DIVISIBILITY OF AN F-L TYPE CONVOLUTION

Michael Wiemann and Curtis Cooper
Department of Mathematics and Computer Science
Central Missouri State University
Warrensburg, MO 64093-5045
email: mwiemann@home.com and cnc8851@cmsu2.cmsu.edu

1. Motivation

Sometimes when working on one problem, another problem and solution are found. The divisibility result in this paper is a consequence of attempts to prove some conjectures of Melham [9] related to the sum

$$
L_{1} L_{3} \cdots L_{2 m+1} \sum_{k=1}^{n} F_{2 k}^{2 m+1}
$$

where m is a nonnegative integer and n is a positive integer. Here, we use the usual notation for Fibonacci and Lucas numbers, i.e.

$$
F_{0}=0, \quad F_{1}=1, \quad \text { and } \quad F_{n}=F_{n-1}+F_{n-2}, \quad \text { for } \quad n \geq 2
$$

and

$$
L_{0}=2, \quad L_{1}=1, \quad \text { and } \quad L_{n}=L_{n-1}+L_{n-2}, \quad \text { for } \quad n \geq 2
$$

When $m=2$, Melham found that

$$
L_{1} L_{3} L_{5} \sum_{k=1}^{n} F_{2 k}^{5}=4 F_{2 n+1}^{5}-15 F_{2 n+1}^{3}+25 F_{2 n+1}-14
$$

To prove this result we will use the identity

$$
F_{m}^{5}=\frac{1}{25}\left(F_{5 m}-5(-1)^{m} F_{3 m}+10 F_{m}\right)
$$

(proved using Binet's formula), a result by Melham [9] that if m is an odd integer

$$
L_{m} \sum_{k=1}^{n} F_{2 m k}=F_{m(2 n+1)}-F_{m}
$$

(proved using Binet's formula and summing the resulting geometric series), and the well-known identities [6]

$$
F_{5 n}=25 F_{n}^{5}+25(-1)^{n} F_{n}^{3}+5 F_{n} \quad \text { and } \quad F_{3 n}=5 F_{n}^{3}+3(-1)^{n} F_{n}
$$

Substituting these in turn into our sum we obtain

$$
\begin{aligned}
L_{1} & L_{3} L_{5} \sum_{k=1}^{n} F_{2 k}^{5}=L_{1} L_{3} L_{5} \sum_{k=1}^{n} \frac{1}{25}\left(F_{10 k}-5 F_{6 k}+10 F_{2 k}\right) \\
= & \frac{1}{25} L_{1} L_{3} L_{5}\left(\sum_{k=1}^{n} F_{10 k}-5 \sum_{k=1}^{n} F_{6 k}+10 \sum_{k=1}^{n} F_{2 k}\right) \\
= & \frac{1}{25}\left(L_{1} L_{3}\left(F_{10 n+5}-F_{5}\right)-5 L_{1} L_{5}\left(F_{6 n+3}-F_{3}\right)+10 L_{3} L_{5}\left(F_{2 n+1}-F_{1}\right)\right) \\
= & \frac{1}{25}\left(L_{1} L_{3} F_{10 n+5}-L_{1} L_{3} F_{5}-5 L_{1} L_{5} F_{6 n+3}+5 L_{1} F_{3} L_{5}\right. \\
& \left.+10 L_{3} L_{5} F_{2 n+1}-10 F_{1} L_{3} L_{5}\right) \\
= & \frac{1}{25}\left(L_{1} L_{3}\left(25 F_{2 n+1}^{5}-25 F_{2 n+1}^{3}+5 F_{2 n+1}\right)-L_{1} L_{3} F_{5}\right. \\
& \left.-5 L_{1} L_{5}\left(5 F_{2 n+1}^{3}-3 F_{2 n+1}\right)+5 L_{1} F_{3} L_{5}+10 L_{3} L_{5}\left(F_{2 n+1}\right)-10 F_{1} L_{3} L_{5}\right) \\
= & \left(L_{1} L_{3}\right) F_{2 n+1}^{5}-\left(L_{1} L_{3}+L_{1} L_{5}\right) F_{2 n+1}^{3} \\
& +\frac{L_{1} L_{3}+3 L_{1} L_{5}+2 L_{3} L_{5}}{5} F_{2 n+1}-\frac{L_{1} L_{3} F_{5}-5 L_{1} F_{3} L_{5}+10 F_{1} L_{3} L_{5}}{25} \\
= & 4 F_{2 n+1}^{5}-15 F_{2 n+1}^{3}+25 F_{2 n+1}-14 .
\end{aligned}
$$

In the last step, we note that

$$
\begin{equation*}
25 \mid L_{1} L_{3} F_{5}-5 L_{1} F_{3} L_{5}+10 F_{1} L_{3} L_{5} \tag{1}
\end{equation*}
$$

Here, | means divides. This paper will generalize (1).

