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1. Introduction. Let ug =0, u; = 1, and
Up = QUp—1 + DUp_2

for any positive integer n > 2. Also, for any nonnegative integer m, define

i), T ifi=1.m.

In [1], Jarden showed that for any positive integer k,

I§(_1)i(i+1)/2b(i—1)i/2 (k ‘: 1) N

i=0 u
In this paper we will prove Jarden’s result by generalizing a proof by Carlitz [2].
In addition, we will present a new like-power recurrence relation identity. Detailed
proofs of the lemmas and the theorem will be supplied at the end of the paper.

2. