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FACTORIZATIONS OF SOME
PERIODIC LINEAR RECURRENCE SYSTEMS

BY

CURTIS COOPER and RICHARD PARRY JR. (Warrensburg, MO)

Abstract. Let P and Q be relatively prime integers. The Lucas sequences are defined
by U0 = 0, U1 = 1, V0 = 2, V1 = P , and

Un = PUn−1 −QUn−2 and Vn = PVn−1 −QVn−2,

where n ≥ 2. We show that

Un =

n−1∏
k=1

(
P − 2

√
Q cos

kπ

n

)
, n ≥ 2,

Vn =

n∏
k=1

(
P − 2

√
Q cos

(k − 1/2)π

n

)
, n ≥ 1.

The proofs depend on finding the eigenvalues and eigenvectors of certain tridiagonal ma-
trices.

Next, let a1, a2, b1, and b2 be real numbers. A period two second order linear recurrence
system is defined to be the sequence f0 = 1, f1 = a1, and

f2n = a2f2n−1 + b1f2n−2 and f2n+1 = a1f2n + b2f2n−1

for n ≥ 1. Also, let D = a1a2 + b1 + b2 and assume D2 − 4b1b2 6= 0. We show that

f2n+1 = a1

n∏
k=1

(
a1 + a2

2
±

√(
a1 − a2

2

)2

− b1 − b2 + 2
√
b1b2 cos

kπ

n+ 1

)
for n ≥ 0. The proof also depends on finding the eigenvalues and eigenvectors of a certain
tridiagonal matrix.

1. Introduction. Complex factorizations of integer sequences show con-
nections between complex numbers and integers and demonstrate properties
of these sequences. In this paper, we find factorization formulas for terms of
Lucas sequences and for the odd terms of a period two second order linear
recurrence system. To derive these formulas we determine the eigenvalues of
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certain tridiagonal matrices. This gives an application of linear algebra to
number theory.

We begin our discussion with the definition of Lucas sequences.

Definition 1.1. Let P and Q be relatively prime integers. The Lucas
sequences are defined by U0 = 0, U1 = 1, V0 = 2, V1 = P , and

Un = PUn−1 −QUn−2 and Vn = PVn−1 −QVn−2,
where n ≥ 2.

These sequences were originally studied by Lucas [3]. The Fibonacci and
Lucas numbers, Fn and Ln, are special cases of the U and V sequences when
P = 1 and Q = −1.

Next, we define a period k second order linear recurrence system. This
definition is related to the system defined in [2, p. 440, Theorem C1]. The
term “period k” refers to the k terms in the sequences a and b.

Definition 1.2. Let k be a positive integer. Let a1, . . . , ak and b1, . . . , bk
be real numbers. A period k second order linear recurrence system is defined
to be the sequence f0 = 1, f2 = a1, and

fkn+2 = a2fkn+1 + b1fkn,

fkn+3 = a3fkn+2 + b2fkn+1,

... =
...

fkn+k = akfkn+k−1 + bk−1fkn+k−2,

fkn+k+1 = a1fkn+k + bkfkn+k−1,

for n ≥ 0.

2. Factorization of Lucas sequences. We find factorization formulas
for the Lucas sequences. That is, we find a product formula for Un and Vn.
This generalizes a result by Cahill, D’Errico, and Spence [1] where they found
complex factorizations of the Fibonacci and Lucas numbers. In particular,
they showed that

Fn =
n−1∏
k=1

(
1− 2i cos

kπ

n

)
, n ≥ 2,

Ln =
n∏
k=1

(
1− 2i cos

(k − 1/2)π

n

)
, n ≥ 1.

Here, i =
√
−1.