2. History and Result

Divisibility of Fibonacci and Lucas numbers has been the topic of much research in the mathematical literature. Some well-known divisibility properties of Fibonacci
numbers and Lucas numbers can be found in [3]. For example,

$$
\begin{aligned}
& \quad F_{n} \mid F_{m} \text { if and only if } m=k n ; \\
& L_{n} \mid F_{m} \text { if and only if } m=2 k n, \quad n>1 ; \\
& \text { and } \quad L_{n} \mid L_{m} \text { if and only if } m=(2 k-1) n, \quad n>1 .
\end{aligned}
$$

In [8], Matijasevič proved that

$$
F_{m}^{2} \mid F_{m r} \text { if and only if } F_{m} \mid r
$$

Later, Hoggatt and Bicknell-Johnson [5] extended these results. In [4], Hoggatt and Bergum discovered a number of interesting results. For example, they proved that

$$
n=2 \cdot 3^{k} \text { and } k \geq 1 \text { implies } n \mid L_{n} .
$$

They also showed that
p is an odd prime and $p \mid F_{n}$ implies $p^{k} \mid F_{n p^{k-1}}$ for all $k \geq 1$.

A corollary to this last result is the fact that

$$
5^{k} \mid F_{5^{k}} \text { for } k \geq 1
$$

In this paper we will prove the following theorem.
Theorem. Let n be a nonnegative integer. Then

$$
\begin{equation*}
5^{n} \left\lvert\, L_{1} L_{3} \cdots L_{2 n+1} \sum_{i=0}^{n}\binom{2 n+1}{n-i}(-1)^{n-i} \frac{F_{2 i+1}}{L_{2 i+1}}\right. \tag{2}
\end{equation*}
$$

3. Lemmas

To prove our theorem we will need several lemmas. Some of these lemmas involve the quantity

$$
\begin{equation*}
a_{p j}=(-1)^{j} \sum_{k=j}^{p}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{j} \tag{3}
\end{equation*}
$$

where p and j are positive integers and $1 \leq j \leq p$. If we list the first few values of $a_{p j}$ we have

1											
4	1										
11	5	1									
26	16	6	1								
57	42	22	7	1							
120	99	64	29	8	1						
247	219	163	93	37	9	1					
502	466	382	256	130	46	10	1				
1013	968	848	638	386	176	56	11	1			
2036	1981	1816	1486	1024	562	232	67	12	1		
4083	4017	3797	3302	2510	1586	794	299	79	13	1	.

This array is part of the sequence A008949 and can be found in [10]. Another notation we will use is \rangle. This will denote an Eulerian number [2].

Lemma 1. Let p be a positive integer. Then

$$
a_{p 1}=\left\langle\begin{array}{c}
p+1 \\
1
\end{array}\right\rangle
$$

$$
a_{p j}=\sum_{0 \leq i \leq p-j}\binom{p+1}{i}
$$

Lemma 3. Let n and k be positive integers with $n>k$. Then

$$
\sum_{i=0}^{n}\binom{2 n+1}{i}(-1)^{i}(2 n-2 i+1)^{2 k+1}=0
$$

$$
a_{p+1, j}-\binom{p+1}{j}=2 a_{p j} .
$$

Here we adopt the convention that $a_{p, p+1}=0$.

Lemma 5. Let k and p be positive integers with $p \geq 2 k$. Then

$$
\sum_{j=1}^{p}(-1)^{j} a_{p j} j^{2 k}=0
$$

4. Proof of Lemma 1

The proof is by induction on p.
Base Step. Since

$$
\begin{aligned}
a_{11} & =(-1)^{1} \sum_{k=1}^{1}(-1)^{k} 2^{1-k}\binom{2}{k+1}\binom{k}{1} \\
& =(-1)^{1}(-1)^{1} 2^{1-1}\binom{2}{2}\binom{1}{1}=1
\end{aligned}
$$

and

$$
\left\langle\begin{array}{l}
2 \\
1
\end{array}\right\rangle=1
$$

the result is true for $p=1$.
Induction Step. Assume the result is true for some positive integer p. Then by properties of binomial coefficients, the induction hypothesis, and a recurrence relation for Eulerian numbers, we have

$$
\begin{aligned}
& a_{p+1,1}=-\sum_{k=1}^{p+1}(-1)^{k} 2^{p+1-k}\binom{p+2}{k+1}\binom{k}{1} \\
& \quad=-\sum_{k=1}^{p}(-1)^{k} 2^{p+1-k}\binom{p+1}{k+1}\binom{k}{1}-\sum_{k=1}^{p+1}(-1)^{k} 2^{p+1-k}\binom{p+1}{k}\binom{k}{1} \\
& \quad=-2 \sum_{k=1}^{p}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{1}-\sum_{k=1}^{p+1}(-1)^{k} 2^{p+1-k}(p+1)\binom{p}{k-1} \\
& \quad=-2 \sum_{k=1}^{p}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{1}+(p+1) \sum_{k=0}^{p}(-1)^{k} 2^{p-k}\binom{p}{k} \\
& \quad=2 a_{p 1}+(p+1)(2-1)^{p}=2 a_{p 1}+(p+1) \cdot 1 \\
& \quad=2\left\langle\begin{array}{c}
p+1 \\
1
\end{array}\right\rangle+(p+1)\left\langle\begin{array}{c}
p+1 \\
0
\end{array}\right\rangle=\left\langle\begin{array}{c}
p+2 \\
1
\end{array}\right\rangle .
\end{aligned}
$$

Thus, the result is true for $p+1$. By induction, the result is true for all positive integers p.

