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Abstract. Let r ≥ 2 be an integer. The r-generalized Fibonacci sequence {Gn} is
defined as

Gn =







0, for 0 ≤ n < r − 1
1, for n = r − 1
∑

r

i=1
Gn−i, for n ≥ r.

We will present two identities involving r-generalized Fibonacci numbers.

1. Introduction

Several generalizations of Fibonacci numbers and identities have been studied by

mathematicians over the years.

For example, Melham and Shannon [5] let a, b, p, and q be real numbers. They

then defined a generalized Fibonacci sequence {Wn}, where W0 = a, W1 = b, and

for n ≥ 2, Wn = pWn−1 − qWn−2. Finally, they showed that for n ≥ 0,

Wn+1Wn+2Wn+6 − W 3
n+3 = eqn+1(p3Wn+2 − q2Wn+1),

where e = pab − qa2 − b2.

In another example, Howard [3] defined a generalized Tribonacci sequence {Vn},

where V0, V1, and V2 are arbitrary complex numbers, and r, s, and t are arbitrary

integers, with t 6= 0 and for n ≥ 3 as

Vn = rVn−1 + sVn−2 + tVn−3.

The sequence can be extended in the usual way to negative subscripts. Using the

notation

Vn = Vn(V0, V1, V2; r, s, t)
1
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to emphasize the initial conditions and coefficients, he also defined the sequence

{Jn}, where

Jn = Vn(3, r, r2 + 2s; r, s, t).

Howard then proved the identity

Vn+2m = JmVn+m − tmJ
−mVn + tmVn−m,

where n and m are arbitrary integers.

In this paper we define another generalization of the Fibonacci sequence we call

the r-generalized Fibonacci sequence, where r ≥ 2 is an integer. This definition and

an identity for the r-generalized Fibonacci sequence were given in [2]. We will then

state and prove two identities involving the r-generalized Fibonacci sequence.

Definition 1.1. Let r ≥ 2 be an integer. The r-generalized Fibonacci sequence

{Gn} is defined as

Gn =



















0, for 0 ≤ n < r − 1

1, for n = r − 1
∑

r

i=1
Gn−i, for n ≥ r.

Note that the Fibonacci sequence, {Fn}, is just the 2-generalized Fibonacci sequence.

The first few terms of the r-generalized Fibonacci sequence for 2 ≤ r ≤ 8 are given

in the following table.
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r-generalized Fibonacci Sequences

r\n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

3 0 0 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136

4 0 0 0 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872

5 0 0 0 0 1 1 2 4 8 16 31 61 120 236 464 912 1793

6 0 0 0 0 0 1 1 2 4 8 16 32 63 125 248 492 976

7 0 0 0 0 0 0 1 1 2 4 8 16 32 64 127 253 504

8 0 0 0 0 0 0 0 1 1 2 4 8 16 32 64 128 255

The r-generalized Fibonacci sequences for r = 2, 3, 4, 5, 6, 7, 8 can be found in Sloane

[6] as sequences A000045, A000073, A000078, A001591, A001592, A122189, and

A079262, respectively.

We note that for each r-generalized Fibonacci sequence {Gn},

Gn = 2n−r for r ≤ n ≤ 2r − 1.

2. First Identity

The following theorem gives our first identity involving the r-generalized Fi-

bonacci sequence.

Theorem 2.1. Let r ≥ 2 be an integer, {Gn} be the r-generalized Fibonacci se-

quence, and n ≥ 2r − 1 be an integer. Then

Gn = 2r−1Gn−r +

r−1
∑

k=1

(

r−1
∑

i=k

2i−1

)

Gn−r−k.

For the Fibonacci sequence, this identity is

Fn = 2Fn−2 + Fn−3.

Listing this identity for r = 2, 3, 4, 5, and 6 we have the resulting formulas.
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r = 2 : Gn = 2Gn−2 + Gn−3

r = 3 : Gn = 4Gn−3 + 3Gn−4 + 2Gn−5

r = 4 : Gn = 8Gn−4 + 7Gn−5 + 6Gn−6 + 4Gn−7

r = 5 : Gn = 16Gn−5 + 15Gn−6 + 14Gn−7 + 12Gn−8 + 8Gn−9

r = 6 : Gn = 32Gn−6 + 31Gn−7 + 30Gn−8 + 28Gn−9 + 24Gn−10 + 16Gn−11.

We will give two proofs of Theorem 2.1. The first proof uses basic algebra.

Proof. We start with Gn and replace it with Gn−1 + Gn−2 + · · · + Gn−r. In this

expression we replace Gn−1 with Gn−2 +Gn−3 + · · ·+Gn−r−1 and collect like terms.