In addition to finding complex factorization formulas for U and V , our
proofs determine the eigenvalues and eigenvectors of certain tridiagonal ma-
trices.
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It should be noted that for n ≥ 0, Stewart [5, pp. 88–89] found factoriza-
tion formulas for the nth cyclotomic polynomials of two variables. That is,
for real numbers r1 and r2, Stewart found factorizations for the nth cyclo-
tomic polynomial Φn(r1, r2) in terms of the primitive roots of unity. There
is a connection between Stewart’s factorizations of Φn(r1, r2) and our fac-
torization formula for Un. To see this, we begin by denoting the roots of the
polynomial x2 − Px+Q by

r1, r2 =
P ±

√
P 2 − 4Q

2
.

If P 2 − 4Q 6= 0, from [4, p. 316, eq. (2)] we have

Un =
rn1 − rn2
r1 − r2

.

And from [5, p. 88],

rn1 − rn2 =
∏
d|n

Φd(r1, r2).

Combining these results with Stewart’s factorizations for Φn(r1, r2), we have
a factorization formula for Un.

We begin with the following lemma which generalizes a result in [2, p. 443,
Theorem D1].

Lemma 2.1. Let n be a positive integer and let a, b, and c be real numbers.
Let T (n) be the n× n tridiagonal matrix

T (n) =



a b

c a b

c a b
. . . . . . . . .

c a b

c a


.

Then the eigenvalues of T (n) are

a− 2
√
bc cos

kπ

n+ 1
, 1 ≤ k ≤ n.
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In addition, an eigenvector corresponding to the kth eigenvalue is

xk =



sin kπ
n+1

−
√
bc
b sin 2kπ

n+1(
−
√
bc
b

)2
sin 3kπ

n+1
...(

−
√
bc
b

)j−1
sin jkπ

n+1
...(

−
√
bc
b

)n−1
sin nkπ

n+1


.

Proof. We examine T (n)xk and
(
a− 2

√
bc cos kπ

n+1

)
xk. The first compo-

nent of T (n)xk is

a sin
kπ

n+ 1
+ b

(
−
√
bc

b
sin

2kπ

n+ 1

)
= a sin

kπ

n+ 1
−
√
bc sin

2kπ

n+ 1

and the first component of
(
a− 2

√
bc cos kπ

n+1

)
xk is

a sin
kπ

n+ 1
− 2
√
bc cos

kπ

n+ 1
sin

kπ

n+ 1
.

Since

sin
2kπ

n+ 1
= 2 sin

kπ

n+ 1
cos

kπ

n+ 1
,

these two components are equal.
The jth component of T (n)xk, for 1 < j < n, is

(2.1) c

(
−
√
bc

b

)j−2
sin

(j − 1)kπ

n+ 1
+ a

(
−
√
bc

b

)j−1
sin

jkπ

n+ 1

+ b

(
−
√
bc

b

)j
sin

(j + 1)kπ

n+ 1
.

The jth component of
(
a− 2

√
bc cos kπ

n+1

)
xk is

(2.2) a

(
−
√
bc

b

)j−1
sin

jkπ

n+ 1
− 2
√
bc

(
−
√
bc

b

)j−1
cos

kπ

n+ 1
sin

jkπ

n+ 1
.

We want to show that (2.1) equals (2.2). First, the term

a

(
−
√
bc

b

)j−1
sin

jkπ

n+ 1

is in both (2.1) and (2.2). Using the trigonometric identity

(2.3) 2 sinA cosB = sin(A+B) + sin(A−B),
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we see that the last term in (2.2) is

−2
√
bc

(
−
√
bc

b

)j−1
sin

jkπ

n+ 1
cos

kπ

n+ 1

= −
√
bc

(
−
√
bc

b

)j−1
sin

(j + 1)kπ

n+ 1
−
√
bc

(
−
√
bc

b

)j−1
sin

(j − 1)kπ

n+ 1
.

Since

−
√
bc

(
−
√
bc

b

)j−1
= c

(
−
√
bc

b

)j−2
and

√
bc

(
−
√
bc

b

)j−1
= b

(
−
√
bc

b

)j
,

we obtain

c

(
−
√
bc

b

)j−2
sin

(j − 1)kπ

n+ 1
+ b

(
−
√
bc

b

)j
sin

(j + 1)kπ

n+ 1
.

