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1. Motivation

Sometimes when working on one problem, another problem and solution are

found. The divisibility result in this paper is a consequence of attempts to prove

some conjectures of Melham [9] related to the sum

L1L3 · · ·L2m+1

n
∑

k=1

F 2m+1
2k ,

where m is a nonnegative integer and n is a positive integer. Here, we use the usual

notation for Fibonacci and Lucas numbers, i.e.

F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2, for n ≥ 2

and

L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2, for n ≥ 2.

When m = 2, Melham found that

L1L3L5

n
∑

k=1

F 5
2k = 4F 5

2n+1 − 15F 3
2n+1 + 25F2n+1 − 14.

To prove this result we will use the identity

F 5
m =

1

25

(

F5m − 5(−1)mF3m + 10Fm

)

(proved using Binet’s formula), a result by Melham [9] that if m is an odd integer

Lm

n
∑

k=1

F2mk = Fm(2n+1) − Fm
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(proved using Binet’s formula and summing the resulting geometric series), and the

well-known identities [6]

F5n = 25F 5
n + 25(−1)nF 3

n + 5Fn and F3n = 5F 3
n + 3(−1)nFn.

Substituting these in turn into our sum we obtain

L1L3L5

n
∑

k=1

F 5
2k = L1L3L5

n
∑

k=1

1

25
(F10k − 5F6k + 10F2k)

=
1

25
L1L3L5

(

n
∑

k=1

F10k − 5
n
∑

k=1

F6k + 10
n
∑

k=1

F2k

)

=
1

25

(

L1L3(F10n+5 − F5) − 5L1L5(F6n+3 − F3) + 10L3L5(F2n+1 − F1)
)

=
1

25

(

L1L3F10n+5 − L1L3F5 − 5L1L5F6n+3 + 5L1F3L5

+ 10L3L5F2n+1 − 10F1L3L5

)

=
1

25

(

L1L3(25F 5
2n+1 − 25F 3

2n+1 + 5F2n+1) − L1L3F5

− 5L1L5(5F 3
2n+1 − 3F2n+1) + 5L1F3L5 + 10L3L5(F2n+1) − 10F1L3L5

)

= (L1L3)F
5
2n+1 − (L1L3 + L1L5)F

3
2n+1

+
L1L3 + 3L1L5 + 2L3L5

5
F2n+1 −

L1L3F5 − 5L1F3L5 + 10F1L3L5

25

= 4F 5
2n+1 − 15F 3

2n+1 + 25F2n+1 − 14.

In the last step, we note that

25
∣

∣L1L3F5 − 5L1F3L5 + 10F1L3L5. (1)

Here, | means divides. This paper will generalize (1).

2. History and Result

Divisibility of Fibonacci and Lucas numbers has been the topic of much research

in the mathematical literature. Some well-known divisibility properties of Fibonacci
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numbers and Lucas numbers can be found in [3]. For example,

Fn|Fm if and only if m = kn;

Ln|Fm if and only if m = 2kn, n > 1;

and Ln|Lm if and only if m = (2k − 1)n, n > 1.

In [8], Matijasevic̆ proved that

F 2
m

∣

∣Fmr if and only if Fm

∣

∣r.

Later, Hoggatt and Bicknell-Johnson [5] extended these results. In [4], Hoggatt and

Bergum discovered a number of interesting results. For example, they proved that

n = 2 · 3k and k ≥ 1 implies n|Ln.

They also showed that

p is an odd prime and p|Fn implies pk|Fnpk−1 for all k ≥ 1.

A corollary to this last result is the fact that

5k
∣

∣F5k for k ≥ 1.

In this paper we will prove the following theorem.

Theorem. Let n be a nonnegative integer. Then

5n

∣

∣

∣

∣

L1L3 · · ·L2n+1

n
∑

i=0

(

2n + 1

n − i

)

(−1)n−i F2i+1

L2i+1
. (2)

3. Lemmas

To prove our theorem we will need several lemmas. Some of these lemmas

involve the quantity

apj = (−1)j

p
∑

k=j

(−1)k2p−k

(

p + 1

k + 1

)(

k

j

)

, (3)
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where p and j are positive integers and 1 ≤ j ≤ p. If we list the first few values of

apj we have

1
4 1
11 5 1
26 16 6 1
57 42 22 7 1
120 99 64 29 8 1
247 219 163 93 37 9 1
502 466 382 256 130 46 10 1
1013 968 848 638 386 176 56 11 1
2036 1981 1816 1486 1024 562 232 67 12 1
4083 4017 3797 3302 2510 1586 794 299 79 13 1 .

