 8 of diamonds. In order to identify the 8 of hearts, the assistant puts a
face-up card down first and then puts the other two cards, one face-up card and one
face-down card, down at the same time.

3 1 2

Figure 4. The hidden card is the 4 of clubs. The time order of placement is under each card.

To identify the spades suit, the assistant puts the face-down card and a face-up card
down first at the same time. If that face-up card is the higher card of the two face-
up cards, the hidden card’s rank is higher than 8. Otherwise it is lower than 8. The
assistant puts all three cards down at the same time to show that the hidden card is the
8 of spades.

1 2 1

Figure 5. The hidden card is the jack of spades.

Finally, the arrangement of the three cards on the table forms a permutation indi-
cating a number from 1 to 6. This number is added or subtracted from 8 to determine
the rank of the hidden card, except when it is an 8 when the permutation is ignored.
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The theorem below demonstrates that a minimum of three cards is required to per-
form such a trick, even if the hidden card is picked by the assistant.

Theorem 3. A 2-card trick is impossible even if the hidden card is picked by the
assistant and timing is used.

Proof. First, we observe that the assistant cannot arrange that two particular cards
always be face-up, since otherwise if the audience happened to select those two cards,
the assistant would be stumped. Therefore, out of the 52 card deck, each of 51 cards
must be placed face-down in some arrangement.

By Theorem 2, given two cards—one face-up and one face-down—only 6 different
arrangements can be made with timing. In order to name 51 face-down cards, at least
� 51

6 � = 9 different cards will have to be face-up at some time. Pick 6 of these 9 cards
and call them the a-cards. There are at most 36 cards that can be named using these 6
a-cards face-up. Therefore, there are at least 2 additional cards, b1 and b2, that can not
be named by using an a-card face-up. If the audience selects either of the two cards, b1

or b2, plus an a-card, then the assistant has to place the b-card face-up and the a-card
face-down.

In summary, for each of the b-cards, its arrangements with the six a-cards, in which
it is face-up, use up all six of the possible arrangements with that b-card face-up.
Therefore, if the audience selects b1 and b2, the assistant is stumped.
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Puzzling Mechanisms, Part 3: Loony Links
M. Oskar van Deventer

The Loony Links concept was inspired by, what is called the Boomdas Puzzle
(Figure 1). These are nine blocks connected together with dovetails. The goal of
the puzzle is to solve the sliding piece puzzle without ever separating the object
as a whole. The fascinating aspect of this puzzle is that all of the pieces can move
anywhere, while the whole remains consistent. Unfortunately this consistency is
not mechanically enforced and blocks can easily be taken off.

I wanted a mechanism that forces the pieces to stay together as a whole, while
retaining the freedom of motion of the individual pieces. A minimum of three
pieces would be needed, so I set myself the goal of designing a chain of three
links with the property that any link could switch places with any other link,
without the chain as a whole being able to come apart.
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Figure 1. The Boomdas Puzzle.

At first, I built some prototypes of layered cardboard. That was a lot of work.
Unfortunately, while allowing me to demonstrate the concept, all cardboard pro-
totypes (see Figure 2) could easily be taken apart.

Figure 2. A cardboard prototype of the
Loony Links concept.

Figure 3. Linked Hearts, the result of
many plastic prototypes.

Solid polystyrene proved to be a better material to make prototypes, and I
succeeded in making a working sample which I called Linked Hearts (Figure 3).
The mechanism works well, but with the flexibility of the plastic it is still too
easy to cheat.

At some point in time I learned how to cast tin, which proved to be a good ma-
terial for this puzzle. After destroying many wooden moulds and reusing the tin, I
finally had a satisfactory prototype. I used an electrolysis set to gold- and copper-
plate some of the pieces. The Gold-Silver-Bronze puzzle (Figure 4) received an
Honorable Mention in the 2002 International Puzzle Design Competition.

Figure 4. Gold-Silver-Bronze, the
result of many tin prototypes.

Figure 5. Chain as perfected by Noji
Kitajima and produced by Hanayama.

At this point, Nob Yoshigaraha picked up the puzzle for Hanayama and com-
missioned Noji Kitajima to perfect the puzzle, which became the Chain puzzle
(Figure 5). This puzzle has been made with such incredible accuracy that even I
can not solve it without checking Hanayama’s instructions. It is possible to com-
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bine many Chain puzzles and make one long chain. Unfortunately, the puzzle
then looses its property that the links can be interchanged.

In parallel with Hanayama, James Dalgety produced the GGG puzzle (Fig-
ure 6). My original Linked Hearts design was made as a mechanical maze where
some of the moves of the puzzle were blocked as in a maze. It took James’
maker many attempts to perfect this puzzle, which is even more difficult than the
already almost unsolvable Hanayama Chain.

Figure 6. GGG or One-and-a-Half-
Horse, produced by James Dalgety.

Figure 7. Lucky Clover, produced by
Bits & Pieces.

So, after many hundreds of hours work and many tens of prototypes over a
period of almost a decade, the Loony Links mechanism was finally implemented
successfully. My next dream is to expand the concept to four or more links that
can be swapped without the chain coming apart. So far, all my attempts in this
direction have failed miserably. The closest that I have come is Lucky Clover, a
puzzle consisting of four identical links which requires each pair to switch parity
before the puzzle can come apart (Figure 7).

[Puzzling Mechanisms continues on page 211.]

Family Occasion

“It was a wonderful party,” said Lucilla to her friend Harriet.
“Who was there?”
“Well—there was one grandfather, one grandmother, two fathers, two moth-

ers, four children, three grandchildren, one brother, two sisters, two sons, two
daughters, one father- in-law, one mother-in-law and one daughter-in-law.”

“Wow! Twenty-three people!”
“No, it was less than that. A lot less.”

What is the smallest size of a party that is consistent with Lucilla’s description?

—from Professor Stewart’s Cabinet of Mathematical Curiosities,
by Ian Stewart (p. 105). Reviewed on page 223.

(The solution is on page 227.)
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