Two Identities Involving Generalized Fibonacci Numbers

Curtis Cooper
Dept. of Math. \& Comp. Sci.
University of Central Missouri
Warrensburg, MO 64093
U.S.A.
email: cooper@ucmo.edu

Abstract. Let $r \geq 2$ be an integer. The r-generalized Fibonacci sequence $\left\{G_{n}\right\}$ is defined as

$$
G_{n}= \begin{cases}0, & \text { for } 0 \leq n<r-1 \\ 1, & \text { for } n=r-1 \\ \sum_{i=1}^{r} G_{n-i}, & \text { for } n \geq r .\end{cases}
$$

We will present two identities involving r-generalized Fibonacci numbers.

1. Introduction

Several generalizations of Fibonacci numbers and identities have been studied by mathematicians over the years.

For example, Melham and Shannon [5] let a, b, p, and q be real numbers. They then defined a generalized Fibonacci sequence $\left\{W_{n}\right\}$, where $W_{0}=a, W_{1}=b$, and for $n \geq 2, W_{n}=p W_{n-1}-q W_{n-2}$. Finally, they showed that for $n \geq 0$,

$$
W_{n+1} W_{n+2} W_{n+6}-W_{n+3}^{3}=e q^{n+1}\left(p^{3} W_{n+2}-q^{2} W_{n+1}\right),
$$

where $e=p a b-q a^{2}-b^{2}$.
In another example, Howard [3] defined a generalized Tribonacci sequence $\left\{V_{n}\right\}$, where V_{0}, V_{1}, and V_{2} are arbitrary complex numbers, and r, s, and t are arbitrary integers, with $t \neq 0$ and for $n \geq 3$ as

$$
V_{n}=r V_{n-1}+s V_{n-2}+t V_{n-3} .
$$

The sequence can be extended in the usual way to negative subscripts. Using the notation

$$
V_{n}=V_{n}\left(V_{0}, V_{1}, V_{2} ; r, s, t\right)
$$

to emphasize the initial conditions and coefficients, he also defined the sequence $\left\{J_{n}\right\}$, where

$$
J_{n}=V_{n}\left(3, r, r^{2}+2 s ; r, s, t\right) .
$$

Howard then proved the identity

$$
V_{n+2 m}=J_{m} V_{n+m}-t^{m} J_{-m} V_{n}+t^{m} V_{n-m},
$$

where n and m are arbitrary integers.
In this paper we define another generalization of the Fibonacci sequence we call the r-generalized Fibonacci sequence, where $r \geq 2$ is an integer. This definition and an identity for the r-generalized Fibonacci sequence were given in [2]. We will then state and prove two identities involving the r-generalized Fibonacci sequence.

Definition 1.1. Let $r \geq 2$ be an integer. The r-generalized Fibonacci sequence $\left\{G_{n}\right\}$ is defined as

$$
G_{n}= \begin{cases}0, & \text { for } 0 \leq n<r-1 \\ 1, & \text { for } n=r-1 \\ \sum_{i=1}^{r} G_{n-i}, & \text { for } n \geq r .\end{cases}
$$

Note that the Fibonacci sequence, $\left\{F_{n}\right\}$, is just the 2-generalized Fibonacci sequence. The first few terms of the r-generalized Fibonacci sequence for $2 \leq r \leq 8$ are given in the following table.
r-generalized Fibonacci Sequences

$r \backslash n$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987
3	0	0	1	1	2	4	7	13	24	44	81	149	274	504	927	1705	3136
4	0	0	0	1	1	2	4	8	15	29	56	108	208	401	773	1490	2872
5	0	0	0	0	1	1	2	4	8	16	31	61	120	236	464	912	1793
6	0	0	0	0	0	1	1	2	4	8	16	32	63	125	248	492	976
7	0	0	0	0	0	0	1	1	2	4	8	16	32	64	127	253	504
8	0	0	0	0	0	0	0	1	1	2	4	8	16	32	64	128	255

The r-generalized Fibonacci sequences for $r=2,3,4,5,6,7,8$ can be found in Sloane [6] as sequences A000045, A000073, A000078, A001591, A001592, A122189, and A079262, respectively.

We note that for each r-generalized Fibonacci sequence $\left\{G_{n}\right\}$,

$$
G_{n}=2^{n-r} \text { for } r \leq n \leq 2 r-1
$$

2. First Identity

The following theorem gives our first identity involving the r-generalized Fibonacci sequence.