This array is part of the sequence A008949 and can be found in [10]. Another

notation we will use is
〈〉

. This will denote an Eulerian number [2].

Lemma 1. Let p be a positive integer. Then

ap1 =

〈

p + 1

1

〉

.

Lemma 2. Let p and j be positive integers and let 1 ≤ j ≤ p. Then

apj =
∑

0≤i≤p−j

(

p + 1

i

)

.

Lemma 3. Let n and k be positive integers with n > k. Then

n
∑

i=0

(

2n + 1

i

)

(−1)i(2n − 2i + 1)2k+1 = 0.

Lemma 4. Let p and j be positive integers and 1 ≤ j ≤ p + 1. Then

ap+1,j −
(

p + 1

j

)

= 2apj .

Here we adopt the convention that ap,p+1 = 0.
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Lemma 5. Let k and p be positive integers with p ≥ 2k. Then

p
∑

j=1

(−1)japjj
2k = 0.

4. Proof of Lemma 1

The proof is by induction on p.

Base Step. Since

a11 = (−1)1
1
∑

k=1

(−1)k21−k

(

2

k + 1

)(

k

1

)

= (−1)1(−1)121−1

(

2

2

)(

1

1

)

= 1

and
〈

2

1

〉

= 1,

the result is true for p = 1.

Induction Step. Assume the result is true for some positive integer p. Then

by properties of binomial coefficients, the induction hypothesis, and a recurrence

relation for Eulerian numbers, we have

ap+1,1 = −
p+1
∑

k=1

(−1)k2p+1−k

(

p + 2

k + 1

)(

k

1

)

= −
p
∑

k=1

(−1)k2p+1−k

(

p + 1

k + 1

)(

k

1

)

−
p+1
∑

k=1

(−1)k2p+1−k

(

p + 1

k

)(

k

1

)

= −2

p
∑

k=1

(−1)k2p−k

(

p + 1

k + 1

)(

k

1

)

−
p+1
∑

k=1

(−1)k2p+1−k(p + 1)

(

p

k − 1

)

= −2

p
∑

k=1

(−1)k2p−k

(

p + 1

k + 1

)(

k

1

)

+ (p + 1)

p
∑

k=0

(−1)k2p−k

(

p

k

)

= 2ap1 + (p + 1)(2 − 1)p = 2ap1 + (p + 1) · 1

= 2

〈

p + 1

1

〉

+ (p + 1)

〈

p + 1

0

〉

=

〈

p + 2

1

〉

.
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Thus, the result is true for p + 1. By induction, the result is true for all positive

integers p.

5. Proof of Lemma 2

We will prove this result in 3 parts. Let

cpj =
∑

0≤i≤p−j

(

p + 1

i

)

.

First we will show that for any positive integer p,

app = cpp.

This follows since

app = (−1)p

p
∑

k=p

(−1)k2p−k

(

p + 1

k + 1

)(

k

p

)

= (−1)p(−1)p2p−p

(

p + 1

p + 1

)(

p

p

)

= 1

and

cpp =
∑

0≤i≤p−p

(

p + 1

i

)

=

(

p + 1

0

)

= 1.

Second we will show that for any positive integer p,

ap1 = cp1.

By Lemma 1

ap1 =

〈

p + 1

1

〉

.

By a property of Eulerian numbers

cp1 =
∑

0≤i≤p−1

(

p + 1

i

)

= 2p+1 − p − 2 =

〈

p + 1

1

〉

.
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Third we will show that for p ≥ 2 and 2 ≤ j ≤ p,

ap+1,j = apj + ap,j−1

and

cp+1,j = cpj + cp,j−1.

We see that

cp+1,j =
∑

0≤i≤p+1−j

(

p + 2

i

)

=
∑

0≤i≤p+1−j

(

p + 1

i

)

+
∑

1≤i≤p+1−j

(

p + 1

i − 1

)

=
∑

0≤i≤p−(j−1)

(

p + 1

i

)

+
∑

0≤i≤p−j

(

p + 1

i

)

= cp,j−1 + cpj .