5. Proof of Lemma 2

We will prove this result in 3 parts. Let

$$
c_{p j}=\sum_{0 \leq i \leq p-j}\binom{p+1}{i}
$$

First we will show that for any positive integer p,

$$
a_{p p}=c_{p p}
$$

This follows since

$$
\begin{aligned}
a_{p p} & =(-1)^{p} \sum_{k=p}^{p}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{p} \\
& =(-1)^{p}(-1)^{p} 2^{p-p}\binom{p+1}{p+1}\binom{p}{p}=1
\end{aligned}
$$

and

$$
c_{p p}=\sum_{0 \leq i \leq p-p}\binom{p+1}{i}=\binom{p+1}{0}=1 .
$$

Second we will show that for any positive integer p,

$$
a_{p 1}=c_{p 1}
$$

By Lemma 1

$$
a_{p 1}=\left\langle\begin{array}{c}
p+1 \\
1
\end{array}\right\rangle
$$

By a property of Eulerian numbers

$$
c_{p 1}=\sum_{0 \leq i \leq p-1}\binom{p+1}{i}=2^{p+1}-p-2=\left\langle\begin{array}{c}
p+1 \\
1
\end{array}\right\rangle
$$

Third we will show that for $p \geq 2$ and $2 \leq j \leq p$,

$$
a_{p+1, j}=a_{p j}+a_{p, j-1}
$$

and

$$
c_{p+1, j}=c_{p j}+c_{p, j-1} .
$$

We see that

$$
\begin{aligned}
& c_{p+1, j}=\sum_{0 \leq i \leq p+1-j}\binom{p+2}{i}=\sum_{0 \leq i \leq p+1-j}\binom{p+1}{i}+\sum_{1 \leq i \leq p+1-j}\binom{p+1}{i-1} \\
& =\sum_{0 \leq i \leq p-(j-1)}\binom{p+1}{i}+\sum_{0 \leq i \leq p-j}\binom{p+1}{i}=c_{p, j-1}+c_{p j} .
\end{aligned}
$$

We also see (using several binomial coefficient identities and rearranging terms in the sums) that

$$
\begin{aligned}
& a_{p+1, j}=(-1)^{j} \sum_{k=j}^{p+1}(-1)^{k} 2^{p+1-k}\binom{p+2}{k+1}\binom{k}{j} \\
& =2^{p+1-j}\binom{p+2}{j+1}\binom{j}{j}+(-1)^{j} \sum_{k=j+1}^{p}(-1)^{k} 2^{p+1-k}\binom{p+2}{k+1}\binom{k}{j} \\
& +(-1)^{j}(-1)^{p+1}\binom{p+2}{p+2}\binom{p+1}{j} \\
& =2^{p+1-j}\binom{p+1}{j}\binom{j-1}{j-1}+2^{p+1-j}\binom{p+1}{j+1}\binom{j}{j} \\
& +(-1)^{j} \sum_{k=j+1}^{p}(-1)^{k} 2^{p+1-k}\left[\binom{p+1}{k}\binom{k-1}{j}+\binom{p+1}{k}\binom{k-1}{j-1}+\binom{p+1}{k+1}\binom{k}{j}\right] \\
& +(-1)^{j}(-1)^{p+1}\binom{p+1}{p+1}\binom{p}{j-1}+(-1)^{j}(-1)^{p+1}\binom{p+1}{p+1}\binom{p}{j} \\
& =2^{p+1-j}\binom{p+1}{j}\binom{j-1}{j-1}+(-1)^{j} \sum_{k=j+1}^{p}(-1)^{k} 2^{p+1-k}\binom{p+1}{k}\binom{k-1}{j-1} \\
& +(-1)^{j}(-1)^{p+1}\binom{p+1}{p+1}\binom{p}{j-1}+2^{p+1-j}\binom{p+1}{j+1}\binom{j}{j} \\
& +(-1)^{j} \sum_{k=j+1}^{p}(-1)^{k} 2^{p+1-k}\left[\binom{p+1}{k}\binom{k-1}{j}+\binom{p+1}{k+1}\binom{k}{j}\right] \\
& +(-1)^{j}(-1)^{p+1}\binom{p+1}{p+1}\binom{p}{j}
\end{aligned}
$$

$$
\begin{aligned}
& =2^{p+1-j}\binom{p+1}{j}\binom{j-1}{j-1}+(-1)^{j-1} \sum_{k=j}^{p-1}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{j-1} \\
& +(-1)^{j}(-1)^{p+1}\binom{p+1}{p+1}\binom{p}{j-1}+2^{p+1-j}\binom{p+1}{j+1}\binom{j}{j} \\
& +(-1)^{j} \sum_{k=j+1}^{p}(-1)^{k} 2^{p+1-k}\left[\binom{p+1}{k}\binom{k-1}{j}+\binom{p+1}{k+1}\binom{k}{j}\right] \\
& +(-1)^{j}(-1)^{p+1}\binom{p+1}{p+1}\binom{p}{j} \\
& =(-1)^{j-1} \sum_{k=j-1}^{p}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{j-1}+2^{p+1-j}\binom{p+1}{j+1}\binom{j}{j}-2^{p-j}\binom{p+1}{j+1}\binom{j}{j} \\
& +(-1)^{j} \sum_{k=j+2}^{p}(-1)^{k} 2^{p+1-k}\binom{p+1}{k}\binom{k-1}{j}+(-1)^{j} \sum_{k=j+1}^{p-1}(-1)^{k} 2^{p+1-k}\binom{p+1}{k+1}\binom{k}{j} \\
& +(-1)^{j}(-1)^{p} 2\binom{p+1}{p+1}\binom{p}{j}+(-1)^{j}(-1)^{p+1}\binom{p+1}{p+1}\binom{p}{j} \\
& =(-1)^{j-1} \sum_{k=j-1}^{p}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{j-1}+2^{p-j}\binom{p+1}{j+1}\binom{j}{j} \\
& +(-1)^{j} \sum_{k=j+1}^{p-1}(-1)^{k+1} 2^{p-k}\binom{p+1}{k+1}\binom{k}{j} \\
& +(-1)^{j} \sum_{k=j+1}^{p-1}(-1)^{k} 2^{p+1-k}\binom{p+1}{k+1}\binom{k}{j}+(-1)^{j}(-1)^{p}\binom{p+1}{p+1}\binom{p}{j} \\
& =(-1)^{j-1} \sum_{k=j-1}^{p}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{j-1}+2^{p-j}\binom{p+1}{j+1}\binom{j}{j} \\
& +(-1)^{j} \sum_{k=j+1}^{p-1}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{j}+(-1)^{j}(-1)^{p}\binom{p+1}{p+1}\binom{p}{j} \\
& =(-1)^{j-1} \sum_{k=j-1}^{p}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{j-1}+(-1)^{j} \sum_{k=j}^{p}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{j} \\
& =a_{p, j-1}+a_{p j} .
\end{aligned}
$$