Theorem 2.1. Let $r \geq 2$ be an integer, $\left\{G_{n}\right\}$ be the r-generalized Fibonacci sequence, and $n \geq 2 r-1$ be an integer. Then

$$
G_{n}=2^{r-1} G_{n-r}+\sum_{k=1}^{r-1}\left(\sum_{i=k}^{r-1} 2^{i-1}\right) G_{n-r-k}
$$

For the Fibonacci sequence, this identity is

$$
F_{n}=2 F_{n-2}+F_{n-3}
$$

Listing this identity for $r=2,3,4,5$, and 6 we have the resulting formulas.

$$
\begin{aligned}
r=2: & G_{n}=2 G_{n-2}+G_{n-3} \\
r=3: & G_{n}=4 G_{n-3}+3 G_{n-4}+2 G_{n-5} \\
r=4: & G_{n}=8 G_{n-4}+7 G_{n-5}+6 G_{n-6}+4 G_{n-7} \\
r=5: & G_{n}=16 G_{n-5}+15 G_{n-6}+14 G_{n-7}+12 G_{n-8}+8 G_{n-9} \\
r=6: & G_{n}=32 G_{n-6}+31 G_{n-7}+30 G_{n-8}+28 G_{n-9}+24 G_{n-10}+16 G_{n-11} .
\end{aligned}
$$

We will give two proofs of Theorem 2.1. The first proof uses basic algebra.

Proof. We start with G_{n} and replace it with $G_{n-1}+G_{n-2}+\cdots+G_{n-r}$. In this expression we replace G_{n-1} with $G_{n-2}+G_{n-3}+\cdots+G_{n-r-1}$ and collect like terms. In this expression we replace G_{n-2} with $G_{n-3}+G_{n-4}+\cdots+G_{n-r-2}$ and collect like terms. We continue this process a total of r times. The last term we replace is G_{n-r+1} and it is replaced by $G_{n-r}+G_{n-r-1}+\cdots+G_{n-2 r+1}$. We display this process with the following set of equations.

$$
\begin{aligned}
G_{n}= & G_{n-1}+G_{n-2}+\cdots+G_{n-r} \\
= & (1+1) G_{n-2}+(1+1) G_{n-3}+\cdots+(1+1) G_{n-r}+G_{n-r-1} \\
= & (1+1+2) G_{n-3}+(1+1+2) G_{n-4}+\cdots+(1+1+2) G_{n-r} \\
& \quad+(1+2) G_{n-r-1}+2 G_{n-r-2} \\
= & (1+1+2+4) G_{n-4}+\cdots+(1+1+2+4) G_{n-r}+(1+2+4) G_{n-r-1} \\
& \quad+(2+4) G_{n-r-2}+4 G_{n-r-3} \\
= & \cdots \\
= & \left(1+1+2+4+\cdots+2^{r-2}\right) G_{n-r}+\left(1+2+4+\cdots+2^{r-2}\right) G_{n-r-1} \\
& \quad+\left(2+4+\cdots+2^{r-2}\right) G_{n-r-2}+\cdots+2^{r-2} G_{n-2 r-1} .
\end{aligned}
$$

But this is what we wanted to prove.

The second proof is a combinatorial proof.

Proof. Let $\left\{u_{n}\right\}$ be the sequence defined by $u_{n}=G_{n+r-1}$ for $n \geq 0$. Then, according to [1, pp. 36,4], u_{n} counts the number of tilings of an n-board with tiles of length at most r. For convenience, we call a tiling of an n-board with tiles of length at most r an n-tiling. We first note that for $1 \leq i \leq r, u_{i}=2^{i-1}$. That is, the number of i-tilings for $1 \leq i \leq r$ is 2^{i-1}. To prove Theorem 2.1 combinatorially, we will prove the following statement. Let $n \geq r$. Then

$$
u_{n}=2^{r-1} u_{n-r}+\sum_{k=1}^{r-1}\left(\sum_{i=k}^{r-1} 2^{i-1}\right) u_{n-r-k}
$$

We prove this statement by answering the following question in two ways.

Question. How many n-tilings are there?

Answer 1. By definition, there are $u_{n} n$-tilings.