Thus, the remaining terms in (2.1) give the last term in (2.2). This completes
the case of the jth component for 1 < j < n.

Finally, the nth component of T (n)xk is

(2.4) c

(
−
√
bc

b

)n−2
sin

(n− 1)kπ

n+ 1
+ a

(
−
√
bc

b

)n−1
sin

nkπ

n+ 1

and the nth component of
(
a− 2

√
bc cos kπ

n+1

)
xk is

(2.5) a

(
−
√
bc

b

)n−1
sin

nkπ

n+ 1
− 2
√
bc

(
−
√
bc

b

)n−1
cos

kπ

n+ 1
sin

nkπ

n+ 1
.

We want to show that (2.4) equals (2.5). First, the term

a

(
−
√
bc

b

)n−1
sin

nkπ

n+ 1

is in both (2.4) and (2.5). Using (2.3), we find that the last term in (2.5) is

−2
√
bc

(
−
√
bc

b

)n−1
sin

nkπ

n+ 1
cos

kπ

n+ 1

= −
√
bc

(
−
√
bc

b

)n−1
sin

(n+ 1)kπ

n+ 1
−
√
bc

(
−
√
bc

b

)n−1
sin

(n− 1)kπ

n+ 1

= c

(
−
√
bc

b

)n−2
sin

(n− 1)kπ

n+ 1
.

Thus, the remaining term in (2.5) is equal to the remaining term in (2.4).
The result follows.

We now state and prove a theorem for Un.
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Theorem 2.2. Let n ≥ 2 be a positive integer. Then

Un =
n−1∏
k=1

(
P − 2

√
Q cos

kπ

n

)
.

Proof. Let M(n− 1) be the (n− 1)× (n− 1) matrix

P
√
Q

√
Q P

√
Q

√
Q P

√
Q

. . . . . . . . .
√
Q P

√
Q

√
Q P


.

We note that Un = detM(n−1) for n ≥ 2. Also, the determinant of a matrix
can be found by taking the product of its eigenvalues. By Lemma 2.1, the
eigenvalues of M(n− 1) are

P − 2
√
Q cos

kπ

n
,

where 1 ≤ k ≤ n− 1. The result follows.

Next, we need the following lemma to find a product formula for Vn.

Lemma 2.3. Let n be a positive integer and let a and b be real numbers.
Let R(n) be the n× n tridiagonal matrix

R(n) =



a 2b

b a b

b a b
. . . . . . . . .

b a b

b a


.

Then the eigenvalues of R(n) are

a− 2b cos
(k − 1/2)π

n
, 1 ≤ k ≤ n.

In addition, an eigenvector corresponding to the kth eigenvalue is
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xk =



sin (k−1/2)π
n

− sin (k−1/2)π
n cos (k−1/2)π

n

sin (k−1/2)π
n cos 2(k−1/2)π

n
...

(−1)j−1 sin (k−1/2)π
n cos (j−1)(k−1/2)π

n
...

(−1)n−1 sin (k−1/2)π
n cos (n−1)(k−1/2)π

n


.

Proof. To simplify the notation in the proof, let

θ =
(k − 1/2)π

n
.

We examine R(n)xk and (a− 2b cos θ)xk. The first component of R(n)xk is

a sin θ − 2b sin θ cos θ

and the first component of (a− 2b cos θ)xk is

a sin θ − 2b cos θ sin θ.

These two components are equal.
The jth component of R(n)xk, for 1 < j < n, is

(−1)j−2b sin θ cos((j − 2)θ) + (−1)j−1a sin θ cos((j − 1)θ) + (−1)jb sin θ cos(jθ).

The jth component of (a− 2b cos θ)xk is

(−1)j−1a sin cos((j − 1)θ) + (−1)j2b sin θ cos θ cos((j − 1)θ).

First, the term
(−1)j−1a sin θ cos((j − 1)θ)

is in both expressions. Next, the signs in the remaining terms are the same
and each term contains a b and a sin θ. Thus, it suffices to show

cos((j − 2)θ) + cos(jθ) = 2 cos((j − 1)θ) cos θ.