We also see (using several binomial coefficient identities and rearranging terms in

the sums) that

ap+1,j = (−1)j

p+1
∑

k=j

(−1)k2p+1−k

(

p + 2

k + 1

)(

k

j

)

= 2p+1−j

(

p + 2

j + 1

)(

j

j

)

+ (−1)j

p
∑

k=j+1

(−1)k2p+1−k

(

p + 2

k + 1

)(

k

j

)

+ (−1)j(−1)p+1

(

p + 2

p + 2

)(

p + 1

j

)

= 2p+1−j

(

p + 1

j

)(

j − 1

j − 1

)

+ 2p+1−j

(

p + 1

j + 1

)(

j

j

)

+ (−1)j

p
∑

k=j+1

(−1)k2p+1−k

[(

p + 1

k

)(

k − 1

j

)

+

(

p + 1

k

)(

k − 1

j − 1

)

+

(

p + 1

k + 1

)(

k

j

)]

+ (−1)j(−1)p+1

(

p + 1

p + 1

)(

p

j − 1

)

+ (−1)j(−1)p+1

(

p + 1

p + 1

)(

p

j

)

= 2p+1−j

(

p + 1

j

)(

j − 1

j − 1

)

+ (−1)j

p
∑

k=j+1

(−1)k2p+1−k

(

p + 1

k

)(

k − 1

j − 1

)

+ (−1)j(−1)p+1

(

p + 1

p + 1

)(

p

j − 1

)

+ 2p+1−j

(

p + 1

j + 1

)(

j

j

)

+ (−1)j

p
∑

k=j+1

(−1)k2p+1−k

[(

p + 1

k

)(

k − 1

j

)

+

(

p + 1

k + 1

)(

k

j

)]

+ (−1)j(−1)p+1

(

p + 1

p + 1

)(

p

j

)
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= 2p+1−j

(

p + 1

j

)(

j − 1

j − 1

)

+ (−1)j−1

p−1
∑

k=j

(−1)k2p−k

(

p + 1

k + 1

)(

k

j − 1

)

+ (−1)j(−1)p+1

(

p + 1

p + 1

)(

p

j − 1

)

+ 2p+1−j

(

p + 1

j + 1

)(

j

j

)

+ (−1)j

p
∑

k=j+1

(−1)k2p+1−k

[(

p + 1

k

)(

k − 1

j

)

+

(

p + 1

k + 1

)(

k

j

)]

+ (−1)j(−1)p+1

(

p + 1

p + 1

)(

p

j

)

= (−1)j−1

p
∑

k=j−1

(−1)k2p−k

(

p + 1

k + 1

)(

k

j − 1

)

+ 2p+1−j

(

p + 1

j + 1

)(

j

j

)

− 2p−j

(

p + 1

j + 1

)(

j

j

)

+ (−1)j

p
∑

k=j+2

(−1)k2p+1−k

(

p + 1

k

)(

k − 1

j

)

+ (−1)j

p−1
∑

k=j+1

(−1)k2p+1−k

(

p + 1

k + 1

)(

k

j

)

+ (−1)j(−1)p2

(

p + 1

p + 1

)(

p

j

)

+ (−1)j(−1)p+1

(

p + 1

p + 1

)(

p

j

)

= (−1)j−1

p
∑

k=j−1

(−1)k2p−k

(

p + 1

k + 1

)(

k

j − 1

)

+ 2p−j

(

p + 1

j + 1

)(

j

j

)

+ (−1)j

p−1
∑

k=j+1

(−1)k+12p−k

(

p + 1

k + 1

)(

k

j

)

+ (−1)j

p−1
∑

k=j+1

(−1)k2p+1−k

(

p + 1

k + 1

)(

k

j

)

+ (−1)j(−1)p

(

p + 1

p + 1

)(

p

j

)

= (−1)j−1

p
∑

k=j−1

(−1)k2p−k

(

p + 1

k + 1

)(

k

j − 1

)

+ 2p−j

(

p + 1

j + 1

)(

j

j

)

+ (−1)j

p−1
∑

k=j+1

(−1)k2p−k

(

p + 1

k + 1

)(

k

j

)

+ (−1)j(−1)p

(

p + 1

p + 1

)(

p

j

)

= (−1)j−1

p
∑

k=j−1

(−1)k2p−k

(

p + 1

k + 1

)(

k

j − 1

)

+ (−1)j

p
∑

k=j

(−1)k2p−k

(

p + 1

k + 1

)(

k

j

)

= ap,j−1 + apj.