Thus, by the 3 parts, the two arrays are identical. Therefore, the proof of Lemma 2 is complete.

6. Proof of Lemma 3

Let

$$
f(i)=(2 n-2 i+1)^{2 k+1}
$$

and let \triangle denote the forward-difference operator. Then

$$
\begin{aligned}
\triangle^{2 n+1} f(0) & =\sum_{i=0}^{2 n+1}\binom{2 n+1}{i}(-1)^{i}(2 n-2 i+1)^{2 k+1} \\
& =2 \sum_{i=0}^{n}\binom{2 n+1}{i}(-1)^{i}(2 n-2 i+1)^{2 k+1} .
\end{aligned}
$$

But since f is a polynomial in i of degree $2 k+1$ and $n>k$,

$$
\triangle^{2 n+1} f(0)=0
$$

Therefore,

$$
\sum_{i=0}^{n}\binom{2 n+1}{i}(-1)^{i}(2 n-2 i+1)^{2 k+1}=0
$$

7. Proof of Lemma 4

Let p and j be positive integers and $1 \leq j \leq p+1$. By Lemma 2

$$
a_{p j}=\sum_{0 \leq i \leq p-j}\binom{p+1}{i}
$$

Also, assume $a_{p, p+1}=0$. Thus,

$$
\begin{aligned}
& a_{p+1, j}-\binom{p+1}{j}=\sum_{0 \leq i \leq p+1-j}\binom{p+2}{i}-\binom{p+1}{j} \\
&=\binom{p+2}{0}+\sum_{1 \leq i \leq p+1-j}\binom{p+2}{i}-\binom{p+1}{j} \\
&=\binom{p+1}{0}+\sum_{1 \leq i \leq p+1-j}\left(\binom{p+1}{i}+\binom{p+1}{i-1}\right)-\binom{p+1}{j} \\
&=\binom{p+1}{0}+\sum_{1 \leq i \leq p+1-j}\binom{p+1}{i}-\binom{p+1}{p+1-j}+\sum_{1 \leq i \leq p+1-j}\binom{p+1}{i-1} \\
&=\binom{p+1}{0}+\sum_{1 \leq i \leq p-j}\binom{p+1}{i}+\sum_{0 \leq i \leq p-j}\binom{p+1}{i} \\
&=2 \sum_{0 \leq i \leq p-j}\binom{p+1}{i}=2 a_{p j} .
\end{aligned}
$$

8. Proof of Lemma 5

The proof is by induction on p.
Base Step.
We will show that Lemma 5 is true for $p=2 k$. We will do this by solving a sequence of recurrence relations by the perturbation method. Let m be a nonnegative integer. Consider the recurrence relation

$$
x_{-1}=0, \quad \text { and } \quad x_{n}=n^{m}-x_{n-1} \quad \text { for } \quad n \geq 0 .
$$

Let $P_{m}(n)$ be the solution of this recurrence relation. To describe the solutions to these recurrences we need the following notation. Let $C(n)$ denote a statement which is either true or false, depending on n. Then using APL notation [2] we define

$$
[C(n)]= \begin{cases}1, & \text { if } C(n) \text { is true } \\ 0, & \text { if } C(n) \text { is false }\end{cases}
$$

The first 3 recurrence relations and their solutions can be found in Problem 21 of Chapter 2 of [2]. The solutions for $m=0,1$ and 2 are

$$
\begin{align*}
P_{0}(n) & =1-[n \text { is odd }] \\
P_{1}(n) & =\frac{1}{2} n+\frac{1}{2}[n \text { is odd }] \\
\text { and } \quad P_{2}(n) & =\frac{1}{2} n^{2}+\frac{1}{2} n . \tag{4}
\end{align*}
$$

In using the perturbation method to find the solutions for $m \geq 3$, we obtain the relation

$$
\begin{equation*}
P_{m}(n)=\frac{1}{2}\left((n+1)^{m}-\sum_{i=1}^{m}\binom{m}{i} P_{m-i}(n)\right) . \tag{5}
\end{equation*}
$$

Using this relation, we can compute $P_{m}(n)$ for $m=3,4, \ldots, 12$.