However, this equation is just a special case of the trigonometric identity

(2.6) 2 cosA cosB = cos(A+B) + cos(A−B).

This completes the proof for the jth component, 1 < j < n.
Finally, the nth component of R(n)xk is

(−1)n−2b sin θ cos((n− 2)θ) + (−1)n−1a sin θ cos((n− 1)θ)

and the nth component of (a− 2b cos θ)xk is

(−1)n−1a sin θ cos((n− 1)θ) + (−1)n2b sin θ cos θ cos((n− 1)θ).

Both components contain the term

(−1)n−1a sin θ cos((n− 1)θ).
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The remaining terms have the same sign and both contain a b and a sin θ.
Thus, it suffices to show

cos((n− 2)θ) = 2 cos((n− 1)θ) cos θ.

Using (2.6), we obtain

2 cos((n− 1)θ) cos θ = cos(nθ) + cos((n− 2)θ).

Since cos(nθ) = 0, the result follows.

Next, we state and prove a theorem for the sequence Vn.

Theorem 2.4. Let n be a positive integer. Then

Vn =
n∏
k=1

(
P − 2

√
Q cos

(k − 1/2)π

n

)
.

Proof. Let S(n) be the n× n matrix

P 2
√
Q

√
Q P

√
Q

√
Q P

√
Q

. . . . . . . . .
√
Q P

√
Q

√
Q P


.

We note that Vn = detS(n) for n ≥ 1. Also, the determinant of a matrix
can be found by taking the product of its eigenvalues. By Lemma 2.3, the
eigenvalues of S(n) are

P − 2
√
Q cos

(k − 1/2)π

n
,

where 1 ≤ k ≤ n. The result follows.

3. Factorization of a period two second order linear recurrence
system. We now proceed to find a factorization of a period two second
order linear recurrence system. The next lemmas help us do this. Part of the
proofs of these results can be found in [2]. Because the proofs in [2] omit
several details and we generalize the results, we supply detailed proofs. The
first lemma, Lemma 3.1, gives a Binet-like formula for fn.

Lemma 3.1. Let {fn | n = 0, 1, 2, . . .} be a period two second order linear
recurrence system. Let D = a1a2 + b1 + b2,

α =

√
D +

√
D2 − 4b1b2
2

and β =

√
D −

√
D2 − 4b1b2
2

.
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Assume D2 − 4b1b2 6= 0 and let

A(α, β) =
α2 + a1α− b2
2(α2 − β2)

.

Let n be a nonnegative integer. Then

fn = A(α, β)αn +A(−α, β)(−α)n +A(β, α)βn +A(−β, α)(−β)n.
Proof. Let

G(t) =
∑
n≥0

fnt
n.

Also, let

G1(t) =
∑
n≥0

f2n+1t
2n+1 and G2(t) =

∑
n≥0

f2nt
2n.

Then

f2nt
2n = a2tf2n−1t

2n−1 + b1t
2f2n−2t

2n−2,

f2n+1t
2n+1 = a1tf2nt

2n + b2t
2f2n−1t

2n−1

for n ≥ 1. Hence,

G2(t)− 1 = a2tG1(t) + b1t
2G2(t),

G1(t)− a1t = a1t(G2(t)− 1) + b2t
2G1(t).

Putting this in matrix form, we have(
−a2t 1− b1t2

1− b2t2 −a1t

)(
G1(t)

G2(t)

)
=

(
1

0

)
.

Solving this system for G1(t) and G2(t) by Cramer’s rule, we get

G1(t) =
−a1t

−1 + (b1 + b2 + a1a2)t2 − b1b2t4
,

G2(t) =
b2t

2 − 1

−1 + (a1a2 + b1 + b2)t2 − b1b2t4
.

Therefore,

G(t) = G1(t) +G2(t) =
1 + a1t− b2t2

1− (b1 + b2 + a1a2)t2 + b1b2t4
.