Thus, by the 3 parts, the two arrays are identical. Therefore, the proof of Lemma

2 is complete.
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6. Proof of Lemma 3

Let

f(i) = (2n − 2i + 1)2k+1

and let 4 denote the forward-difference operator. Then

42n+1f(0) =
2n+1
∑

i=0

(

2n + 1

i

)

(−1)i(2n − 2i + 1)2k+1

= 2
n
∑

i=0

(

2n + 1

i

)

(−1)i(2n − 2i + 1)2k+1.

But since f is a polynomial in i of degree 2k + 1 and n > k,

42n+1f(0) = 0.

Therefore,
n
∑

i=0

(

2n + 1

i

)

(−1)i(2n − 2i + 1)2k+1 = 0.

7. Proof of Lemma 4

Let p and j be positive integers and 1 ≤ j ≤ p + 1. By Lemma 2

apj =
∑

0≤i≤p−j

(

p + 1

i

)

.

Also, assume ap,p+1 = 0. Thus,

ap+1,j −
(

p + 1

j

)

=
∑

0≤i≤p+1−j

(

p + 2

i

)

−
(

p + 1

j

)

=

(

p + 2

0

)

+
∑

1≤i≤p+1−j

(

p + 2

i

)

−
(

p + 1

j

)

=

(

p + 1

0

)

+
∑

1≤i≤p+1−j

((

p + 1

i

)

+

(

p + 1

i − 1

))

−
(

p + 1

j

)

=

(

p + 1

0

)

+
∑

1≤i≤p+1−j

(

p + 1

i

)

−
(

p + 1

p + 1 − j

)

+
∑

1≤i≤p+1−j

(

p + 1

i − 1

)

=

(

p + 1

0

)

+
∑

1≤i≤p−j

(

p + 1

i

)

+
∑

0≤i≤p−j

(

p + 1

i

)

= 2
∑

0≤i≤p−j

(

p + 1

i

)

= 2apj .
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8. Proof of Lemma 5

The proof is by induction on p.

Base Step.

We will show that Lemma 5 is true for p = 2k. We will do this by solving a se-

quence of recurrence relations by the perturbation method. Let m be a nonnegative

integer. Consider the recurrence relation

x−1 = 0, and xn = nm − xn−1 for n ≥ 0.

Let Pm(n) be the solution of this recurrence relation. To describe the solutions

to these recurrences we need the following notation. Let C(n) denote a statement

which is either true or false, depending on n. Then using APL notation [2] we define

[C(n)] =

{

1, if C(n) is true

0, if C(n) is false.

The first 3 recurrence relations and their solutions can be found in Problem 21 of

Chapter 2 of [2]. The solutions for m = 0, 1 and 2 are

P0(n) = 1 − [n is odd]

P1(n) =
1

2
n +

1

2
[n is odd]

and P2(n) =
1

2
n2 +

1

2
n. (4)

In using the perturbation method to find the solutions for m ≥ 3, we obtain the

relation

Pm(n) =
1

2

(

(n + 1)m −
m
∑

i=1

(

m

i

)

Pm−i(n)

)

. (5)
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Using this relation, we can compute Pm(n) for m = 3, 4, . . . , 12.

P3(n) =
1

2
n3 +

3

4
n2 − 1

4
[n is odd]

P4(n) =
1

2
n4 + n3 − 1

2
n

P5(n) =
1

2
n5 +

5

4
n4 − 5

4
n2 +

1

2
[n is odd]

P6(n) =
1

2
n6 +

3

2
n5 − 5

2
n3 +

3

2
n

P7(n) =
1

2
n7 +

7

4
n6 − 35

8
n4 +

21

4
n2 − 17

8
[n is odd]

P8(n) =
1

2
n8 + 2n7 − 7n5 + 14n3 − 17

2
n

P9(n) =
1

2
n9 +

9

4
n8 − 21

2
n6 +

63

2
n4 − 153

4
n2 +

31

2
[n is odd]

P10(n) =
1

2
n10 +

5

2
n9 − 15n7 + 63n5 − 255

2
n3 +

155

2
n

P11(n) =
1

2
n11 +

11

4
n10 − 165

8
n8 +

231

2
n6 − 2805

8
n4 +

1705

4
n2 − 691

4
[n is odd]

P12(n) =
1

2
n12 + 3n11 − 55

2
n9 + 198n7 − 1683

2
n5 + 1705n3 − 2073

2
n.

