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1. Introduction. In [1], the following problem was presented.

A classroom has 5 rows of 5 desks per row. The teacher requests each pupil
to change his seat by going either to the seat in front, the one behind, the
one to his left, or to the one on his right (of course, not all these options
are possible for all students). Determine whether or not this directive can
be carried out.

There is no way that this directive can be carried out. To see this, consider the

desk grid as a 5× 5 checkerboard of X and O squares with an X in the upper left

corner.

X O X O X

O X O X O

X O X O X

O X O X O

X O X O X

Now suppose we could carry out this directive. Then the pupils in the X squares

must move to the O squares. But, since there are more X squares than O squares,

the pigeonhole principle [2] says that two pupils in X squares must move to the

same O square, a contradiction. In fact, there is no way to carry out this directive

if the classroom has m rows of n desks per row and both m and n are odd.
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Here, we are interested in the following variation to the problem.

A classroom has m rows of n desks per row. The teacher requests each
pupil to change his seat by going either to the seat in front, the one behind,
the one to his left, or to the one on his right (of course, not all these options
are possible for all students). How many ways can this directive be carried
out?

First, we will show that the answer to the 2×n problem is a surprising F 2
n+1, where

Fn denotes the nth Fibonacci number. Next, we will study the problem with 3 rows

and 2n desks per row. Finally, we will ask some related questions.

2. Terminology. To begin studying the 2 × n problem, we define the term

“2× n seating rearrangement.” For example, we would like

© ©↔© ©←© ©→©
l ↓ ↑ ↑ ↓
© ©↔© ©→© ©←©

to be a 2 × 7 seating rearrangement. In this notation, © denotes a desk and →
denotes the movement of a pupil from one desk to another.

Let n be a positive integer. Suppose there are 2n desks arranged in 2 rows

and n columns and that pupils are seated at each desk in this array of desks. A

2× n seating rearrangement is any movement of pupils among the 2n desks so that

each desk is vacated by one pupil and reoccupied by a different pupil and each pupil

moves to a horizontal or vertical neighboring desk.
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Thus,

©
l
©

©→©
↑ ↓
©←©

©←©←©
↓ ↑
©→©→©

©→© © ©↔©
↑ ↓ l
© ←© © ©↔©

are examples of 2× 1, 2× 2, 2× 3, and 2× 5 seating rearrangements, respectively.

3. Solution to the 2× n Problem. The set Tn of all 2× n rearrangements

may be partitioned into four subsets An, Bn, Cn, Dn according to the four ways in

which they end as follows:

An :
©· · ·©

l
© · · ·©

Bn :
©· · ·© →©

↓
©· · ·© ←©

Cn :
©· · ·© ←©

↑
©· · ·© →©
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Dn :
©· · ·© ↔©

©· · ·© ↔©

Let the cardinalities of An, Bn, Cn, Dn, Tn, respectively, be an, bn, cn, dn, and tn;

the number we wish to determine, then, is

tn = an + bn + cn + dn.

Now, these numbers are governed by the recursions

(i) an+1 = tn = an + bn + cn + dn

(ii) bn+1 = an + bn

(iii) cn+1 = an + cn

(iv) dn+1 = an.

To see (i) we need only observe that any member of Tn becomes a member of An+1

when the extra column
©
l
©

is attached to the end, and conversely. Recursion (ii) is established by the following

1-1 correspondences between An ∪Bn and Bn+1:

©· · ·©
l

© · · ·©
∈ An ↔

©· · ·© →©
↑ ↓

© · · ·© ←©

©· · ·© →©
↓

©· · ·© ←©
∈ Bn ↔

©· · ·© →©→©
↓

©· · ·© ←©←©

Similar correspondences establish (iii), and (iv) is given immediately by
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©· · ·©
l

© · · ·©
∈ An ↔

©· · ·© ↔©

©· · ·© ↔©
∈ Dn+1.

These results are summarized nicely in the matrix equation






1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0













an

bn

cn

dn






=







an+1

bn+1

cn+1

dn+1






.

With






a2

b2

c2

d2






=







1
1
1
1






,

we have t2 = 4, and then






a3

b3

c3

d3






=







1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0













1
1
1
1






=







4
2
2
1






,

making t3 = 4 + 2 + 2 + 1 = 9. In fact, an easy induction yields the general result






an

bn

cn

dn






=







F 2
n

Fn−1Fn

Fn−1Fn

F 2
n−1






,

making

tn = an+1 = an + bn + cn + dn = F 2
n+1,

where Fn is the nth Fibonacci number.