Factoring, we obtain

1−Dt2 + b1b2t
4 = (1− α2t2)(1− β2t2) = (1− αt)(1 + αt)(1− βt)(1 + βt).

Since D2− 4b1b2 6= 0, α 6= β. Using partial fraction decomposition, we want
to find A1, A2, B1, and B2 such that

1 + a1t− b2t
1−Dt2 + b1b2t4

=
A1

1− αt
+

A2

1 + αt
+

B1

1− βt
+

B2

1 + βt
.
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But

A1 = A(α, β).

Also, A2 = A(−α, β), A3 = A(β, α), and A4 = A(−β, α). Thus,

fn = A(α, β)αn +A(−α, β)(−α)n +A(β, α)βn +A(−β, α)(−β)n

for any nonnegative integer n.

Definition 3.2. Let n be a positive integer and let T (n) be the n × n
tridiagonal matrix consisting of the upper left n rows and n columns of the
infinite matrix

T =



a1 b1

−1 a2 b2

−1 a1 b1

−1 a2 b2

−1 a1 b1

−1 a2 b2
. . . . . . . . .


,

where a1, a2, b1, and b2 are real numbers.

Lemma 3.3. Let n be a nonnegative integer. Then detT (2n + 1) = 0 if
and only if

a1 = 0 or b1 + b2 + a1a2 = 2
√
b1b2 cos

kπ

n+ 1

for some 1 ≤ k ≤ n.

Proof. We first note that if detT (2n + 1) = 0, then a1 could be zero.
And if a1 = 0, then detT (2n + 1) = 0. Next, let fn = detT (n). Then
{fn | n = 0, 1, 2, . . .} is a period two second order linear recurrence system.
Therefore, by Lemma 3.1, f2n+1 = detT (2n+ 1) = 0 if and only if

A(α, β)α2n+1+A(−α, β)(−α)2n+1+A(β, α)β2n+1+A(−β, α)(−β)2n+1=0.

Since (−1)2n+1 = −1, we have

α2n+1(A(α, β)−A(−α, β)) + β2n+1(A(β, α)−A(−β, α)) = 0.

But
A(α, β)−A(−α, β)
A(β, α)−A(−β, α)

= −α
β
,
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so
α2n+1(A(α, β)−A(−α, β)) + β2n+1(A(β, α)−A(−β, α))

= α2n+1

(
−α
β

)
(A(β, α)−A(−β, α)) + β2n+1(A(β, α)−A(−β, α))

=

((
−α

2n+2

β

)
+ β2n+1

)
(A(β, α)−A(−β, α)) = 0.

Thus,

−α2n+2 + β2n+2 = 0, i.e.
α2n+2

β2n+2
= 1.

Hence, for some 0 ≤ k ≤ n, we have
α2n+2

β2n+2
= e2kπi.

Let
θ =

2kπ

n+ 1
for some 0 ≤ k ≤ n. Then

D +
√
D2 − 4b1b2

D −
√
D2 − 4b1b2

=
α2

β2
= eiθ.

Simplifying, we have

D +
√
D2 − 4b1b2 = (D −

√
D2 − 4b1b2)e

iθ.

We note here that k 6= 0 since D2 − 4b1b2 6= 0. Next,√
D2 − 4b1b2 e

iθ +
√
D2 − 4b1b2 = Deiθ −D.

So, √
D2 − 4b1b2 (e

iθ + 1) = D(eiθ − 1).

Hence,√
D2 − 4b1b2 = D

eiθ − 1

eiθ + 1
= D

eiθ − 1

eiθ + 1
· e
−iθ + 1

e−iθ + 1
= D

eiθ − e−iθ

2 + eiθ + e−iθ
.

Now since
eiθ = cos θ + i sin θ

and
sin(−θ) = − sin θ and cos(−θ) = cos θ,

we have

D
eiθ − e−iθ

2 + eiθ + e−iθ
= D

i sin θ

1 + cos θ
= Di tan

θ

2
.