$$
\begin{aligned}
P_{3}(n) & =\frac{1}{2} n^{3}+\frac{3}{4} n^{2}-\frac{1}{4}[n \text { is odd }] \\
P_{4}(n) & =\frac{1}{2} n^{4}+n^{3}-\frac{1}{2} n \\
P_{5}(n) & =\frac{1}{2} n^{5}+\frac{5}{4} n^{4}-\frac{5}{4} n^{2}+\frac{1}{2}[n \text { is odd }] \\
P_{6}(n) & =\frac{1}{2} n^{6}+\frac{3}{2} n^{5}-\frac{5}{2} n^{3}+\frac{3}{2} n \\
P_{7}(n) & =\frac{1}{2} n^{7}+\frac{7}{4} n^{6}-\frac{35}{8} n^{4}+\frac{21}{4} n^{2}-\frac{17}{8}[n \text { is odd }] \\
P_{8}(n) & =\frac{1}{2} n^{8}+2 n^{7}-7 n^{5}+14 n^{3}-\frac{17}{2} n \\
P_{9}(n) & =\frac{1}{2} n^{9}+\frac{9}{4} n^{8}-\frac{21}{2} n^{6}+\frac{63}{2} n^{4}-\frac{153}{4} n^{2}+\frac{31}{2}[n \text { is odd }] \\
P_{10}(n) & =\frac{1}{2} n^{10}+\frac{5}{2} n^{9}-15 n^{7}+63 n^{5}-\frac{255}{2} n^{3}+\frac{155}{2} n \\
P_{11}(n) & =\frac{1}{2} n^{11}+\frac{11}{4} n^{10}-\frac{165}{8} n^{8}+\frac{231}{2} n^{6}-\frac{2805}{8} n^{4}+\frac{1705}{4} n^{2}-\frac{691}{4}[n \text { is odd }] \\
P_{12}(n) & =\frac{1}{2} n^{12}+3 n^{11}-\frac{55}{2} n^{9}+198 n^{7}-\frac{1683}{2} n^{5}+1705 n^{3}-\frac{2073}{2} n .
\end{aligned}
$$

Each $P_{m}(n)$ is a polynomial of degree m plus possibly a term involving [n is odd]. If we let b_{m} denote the coefficient in front of the term [n is odd] in $P_{m}(n)$, then we have the table of elements

$$
\begin{array}{ccccccccccccccc}
m & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \ldots \\
b_{m} & -1 & 1 / 2 & 0 & -1 / 4 & 0 & 1 / 2 & 0 & -17 / 8 & 0 & 31 / 2 & 0 & -691 / 4 & 0 & \cdots
\end{array}
$$

By (4) and (5), the values of the b_{m} s satisfy the conditions $b_{0}=-1$ and for $m \geq 1$,

$$
b_{m}=-\frac{1}{2} \sum_{i=0}^{m-1}\binom{m}{i} b_{i}
$$

Using generating functions, it can be shown that

$$
\sum_{k=0}^{\infty} b_{k} \frac{x^{k}}{k!}=\frac{-2}{e^{x}+1}
$$

Since

$$
\frac{-2}{e^{x}+1}+1=\frac{e^{x}-1}{e^{x}+1}
$$

is an odd function it follows that the even subscripted b s are 0 , i.e. $b_{2 k}=0$ for $k \geq 1$. Therefore, $P_{2 k}(n)$ for $k \geq 1$ is a polynomial of degree $2 k$, i.e. it contains no term [n is odd].

It should be noted that the Genocchi numbers [1] are defined by

$$
\frac{2 x}{e^{x}+1}=\sum_{k=0}^{\infty} G_{k} \frac{x^{k}}{k!}
$$

Therefore, for $n \geq 0$

$$
b_{n}=-\frac{1}{n+1} G_{n+1}
$$

Now, using Lemma 2 on the first equality we have

$$
\begin{aligned}
\sum_{j=1}^{2 k}(-1)^{j} a_{2 k, j} j^{2 k} & =\sum_{j=1}^{2 k}(-1)^{j} \sum_{i=0}^{2 k-j}\binom{2 k+1}{i} j^{2 k} \\
& =\sum_{i=0}^{2 k-1}\binom{2 k+1}{i} \sum_{j=1}^{2 k-i}(-1)^{j} j^{2 k} \\
& =\sum_{i=0}^{2 k-1}\binom{2 k+1}{i} \sum_{j=0}^{2 k-i}(-1)^{j} j^{2 k} \\
& =\sum_{i=0}^{2 k+1}\binom{2 k+1}{i} \sum_{j=0}^{2 k-i}(-1)^{j} j^{2 k} \\
& =\sum_{i=0}^{2 k+1}\binom{2 k+1}{2 k+1-i} \sum_{j=0}^{2 k-(2 k+1-i)}(-1)^{j} j^{2 k} \\
& =\sum_{i=0}^{2 k+1}\binom{2 k+1}{i}(-1)^{i+1}\left(\sum_{j=0}^{i-1}(-1)^{j} j^{2 k}(-1)^{i+1}\right) \\
& =\sum_{i=0}^{2 k+1}\binom{2 k+1}{i}(-1)^{i+1} P_{2 k}(-1+i) .
\end{aligned}
$$