In this expression we replace Gn−2 with Gn−3 + Gn−4 + · · · + Gn−r−2 and collect

like terms. We continue this process a total of r times. The last term we replace

is Gn−r+1 and it is replaced by Gn−r + Gn−r−1 + · · · + Gn−2r+1. We display this

process with the following set of equations.
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Gn = Gn−1 + Gn−2 + · · · + Gn−r

= (1 + 1)Gn−2 + (1 + 1)Gn−3 + · · · + (1 + 1)Gn−r + Gn−r−1

= (1 + 1 + 2)Gn−3 + (1 + 1 + 2)Gn−4 + · · · + (1 + 1 + 2)Gn−r

+(1 + 2)Gn−r−1 + 2Gn−r−2

= (1 + 1 + 2 + 4)Gn−4 + · · · + (1 + 1 + 2 + 4)Gn−r + (1 + 2 + 4)Gn−r−1

+(2 + 4)Gn−r−2 + 4Gn−r−3

= · · ·

= (1 + 1 + 2 + 4 + · · · + 2r−2)Gn−r + (1 + 2 + 4 + · · · + 2r−2)Gn−r−1

+(2 + 4 + · · · + 2r−2)Gn−r−2 + · · · + 2r−2Gn−2r−1.

But this is what we wanted to prove. �

The second proof is a combinatorial proof.

Proof. Let {un} be the sequence defined by un = Gn+r−1 for n ≥ 0. Then, according

to [1, pp. 36,4], un counts the number of tilings of an n-board with tiles of length at

most r. For convenience, we call a tiling of an n-board with tiles of length at most

r an n-tiling. We first note that for 1 ≤ i ≤ r, ui = 2i−1. That is, the number of

i-tilings for 1 ≤ i ≤ r is 2i−1. To prove Theorem 2.1 combinatorially, we will prove

the following statement. Let n ≥ r. Then

un = 2r−1un−r +

r−1
∑

k=1

(

r−1
∑

i=k

2i−1

)

un−r−k.

We prove this statement by answering the following question in two ways.

Question. How many n-tilings are there?
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Answer 1. By definition, there are un n-tilings.

Answer 2. Because the tiles are of length 1, 2, . . . , r, every n-tiling has at least one

break between cells n−2r+1, . . . , n−r. Put each n-tiling in one of r disjoint classes

according to the largest n − 2r + 1 ≤ i ≤ n − r where the n-tiling has a break at

cell i. We can count the number of n-tilings whose largest break is at cell n − r by

multiplying the number of r-tilings times the number of (n−r)-tilings. The number

of r-tilings is 2r−1 and the number of (n − r)-tilings is un−r. So the number of n-

tilings whose largest break is at cell n−r is 2r−1 ·un−r. Next, to count the number of

n-tilings where the largest cell where there is a break is at cell n−r−1, we note that

for any of these n-tilings, the next tile after the break at cell n − r − 1 is of length

2, 3, . . . , r. And after this tile of length 2, 3, . . . , r, the number of cells left to tile is

r − 1, r − 2, . . ., 1 and the number of k-tilings for r − 1 ≥ k ≥ 1 is 2r−2, 2r−3, . . . , 1,

respectively. And the number of (n − r − 1)-tilings is un−r−1. So the number of

n-tilings whose largest break is at cell n− r− 1 is (2r−2 +2r−3 + · · ·+1) ·un−r−1, In

general, we need to count the number of n-tilings where the largest cell where there

is a break is at cell n−r− i, where 0 ≤ i ≤ r−1. The next tile in these n-tiling is of

length i + 1, i + 2, . . . , r. And after this tile of length i + 1, i + 2, . . . , r, the number

of cells left to tile is r−1, . . ., i and the number of k-tilings for r−1 ≥ k ≥ i is 2r−2,

. . ., 2i−1 respectively. And the number of (n−r−i)-tilings is un−r−i. So the number

of n-tilings whose largest break is at cell n − r − i is (2r−2 + · · · + 2i−1) · un−r−i.

Adding each of these terms completes the count. �

3. Second Identity

Theorem 3.1. Let r ≥ 2 be an integer, {Gn} be the r-generalized Fibonacci se-

quence, and n ≥ 0 be an integer. Then

n
∑

k=0

G2
k +

r−1
∑

i=2

n−i
∑

k=0

GkGk+i = GnGn+1.
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The special case of this identity for the Fibonacci sequence was discovered by

Lucas in 1876. He discovered that for n ≥ 0,

n
∑

i=1

F 2
i = FnFn+1.

Its proof can be found in [4, pp. 77–78].

We will prove the second identity by induction on n.

Proof. The proof is by induction on n.

The base case of n = 0 is immediate since both sides of the identity are 0. Now

assume the theorem is true for some n ≥ 0. Then

n+1
∑

k=0

G2
k +

r−1
∑

i=2

n+1−i
∑

k=0

GkGk+i

=

n
∑

k=0

G2
k +

r−1
∑

i=2

n−i
∑

k=0

GkGk+i

+ G2
n+1 +

r−1
∑

i=2

Gn+1−iGn+1

= GnGn+1 + G2
n+1 + Gn+1

r−1
∑

i=2

Gn+1−i

= Gn+1

r−1
∑

i=0

Gn+1−i

= Gn+1Gn+2.

This is the statement of the theorem for n + 1. Therefore, by induction, the

theorem is true.

�
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