4. The 3× 2n Problem. Next we consider the 3× 2n problem.

A classroom has 3 rows of 2n desks per row. The teacher requests each
pupil to change his seat by going either to the seat in front, the one behind,
the one to his left, or to the one on his right (of course, not all these options
are possible for all students). How many ways can this directive can be
carried out?
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The set Z2n of all 3 × 2n rearrangements may be partitioned into twenty-five

subsets A2n, B2n, C2n, · · · , Y2n according to the twenty-five ways in which the last

of the 2n columns end as follows:

A2n :

©↔©

©↔©

©↔©

B2n :

©←©
↓ ↑
© ©
↓ ↑
© →©

C2n :

©↔©

© ©
l l
© ©

D2n :

© ©
l l
© ©

©↔©

E2n :

©→©
↑ ↓
© ©
↑ ↓
© ←©

F2n :

©↔©

©←©
↓ ↑
© →©

G2n :

©←©
↓ ↑
© →©

©↔©

H2n :

©↔©

©→©
↑ ↓
©←©

I2n :

©→©
↑ ↓
©←©

©↔©

J2n :

© ©←©
↓ ↑

©←© ©
↑

©→©→©

K2n :

©←©←©
↑

©→© ©
↓ ↑

© ©→©

L2n :

©←©←©
↑

©↔© ©
↑

©→©→©

M2n :

© ©↔©

©←© ©
↑ l

©→© ©

N2n :

© ©↔©

©→© ©
↓ l

© ←© ©

O2n :

© ©↔©

©↔© ©
l

©↔© ©
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P2n :

©←© ©
↑ l

© →© ©

© ©↔©

Q2n :

©→© ©
↓ l

©←© ©

© ©↔©

R2n :

©↔© ©
l

©↔© ©

© ©↔©

S2n :

© ©←©
↑ ↓

©→© ©
↓

©←©←©

T2n :

©→©→©
↓

©←© ©
↑ ↓

© ©←©

U2n :

©→©→©
↓

©↔© ©
↓

©←©←©

V2n :

© ©↔©

©←©←©
↑

©→©→©

W2n :

©←©←©
↑

©→©→©

© ©↔©

X2n :

© ©↔©

©→©→©
↓

©←©←©

Y2n :

©→©→©
↓

©←©←©

© ©↔©

Let the cardinalities of A2n, B2n, C2n, · · · , Y2n, and Z2n respectively, be a2n, b2n,

c2n, · · · , y2n and z2n; the number we wish to determine, then, is

z2n = a2n + b2n + c2n + · · ·+ y2n.

Next, by examining the 1-1 correspondences between the different 3× 2(n + 1)

seating rearrangements and the 3 × 2n seating rearrangements, we obtain, A, the
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25× 25 matrix



























































































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1



























































































.

The proof that














a2(n+1)

b2(n+1)

c2(n+1)

...
y2(n+1)















= A













a2n

b2n

c2n

...
y2n













is very long and tedious, but is similar to the proof of the 2×n seating rearrangement

problem’s proof. The initial conditions for the 3× 2n problem are

a2 = b2 = c2 = · · · = i2 = 1

and

j2 = k2 = · · · = y2 = 0.
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5. Solution to the 3 × 2n Problem. It can be shown, by induction on n,

that

a2n = b2n = c2n = · · · = i2n

j2n = k2n = m2n = n2n = p2n = q2n = s2n = t2n = v2n = · · · = y2n

l2n = o2n = r2n = u2n.

Therefore, it follows that





a2(n+1)

j2(n+1)

l2(n+1)



 =





9 12 4
3 5 2
1 2 1









a2n

j2n

l2n



 .

The characteristic polynomial of this matrix is

λ3 − 15λ2 + 15λ− 1.

The zeros of this polynomial are 1, 7 + 4
√

3, and 7− 4
√

3. Assuming

z2n = A + B(7 + 4
√

3)n + C(7− 4
√

3)n

and using the initial conditions, z2 = 9, z4 = 121, z6 = 1681, we have that

A =
1

3
, B =

2 +
√

3

6
, and C =

2−
√

3

6
.

With this guess it can be shown, again by induction on n, that

z2n =
2 +
√

3

6
(7 + 4

√
3)n +

2−
√

3

6
(7− 4

√
3)n +

1

3
.

6. Questions. Finally, we state some open questions.

A classroom has 2 rows of n desks per row. The teacher requests each
pupil to change his seat by going either to the seat in front or behind, the
one to the left or the right, or to one of the diagonal seats (of course, not
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all these options are possible for all students). How many ways can this
directive be carried out?

A classroom has a triangular array of n(n+1)
2 desks. The teacher requests

each pupil to change his seat by going the closest seat in any direction.
How many ways can this directive be carried out?

And finally, we still have open the original question which started it all.

A classroom has m rows of n desks per row. The teacher requests each
pupil to change his seat by going either to the seat in front, the one behind,
the one to his left, or to the one on his right (of course, not all these options
are possible for all students). How many ways can this directive be carried
out?
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