But since the last sum is $-\triangle^{2 k+1} P_{2 k}(-1)$ and $P_{2 k}$ is a polynomial of degree $2 k$, it follows that the above sum is 0 . This completes the proof of the base step.
 then it is true for $p+1$. Suppose that the formula is true for some $p \geq 2 k$. We will use the fact that

$$
\sum_{j=0}^{p+1}(-1)^{j+1}\binom{p+1}{j} j^{2 k}=0
$$

This can be seen by noting that if $Q(j)=j^{2 k}$, then

$$
\sum_{j=0}^{p+1}(-1)^{j+1}\binom{p+1}{j} j^{2 k}=-\triangle^{p+1} Q(0)=0
$$

since Q is a polynomial in j of degree $2 k$ and $p+1>2 k$. Hence,

$$
\begin{aligned}
& \sum_{j=1}^{p+1}(-1)^{j} a_{p+1, j} j^{2 k} \\
& =\sum_{j=1}^{p+1}(-1)^{j} a_{p+1, j} j^{2 k}+\sum_{j=0}^{p+1}(-1)^{j+1}\binom{p+1}{j} j^{2 k} \\
& =\sum_{j=1}^{p+1}(-1)^{j} a_{p+1, j} j^{2 k}+\sum_{j=1}^{p+1}(-1)^{j+1}\binom{p+1}{j} j^{2 k} \\
& =\sum_{j=1}^{p+1}(-1)^{j}\left(a_{p+1, j}-\binom{p+1}{j}\right) j^{2 k} \\
& =\sum_{j=1}^{p}(-1)^{j} 2 a_{p j} j^{2 k}=2\left(\sum_{j=1}^{p}(-1)^{j} a_{p j} j^{2 k}\right)
\end{aligned}
$$

The next to last equality follows from Lemma 4. But the last expression is 0 by our induction hypothesis. Therefore, the result is true for $p+1$. This completes the proof of the induction step.

Thus, by induction, Lemma 5 is proved.

9. Proof of the Theorem

We begin the proof of (2) by noting that if

$$
\begin{equation*}
(x-1)^{2 n+1} \left\lvert\,(x+1)\left(x^{3}+1\right) \cdots\left(x^{2 n+1}+1\right) \sum_{i=0}^{n}\binom{2 n+1}{n-i}(-1)^{n-i} \frac{x^{2 i+1}-1}{x^{2 i+1}+1}\right. \tag{6}
\end{equation*}
$$

is true, then (2) is true. Suppose (6) is true and substitute α / β for x in (6), where

$$
\alpha=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \beta=\frac{1-\sqrt{5}}{2} .
$$

Using the fact that $\alpha-\beta=\sqrt{5}$ and multiplying (6) by $\beta^{n^{2}}$, (6) becomes

$$
5^{n} \left\lvert\,(\alpha+\beta)\left(\alpha^{3}+\beta^{3}\right) \cdots\left(\alpha^{2 n+1}+\beta^{2 n+1}\right) \sum_{i=0}^{n}\binom{2 n+1}{n-i}(-1)^{n-i} \frac{\alpha^{2 i+1}-\beta^{2 i+1}}{\sqrt{5}\left(\alpha^{2 i+1}+\beta^{2 i+1}\right)}\right.
$$

But this last result, by the use of Binet's formula [3], i.e.

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}} \quad \text { and } \quad L_{n}=\alpha^{n}+\beta^{n}
$$

is (2).
Let

$$
f(x)=(x+1)\left(x^{3}+1\right) \cdots\left(x^{2 n+1}+1\right)
$$

and

$$
g(x)=\sum_{i=0}^{n}\binom{2 n+1}{n-i}(-1)^{n-i} \frac{x^{2 i+1}-1}{x^{2 i+1}+1} .
$$

Now, if D denotes the derivative operator, then by applying the product rule j times we obtain the formula

$$
\begin{equation*}
D^{j} f(x) g(x)=\sum_{i=0}^{j}\binom{j}{i} D^{i} f(x) D^{j-i} g(x) \tag{7}
\end{equation*}
$$

Proving (6) would be equivalent to showing that

$$
\begin{equation*}
D^{j} f(1) g(1)=0 \text { for } j=0,1, \ldots, 2 n \text {. } \tag{8}
\end{equation*}
$$

But by (7) we can prove (8) if we can show that

$$
\begin{equation*}
g(1)=D g(1)=D^{2} g(1)=\cdots=D^{2 n} g(1)=0 \tag{9}
\end{equation*}
$$

Simplifying $g(x)$ we have

$$
\begin{align*}
g(x) & =\sum_{i=0}^{n}\binom{2 n+1}{n-i}(-1)^{n-i} \frac{x^{2 i+1}-1}{x^{2 i+1}+1} \\
& =\sum_{i=0}^{n}\binom{2 n+1}{n-i}(-1)^{n-i}\left(1-\frac{2}{x^{2 i+1}+1}\right) . \tag{10}
\end{align*}
$$

First of all, it is clear that $g(1)=0$. To compute the p th derivative of $g(x)$ where $1 \leq p \leq 2 n$, we need to find the p th derivative of

$$
\frac{1}{x^{2 i+1}+1} .
$$

Using a result in [7],

$$
D^{p}\left[\frac{1}{x^{2 i+1}+1}\right]=\sum_{k=1}^{p}(-1)^{k}\binom{p+1}{k+1} \frac{1}{\left(x^{2 i+1}+1\right)^{k+1}} D^{p}\left[\left(x^{2 i+1}+1\right)^{k}\right] .
$$

We now need the notation for falling factorials [2], i.e.