Each Pm(n) is a polynomial of degree m plus possibly a term involving [n is odd].

If we let bm denote the coefficient in front of the term [n is odd] in Pm(n), then we

have the table of elements

m 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
bm −1 1/2 0 −1/4 0 1/2 0 −17/8 0 31/2 0 −691/4 0 · · ·

By (4) and (5), the values of the bms satisfy the conditions b0 = −1 and for m ≥ 1,

bm = −1

2

m−1
∑

i=0

(

m

i

)

bi.

Using generating functions, it can be shown that

∞
∑

k=0

bk

xk

k!
=

−2

ex + 1
.

Since
−2

ex + 1
+ 1 =

ex − 1

ex + 1
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is an odd function it follows that the even subscripted bs are 0, i.e. b2k = 0 for

k ≥ 1. Therefore, P2k(n) for k ≥ 1 is a polynomial of degree 2k, i.e. it contains no

term [n is odd].

It should be noted that the Genocchi numbers [1] are defined by

2x

ex + 1
=

∞
∑

k=0

Gk

xk

k!
.

Therefore, for n ≥ 0

bn = − 1

n + 1
Gn+1.

Now, using Lemma 2 on the first equality we have

2k
∑

j=1

(−1)ja2k,jj
2k =

2k
∑

j=1

(−1)j

2k−j
∑

i=0

(

2k + 1

i

)

j2k

=

2k−1
∑

i=0

(

2k + 1

i

) 2k−i
∑

j=1

(−1)jj2k

=

2k−1
∑

i=0

(

2k + 1

i

) 2k−i
∑

j=0

(−1)jj2k

=
2k+1
∑

i=0

(

2k + 1

i

) 2k−i
∑

j=0

(−1)jj2k

=

2k+1
∑

i=0

(

2k + 1

2k + 1 − i

) 2k−(2k+1−i)
∑

j=0

(−1)jj2k

=

2k+1
∑

i=0

(

2k + 1

i

)

(−1)i+1





i−1
∑

j=0

(−1)jj2k(−1)i+1





=
2k+1
∑

i=0

(

2k + 1

i

)

(−1)i+1P2k(−1 + i).

But since the last sum is −42k+1P2k(−1) and P2k is a polynomial of degree 2k, it

follows that the above sum is 0. This completes the proof of the base step.
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Induction Step. Next, we will show that if the formula is true for some p ≥ 2k,

then it is true for p + 1. Suppose that the formula is true for some p ≥ 2k. We will

use the fact that
p+1
∑

j=0

(−1)j+1

(

p + 1

j

)

j2k = 0.

This can be seen by noting that if Q(j) = j2k, then

p+1
∑

j=0

(−1)j+1

(

p + 1

j

)

j2k = −4p+1Q(0) = 0

since Q is a polynomial in j of degree 2k and p + 1 > 2k. Hence,

p+1
∑

j=1

(−1)jap+1,jj
2k

=

p+1
∑

j=1

(−1)jap+1,jj
2k +

p+1
∑

j=0

(−1)j+1

(

p + 1

j

)

j2k

=

p+1
∑

j=1

(−1)jap+1,jj
2k +

p+1
∑

j=1

(−1)j+1

(

p + 1

j

)

j2k

=

p+1
∑

j=1

(−1)j

(

ap+1,j −
(

p + 1

j

))

j2k

=

p
∑

j=1

(−1)j2apjj
2k = 2





p
∑

j=1

(−1)japjj
2k



 .

The next to last equality follows from Lemma 4. But the last expression is 0 by our

induction hypothesis. Therefore, the result is true for p + 1. This completes the

proof of the induction step.

Thus, by induction, Lemma 5 is proved.

9. Proof of the Theorem

We begin the proof of (2) by noting that if

(x − 1)2n+1

∣

∣

∣

∣

(x + 1)(x3 + 1) · · · (x2n+1 + 1)
n
∑

i=0

(

2n + 1

n − i

)

(−1)n−i x
2i+1 − 1

x2i+1 + 1
(6)

13



is true, then (2) is true. Suppose (6) is true and substitute α/β for x in (6), where

α =
1 +

√
5

2
and β =

1 −
√

5

2
.