Answer 2. Because the tiles are of length $1,2, \ldots, r$, every n-tiling has at least one break between cells $n-2 r+1, \ldots, n-r$. Put each n-tiling in one of r disjoint classes according to the largest $n-2 r+1 \leq i \leq n-r$ where the n-tiling has a break at cell i. We can count the number of n-tilings whose largest break is at cell $n-r$ by multiplying the number of r-tilings times the number of $(n-r)$-tilings. The number of r-tilings is 2^{r-1} and the number of $(n-r)$-tilings is u_{n-r}. So the number of n tilings whose largest break is at cell $n-r$ is $2^{r-1} \cdot u_{n-r}$. Next, to count the number of n-tilings where the largest cell where there is a break is at cell $n-r-1$, we note that for any of these n-tilings, the next tile after the break at cell $n-r-1$ is of length $2,3, \ldots, r$. And after this tile of length $2,3, \ldots, r$, the number of cells left to tile is $r-1, r-2, \ldots, 1$ and the number of k-tilings for $r-1 \geq k \geq 1$ is $2^{r-2}, 2^{r-3}, \ldots, 1$, respectively. And the number of $(n-r-1)$-tilings is u_{n-r-1}. So the number of n-tilings whose largest break is at cell $n-r-1$ is $\left(2^{r-2}+2^{r-3}+\cdots+1\right) \cdot u_{n-r-1}$, In general, we need to count the number of n-tilings where the largest cell where there is a break is at cell $n-r-i$, where $0 \leq i \leq r-1$. The next tile in these n-tiling is of length $i+1, i+2, \ldots, r$. And after this tile of length $i+1, i+2, \ldots, r$, the number of cells left to tile is $r-1, \ldots, i$ and the number of k-tilings for $r-1 \geq k \geq i$ is 2^{r-2}, $\ldots, 2^{i-1}$ respectively. And the number of $(n-r-i)$-tilings is u_{n-r-i}. So the number of n-tilings whose largest break is at cell $n-r-i$ is $\left(2^{r-2}+\cdots+2^{i-1}\right) \cdot u_{n-r-i}$. Adding each of these terms completes the count.

3. SECOND IdEntity

Theorem 3.1. Let $r \geq 2$ be an integer, $\left\{G_{n}\right\}$ be the r-generalized Fibonacci sequence, and $n \geq 0$ be an integer. Then

$$
\sum_{k=0}^{n} G_{k}^{2}+\sum_{i=2}^{r-1} \sum_{k=0}^{n-i} G_{k} G_{k+i}=G_{n} G_{n+1}
$$

The special case of this identity for the Fibonacci sequence was discovered by Lucas in 1876. He discovered that for $n \geq 0$,

$$
\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1} .
$$

Its proof can be found in [4, pp. 77-78].
We will prove the second identity by induction on n.

Proof. The proof is by induction on n.
The base case of $n=0$ is immediate since both sides of the identity are 0 . Now assume the theorem is true for some $n \geq 0$. Then

$$
\begin{aligned}
& \sum_{k=0}^{n+1} G_{k}^{2}+\sum_{i=2}^{r-1} \sum_{k=0}^{n+1-i} G_{k} G_{k+i} \\
= & \sum_{k=0}^{n} G_{k}^{2}+\sum_{i=2}^{r-1} \sum_{k=0}^{n-i} G_{k} G_{k+i} \\
+ & G_{n+1}^{2}+\sum_{i=2}^{r-1} G_{n+1-i} G_{n+1} \\
= & G_{n} G_{n+1}+G_{n+1}^{2}+G_{n+1} \sum_{i=2}^{r-1} G_{n+1-i} \\
= & G_{n+1} \sum_{i=0}^{r-1} G_{n+1-i} \\
= & G_{n+1} G_{n+2} .
\end{aligned}
$$

This is the statement of the theorem for $n+1$. Therefore, by induction, the theorem is true.

References

[1] A. T. Benjamin and J. J. Quinn, Proofs That Really Count - The Art of Combinatorial Proof, Mathematical Association of America, Washington, DC, 2003, 8-9.
[2] C. Cooper, An Identity for Generalized Fibonacci Numbers, Journal of Institute of Mathematics \& Computer Sciences, 20 (2007), 1-8.
[3] F. T. Howard, A Tribonacci Identity, The Fibonacci Quarterly, 39.4 (2001), 352-357.
[4] T. Koshy, Fibonacci and Lucas Numbers with Application, John Wiley \& Sons, Inc., New York, 2001.
[5] R. S. Melham and A. G. Shannon, A Generalization of the Catalan Identity and Some Consequences, The Fibonacci Quarterly, 33.1 (1995), 82-84.
[6] N. J. A. Sloane (Ed.), The On-Line Encyclopedia of Integer Sequences (2008), published electronically at http://www.research.att.com/~njas/sequences/.

AMS Classification Numbers: 11B39, 11B37