$$
x^{\underline{p}}=x(x-1) \cdots(x-p+1)
$$

and the binomial theorem

$$
\left(x^{2 i+1}+1\right)^{k}=\sum_{j=0}^{k}\binom{k}{j} x^{(2 i+1) j}
$$

Thus,

$$
\begin{aligned}
& D^{p}\left[\sum_{j=0}^{k}\binom{k}{j} x^{(2 i+1) j}\right]=\sum_{j=0}^{k}\binom{k}{j} D^{p} x^{(2 i+1) j} \\
& =\sum_{j=0}^{k}\binom{k}{j}[(2 i+1) j][(2 i+1) j-1] \cdots[(2 i+1) j-p+1] x^{(2 i+1) j-p} \\
& =\sum_{j=0}^{k}\binom{k}{j}[(2 i+1) j] \underline{p} x^{(2 i+1) j-p} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left.D^{p}\left[\frac{1}{x^{2 i+1}+1}\right]\right|_{x=1}=\sum_{k=1}^{p}(-1)^{k}\binom{p+1}{k+1} 2^{-k-1} \sum_{j=0}^{k}\binom{k}{j}[(2 i+1) j]^{p} . \tag{11}
\end{equation*}
$$

Next, we will study (11) with $2 i+1$ replaced by m, i.e.

$$
\sum_{k=1}^{p}(-1)^{k}\binom{p+1}{k+1} 2^{-k-1} \sum_{j=0}^{k}\binom{k}{j}(j m)^{\underline{p}} .
$$

Using the fact that $p \geq 1$, so we have no term when $j=0$, we wish to investigate the sum

$$
\begin{equation*}
\sum_{k=1}^{p}(-1)^{k}\binom{p+1}{k+1} 2^{-k-1} \sum_{j=1}^{k}\binom{k}{j}(j m)^{\underline{p}} . \tag{12}
\end{equation*}
$$

By changing the order of summation, it follows that (12) becomes

$$
\begin{aligned}
& \sum_{j=1}^{p}(j m)^{\underline{p}} \sum_{k=j}^{p}(-1)^{k}\binom{p+1}{k+1}\binom{k}{j} 2^{-k-1} \\
& =\frac{1}{2^{p+1}} \sum_{j=1}^{p}(j m)^{\underline{p}} \sum_{k=j}^{p}(-1)^{k} 2^{p-k}\binom{p+1}{k+1}\binom{k}{j}
\end{aligned}
$$

We want to show that the above polynomial in m only contains odd terms, i.e. there are only terms of odd degree in the polynomial. The first few such polynomials are

$$
\begin{aligned}
& \frac{1}{4}(-m), \\
& \frac{1}{8}(2 m) \text {, } \\
& \frac{1}{16}\left(2 m^{3}-8 m\right) \text {, } \\
& \frac{1}{32}\left(-24 m^{3}+48 m\right) \text {, } \\
& \frac{1}{64}\left(-16 m^{5}+280 m^{3}-384 m\right), \\
& \text { and } \frac{1}{128}\left(480 m^{5}-3600 m^{3}+3840 m\right) \text {, }
\end{aligned}
$$

for $p=1,2,3,4,5$, and 6 , respectively. Now, by (3) we have that the polynomial is

$$
\left.D^{p}\left[\frac{1}{x^{m}+1}\right]\right|_{x=1}=\frac{1}{2^{p+1}} \sum_{j=1}^{p}(-1)^{j} a_{p j}(j m)^{\underline{p}} .
$$

Next, we recall the Stirling numbers of the first kind. They are denoted by

$$
s(n, k)
$$

and count the number of ways to arrange n objects into k cycles [1,2]. A property of Stirling numbers of the first kind is

$$
s(n, n-k)=\sum_{0 \leq i_{1}<\cdots<i_{k} \leq n-1} i_{1} \cdots i_{k}
$$

Thus, we have that

$$
x^{\underline{p}}=x(x-1) \cdots(x-p+1)=\sum_{j=0}^{p}(-1)^{j} s(p, p-j) x^{p-j} .
$$

It follows that

$$
\begin{equation*}
(j m)^{\underline{p}}=\sum_{k=0}^{p}(-1)^{k}=s(p, p-k)(j m)^{p-k}=\sum_{k=0}^{p}(-1)^{k} s(p, p-k) j^{p-k} m^{p-k} . \tag{13}
\end{equation*}
$$

Hence, by using (13) and changing the order of summation, the polynomial in m is

$$
\begin{aligned}
& \left.D^{p}\left[\frac{1}{x^{m}+1}\right]\right|_{x=1} \\
& =\frac{1}{2^{p+1}} \sum_{j=1}^{p}(-1)^{j} a_{p j}(j m)^{\underline{p}} \\
& =\frac{1}{2^{p+1}} \sum_{j=1}^{p}(-1)^{j} a_{p j} \sum_{k=0}^{p}(-1)^{k} s(p, p-k) j^{p-k} m^{p-k} \\
& =\frac{1}{2^{p+1}} \sum_{k=0}^{p}(-1)^{k} s(p, p-k) m^{p-k} \sum_{j=1}^{p}(-1)^{j} a_{p j} j^{p-k} \\
& =\frac{1}{2^{p+1}} \sum_{k=0}^{p}(-1)^{p-k} s(p, k) m^{k} \sum_{j=1}^{p}(-1)^{j} a_{p j} j^{k}
\end{aligned}
$$