Using the fact that α − β =
√

5 and multiplying (6) by βn2

, (6) becomes

5n
∣

∣(α + β)(α3 + β3) · · · (α2n+1 + β2n+1)

n
∑

i=0

(

2n + 1

n − i

)

(−1)n−i α2i+1 − β2i+1

√
5(α2i+1 + β2i+1)

.

But this last result, by the use of Binet’s formula [3], i.e.

Fn =
αn − βn

√
5

and Ln = αn + βn,

is (2) .

Let

f(x) = (x + 1)(x3 + 1) · · · (x2n+1 + 1)

and

g(x) =

n
∑

i=0

(

2n + 1

n − i

)

(−1)n−i x
2i+1 − 1

x2i+1 + 1
.

Now, if D denotes the derivative operator, then by applying the product rule j

times we obtain the formula

Djf(x)g(x) =

j
∑

i=0

(

j

i

)

Dif(x)Dj−ig(x). (7)

Proving (6) would be equivalent to showing that

Djf(1)g(1) = 0 for j = 0, 1, . . . , 2n. (8)

But by (7) we can prove (8) if we can show that

g(1) = Dg(1) = D2g(1) = · · · = D2ng(1) = 0. (9)

14



Simplifying g(x) we have

g(x) =

n
∑

i=0

(

2n + 1

n − i

)

(−1)n−i x
2i+1 − 1

x2i+1 + 1

=
n
∑

i=0

(

2n + 1

n − i

)

(−1)n−i

(

1 − 2

x2i+1 + 1

)

. (10)

First of all, it is clear that g(1) = 0. To compute the pth derivative of g(x) where

1 ≤ p ≤ 2n, we need to find the pth derivative of

1

x2i+1 + 1
.

Using a result in [7],

Dp

[

1

x2i+1 + 1

]

=

p
∑

k=1

(−1)k

(

p + 1

k + 1

)

1

(x2i+1 + 1)k+1
Dp
[

(x2i+1 + 1)k
]

.

We now need the notation for falling factorials [2], i.e.

xp = x(x − 1) · · · (x − p + 1)

and the binomial theorem

(x2i+1 + 1)k =
k
∑

j=0

(

k

j

)

x(2i+1)j .

Thus,

Dp





k
∑

j=0

(

k

j

)

x(2i+1)j



 =
k
∑

j=0

(

k

j

)

Dpx(2i+1)j

=
k
∑

j=0

(

k

j

)

[(2i + 1)j][(2i + 1)j − 1] · · · [(2i + 1)j − p + 1]x(2i+1)j−p

=
k
∑

j=0

(

k

j

)

[(2i + 1)j]px(2i+1)j−p.
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It follows that

Dp

[

1

x2i+1 + 1

]

∣

∣

∣

∣

∣

x=1

=

p
∑

k=1

(−1)k

(

p + 1

k + 1

)

2−k−1
k
∑

j=0

(

k

j

)

[(2i + 1)j]p. (11)

Next, we will study (11) with 2i + 1 replaced by m, i.e.

p
∑

k=1

(−1)k

(

p + 1

k + 1

)

2−k−1
k
∑

j=0

(

k

j

)

(jm)p.

Using the fact that p ≥ 1, so we have no term when j = 0, we wish to investigate

the sum
p
∑

k=1

(−1)k

(

p + 1

k + 1

)

2−k−1
k
∑

j=1

(

k

j

)

(jm)p. (12)

By changing the order of summation, it follows that (12) becomes

p
∑

j=1

(jm)p

p
∑

k=j

(−1)k

(

p + 1

k + 1

)(

k

j

)

2−k−1

=
1

2p+1

p
∑

j=1

(jm)p

p
∑

k=j

(−1)k2p−k

(

p + 1

k + 1

)(

k

j

)

.

We want to show that the above polynomial in m only contains odd terms, i.e. there

are only terms of odd degree in the polynomial. The first few such polynomials are

1

4
(−m),

1

8
(2m),

1

16
(2m3 − 8m),

1

32
(−24m3 + 48m),

1

64
(−16m5 + 280m3 − 384m),

and
1

128
(480m5 − 3600m3 + 3840m),

for p = 1, 2, 3, 4, 5, and 6, respectively. Now, by (3) we have that the polynomial is

Dp

[

1

xm + 1

]

∣

∣

∣

∣

∣

x=1

=
1

2p+1

p
∑

j=1

(−1)japj(jm)p.
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Next, we recall the Stirling numbers of the first kind. They are denoted by

s(n, k)

and count the number of ways to arrange n objects into k cycles [1,2]. A property

of Stirling numbers of the first kind is

s(n, n − k) =
∑

0≤i1<···<ik≤n−1

i1 · · · ik.