Squaring both sides of the equality, we have

D2 − 4b1b2 = −D2 tan2
θ

2
= −D2

(
sec2

θ

2
− 1

)
.
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Thus,

4b1b2 = D2 sec2
θ

2
, so D2 = 4b1b2 cos

2 θ

2
,

and therefore
D = 2

√
b1b2 cos

θ

2
.

Substituting for D and θ, we get

b1 + b2 + a1a2 = 2
√
b1b2 cos

kπ

n+ 1
for some 1 ≤ k ≤ n. This is what we wanted to prove.

Lemma 3.4. Let n be a nonnegative integer. The eigenvalues of T (2n+1)
are

a1 and
a1 + a2

2
±

√(
a1 − a2

2

)2

− b1 − b2 + 2
√
b1b2 cos

kπ

n+ 1
,

1 ≤ k ≤ n. In addition, an eigenvector corresponding to the eigenvalue λ is

x =


x0

x1
...
x2n

 ,

where

x0 = bn1b
n
2p0(λ),

x1 = bn−11 bn2 (−p1(λ)),
x2 = bn−11 bn−12 p2(λ),

x3 = bn−21 bn−12 (−p3(λ)),
x4 = bn−21 bn−22 p4(λ),

... =
...

x2j−1 = bn−j1 bn−j+1
2 (−p2j−1(λ)),

x2j = bn−j1 bn−j2 p2j(λ),

... =
...

x2n = p2n(λ)

and for 0 ≤ j ≤ 2n, pj(x) is the characteristic polynomial of the matrix
consisting of the upper right j rows and j columns of T .

Proof. Let g0 = 1, g1 = a1 − x, and
g2n = (a2 − x)g2n−1 + b1g2n−2, g2n+1 = (a1 − x)g2n + b2g2n−1



FACTORIZATIONS OF LINEAR RECURRENCE SYSTEMS 13

for n ≥ 1. The eigenvalues of T (2n+1) are the solutions of detT (2n+1) =
g2n+1 = 0. By Lemma 3.3, this implies a1 − x = 0 or, for some 1 ≤ k ≤ n,

b1 + b2 + (a1 − x)(a2 − x) = 2
√
b1b2 cos

kπ

n+ 1
.

Therefore, the eigenvalues of T (2n + 1) are a1 and the solutions of the
quadratic equation

x2 − (a1 + a2)x+ a1a2 + b1 + b2 = 2
√
b1b2 cos

kπ

n+ 1

for some 1 ≤ k ≤ n. Completing the square, we have

x2 − (a1 + a2)x+

(
a1 + a2

2

)2

=

(
a1 + a2

2

)2

− a1a2 − b1 − b2 + 2
√
b1b2 cos

kπ

n+ 1
.

Therefore, the eigenvalues of T (2n+ 1) are a1 and

a1 + a2
2

±

√(
a1 − a2

2

)2

− b1 − b2 + 2
√
b1b2 cos

kπ

n+ 1

for some 1 ≤ k ≤ n. Now, to verify the eigenvector x for the corresponding
eigenvalue λ, we check each component of T (2n+ 1)x and λx.

The 0th component of T (2n+ 1)x is

a1b
n
1b
n
2p0(λ) + b1b

n−1
1 bn2 (−p1(λ))

and the 0th component of λx is

λbn1b
n
2p0(λ).

But
p1(λ) = a1 − λ and p0(λ) = 1

so the 0th components are equal.
The first components of T (2n+ 1)x and λx are

−bn1bn2p0(λ) + a2b
n−1
1 bn2 (−p1(λ)) + b2b

n−1
1 bn−12 p2(λ), λbn−11 bn2 (−p1(λ)),

respectively. By the fact that p2(λ) = (a2 − λ)(a1 − λ) + b1 and simplifying,
it follows that the powers of λ in both components are equal, so the first
components are equal.