Therefore, for $p \geq 1$ we have by (7) that

$$
\begin{aligned}
& D^{p} g(1)=\left.\sum_{i=0}^{n}\binom{2 n+1}{n-i}(-1)^{n-i} D^{p}\left(1-\frac{2}{g_{2 i+1}(x)}\right)\right|_{x=1} \\
& =\left.\sum_{i=0}^{n}\binom{2 n+1}{i}(-1)^{i} D^{p}\left(1-\frac{2}{g_{2 n-2 i+1}(x)}\right)\right|_{x=1} \\
& =-\left.2 \sum_{i=0}^{n}\binom{2 n+1}{i}(-1)^{i} D^{p}\left(\frac{1}{g_{2 n-2 i+1}(x)}\right)\right|_{x=1} \\
& =-2 \sum_{i=0}^{n}\binom{2 n+1}{i}(-1)^{i} \frac{1}{2^{p+1}} \sum_{k=0}^{p}(-1)^{p-k} s(p, k)(2 n-2 i+1)^{k} \sum_{j=1}^{p}(-1)^{j} a_{p j} j^{k} \\
& =\frac{-2}{2^{p+1}} \sum_{k=0}^{p}(-1)^{p-k} s(p, k) \sum_{j=1}^{p}(-1)^{j} a_{p j} j^{k} \sum_{i=0}^{n}\binom{2 n+1}{i}(-1)^{i}(2 n-2 i+1)^{k} .
\end{aligned}
$$

To finish the proof of the Theorem we will prove that the last expression is 0 . To do this we will isolate the term when $k=0$ and the two sums when $0<2 k+1 \leq p$ and $0<2 k \leq p$. The term and the two sums are listed below.

$$
\begin{aligned}
& \frac{-2}{2^{p+1}}(-1)^{p} s(p, 0) \sum_{j=1}^{p}(-1)^{j} a_{p j} \sum_{i=0}^{n}\binom{2 n+1}{i}(-1)^{i} \\
& +\frac{-2}{2^{p+1}} \sum_{0<2 k+1 \leq p}(-1)^{p-2 k-1} s(p, 2 k+1) \sum_{j=1}^{p}(-1)^{j} a_{p j} j^{2 k+1} \\
& \quad\left(\sum_{i=0}^{n}\binom{2 n+1}{i}(-1)^{i}(2 n-2 i+1)^{2 k+1}\right) \\
& +\frac{-2}{2^{p+1}} \sum_{0<2 k \leq p}(-1)^{p-2 k} s(p, 2 k)\left(\sum_{j=1}^{p}(-1)^{j} a_{p j} j^{2 k}\right) \\
& \sum_{i=0}^{n}\binom{2 n+1}{i}(-1)^{i}(2 n-2 i+1)^{2 k}
\end{aligned}
$$

The term when $k=0$ is 0 since $s(p, 0)=0$ for $p \geq 1$. Since $1 \leq p \leq 2 n$ and $2 k+1 \leq p$, it follows that $k<n$. Thus by Lemma 3 the first sum is 0 . Lemma 5 proves that the second sum is 0 .

Summarizing, we have just shown that the term and the two sums are 0. Thus, for $1 \leq p \leq 2 n$ we have $D^{p} g(1)=0$. Since $g(1)=0$ we have proved that (6) is true. Therefore, the Theorem is proved.

10. Further Questions

First of all, we could study the polynomial P_{m} in Lemma 5. Is there an explicit formula for P_{m} ? Second, in studying (2) we came across the conjecture that

$$
(x+1)^{n} \left\lvert\,(x+1)\left(x^{3}+1\right) \cdots\left(x^{2 n+1}+1\right) \sum_{i=0}^{n}\binom{2 n+1}{n-i}(-1)^{n-i} \frac{x^{2 i+1}-1}{x^{2 i+1}+1} .\right.
$$

Finally, we could again study Melham's sum

$$
L_{1} L_{3} \cdots L_{2 m+1} \sum_{k=1}^{n} F_{2 k}^{2 m+1}
$$

where m is a nonnegative integer and n is a positive integer.

References

1. L. Comtet. Advanced Combinatorics. Dordrecht: D. Reidel, 1974.
2. R. L. Graham, D. E. Knuth, \& O. Patashnik. Concrete Mathematics. Reading, Mass.: Addison-Wesley, 1994.
3. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.
4. V. E. Hoggatt, Jr. \& G. E. Bergum. "Divisibility and Congruence Relations." The Fibonacci Quarterly 12.2 (1974): 189-195.
5. V. E. Hoggatt, Jr. \& Marjorie Bicknell-Johnson. "Divisibility by Fibonacci and Lucas Squares." The Fibonacci Quarterly 15.1 (1977): 3-8.
6. D. Jennings. "Some Polynomial Identities for the Fibonacci and Lucas Numbers." The Fibonacci Quarterly 31.2 (1993): 134-137.
7. R. A. Leslie. "How Not to Repeatedly Differentiate a Reciprocal." American Mathematical Monthly 98 (1991): 732-735.
8. Y. V. Matijasevic̆. "Enumerable Sets are Diophantine." Proc. of the Academy of Sciences of the USSR 11 (1970): No. 2.
9. R. S. Melham. private communication.
10. N. J. A. Sloane. On-Line Encyclopedia of Integer Sequences. Published electronically at http://www.research.att.com/ \sim njas/sequences.

AMS Classification Numbers: 11B39.