Thus, we have that

xp = x(x − 1) · · · (x − p + 1) =

p
∑

j=0

(−1)js(p, p − j)xp−j .

It follows that

(jm)p =

p
∑

k=0

(−1)k = s(p, p − k)(jm)p−k =

p
∑

k=0

(−1)ks(p, p − k)jp−kmp−k. (13)

Hence, by using (13) and changing the order of summation, the polynomial in m is

Dp

[

1

xm + 1

]

∣

∣

∣

∣

∣

x=1

=
1

2p+1

p
∑

j=1

(−1)japj(jm)p

=
1

2p+1

p
∑

j=1

(−1)japj

p
∑

k=0

(−1)ks(p, p − k)jp−kmp−k

=
1

2p+1

p
∑

k=0

(−1)ks(p, p − k)mp−k

p
∑

j=1

(−1)japjj
p−k

=
1

2p+1

p
∑

k=0

(−1)p−ks(p, k)mk

p
∑

j=1

(−1)japjj
k.
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Therefore, for p ≥ 1 we have by (7) that

Dpg(1) =
n
∑

i=0

(

2n + 1

n − i

)

(−1)n−iDp

(

1 − 2

g2i+1(x)

)

∣

∣

∣

∣

∣

x=1

=
n
∑

i=0

(

2n + 1

i

)

(−1)iDp

(

1 − 2

g2n−2i+1(x)

)

∣

∣

∣

∣

∣

x=1

= −2

n
∑

i=0

(

2n + 1

i

)

(−1)iDp

(

1

g2n−2i+1(x)

)

∣

∣

∣

∣

∣

x=1

= −2
n
∑

i=0

(

2n + 1

i

)

(−1)i 1

2p+1

p
∑

k=0

(−1)p−ks(p, k)(2n− 2i + 1)k

p
∑

j=1

(−1)japjj
k

=
−2

2p+1

p
∑

k=0

(−1)p−ks(p, k)

p
∑

j=1

(−1)japjj
k

n
∑

i=0

(

2n + 1

i

)

(−1)i(2n − 2i + 1)k.

To finish the proof of the Theorem we will prove that the last expression is 0. To

do this we will isolate the term when k = 0 and the two sums when 0 < 2k + 1 ≤ p

and 0 < 2k ≤ p. The term and the two sums are listed below.

−2

2p+1
(−1)ps(p, 0)

p
∑

j=1

(−1)japj

n
∑

i=0

(

2n + 1

i

)

(−1)i

+
−2

2p+1

∑

0<2k+1≤p

(−1)p−2k−1s(p, 2k + 1)

p
∑

j=1

(−1)japjj
2k+1

(

n
∑

i=0

(

2n + 1

i

)

(−1)i(2n − 2i + 1)2k+1

)

+
−2

2p+1

∑

0<2k≤p

(−1)p−2ks(p, 2k)





p
∑

j=1

(−1)japjj
2k





n
∑

i=0

(

2n + 1

i

)

(−1)i(2n − 2i + 1)2k.

The term when k = 0 is 0 since s(p, 0) = 0 for p ≥ 1. Since 1 ≤ p ≤ 2n and

2k + 1 ≤ p, it follows that k < n. Thus by Lemma 3 the first sum is 0. Lemma 5

proves that the second sum is 0.
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Summarizing, we have just shown that the term and the two sums are 0. Thus,

for 1 ≤ p ≤ 2n we have Dpg(1) = 0. Since g(1) = 0 we have proved that (6) is true.

Therefore, the Theorem is proved.

10. Further Questions

First of all, we could study the polynomial Pm in Lemma 5. Is there an explicit

formula for Pm? Second, in studying (2) we came across the conjecture that

(x + 1)n

∣

∣

∣

∣

(x + 1)(x3 + 1) · · · (x2n+1 + 1)
n
∑

i=0

(

2n + 1

n − i

)

(−1)n−i x
2i+1 − 1

x2i+1 + 1
.

Finally, we could again study Melham’s sum

L1L3 · · ·L2m+1

n
∑

k=1

F 2m+1
2k ,

where m is a nonnegative integer and n is a positive integer.
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