For 1 ≤ j < n, the 2jth components of T (2n+ 1)x and λx are

(−1)
(
bn−j1 bn−j+1

2 (−p2j−1(λ))
)
+ a1

(
bn−j1 bn−j2 p2j(λ)

)
+ b1

(
bn−j−11 bn−j2 (−p2j+1(λ))

)
and

λbn−j1 bn−j2 p2j(λ),
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respectively. But b1(b
n−j−1
1 bn−j2 p2j+1(λ)) is b

n−j
1 bn−j2 times the characteristic

polynomial of the upper left 2j + 1 rows and columns of T . Via expansion
by minors, this product is bn−j1 bn−j2 times

(a1 − λ)p2j(λ) + b2p2j−1(λ).

Thus, the 2jth components are equal.
For 1 ≤ j ≤ n, the (2j − 1)th components of T (2n+ 1)x and λx are

(−1)
(
bn−j+1
1 bn−j+1

2 p2j−2(λ)
)
+ a2(b

n−j
1 bn−j+1

2 (−p2j−1(λ)))
+ b2

(
bn−j1 bn−j2 p2j(λ)

)
and

λbn−j1 bn−j+1
2 (−p2j−1(λ)),

respectively. But b2(b
n−j
1 bn−j2 )p2j(λ) is bn−j1 bn−j+1

2 times the characteristic
polynomials of the upper left 2j rows and columns of T . Via expansion by
minors, this product is bn−j1 bn−j+1

2 times

(a2 − λ)p2j−1(λ) + b1p2j−2(λ).

Thus, the (2j − 1)th components are equal.
Finally, the 2nth components of T (2n+ 1)x and λx are

(−1)
(
b2(−p2n−1(λ))

)
+ a1p2n(λ) and λp2n(λ),

respectively. But these two components are equal since λ is an eigenvalue of
T (2n+1) and the characteristic polynomial of T (2n+1), evaluated at λ, is

(a1 − λ)p2n(λ) + b2p2n−1(λ).

The result follows.

Theorem 3.5. Let {fn | n = 0, 1, 2, . . .} be a period two second order
linear recurrence system. Let n be a nonnegative integer. Then

f2n+1 = a1

n∏
k=1

(
a1 + a2

2
±

√(
a1 − a2

2

)2

− b1 − b2 + 2
√
b1b2 cos

kπ

n+ 1

)
.

Proof. The result follows from Lemma 3.4, f2n+1 = detT (2n + 1), and
the fact that the determinant of a matrix is the product of its eigenvalues.

4. Open questions. There are several open questions for future work.
The authors believe that the methods and proof techniques used in this
paper are applicable to higher order sequences and larger period systems, as
well as non-Lucas sequences, although the results and computations may be
more complicated.

1. Find a factorization formula for a second order linear recurrence with
general initial conditions, i.e., G0 = a, G1 = b, and for n ≥ 2, Gn =
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PGn−1 − QGn−2. It should be noted that the upper left n rows and n
columns of the infinite tridiagonal matrix

S =


b a

√
Q

√
Q P

√
Q

√
Q P

√
Q

. . . . . . . . .


have the property that for n ≥ 1, Gn = detS(n).

2. Determine factorization formulas for higher order linear recurrences.
3. What are the eigenvalues and eigenvectors of T (2n)? Find a factoriza-

tion formula for f2n, the even terms in a period two second order linear
recurrence system.

4. Find a factorization formula for a period three second order recurrence
system. Let n be a positive integer and let W (n) be the n×n tridiagonal
matrix consisting of the upper left n rows and n columns of the infinite
matrix

W =



a1 b1

−1 a2 b2

−1 a3 b3

−1 a1 b1

−1 a2 b2

−1 a3 b3
. . . . . . . . .


,

where a1, a2, a3, b1, b2, and b3 are real numbers. What are the eigenvalues
and eigenvectors of the tridiagonal matrix T (3n+ 1)?

5. Find a factorization formula for a period k second order recurrence sys-
tem. Finally, find a factorization formula for a period k mth order recur-
rence system.
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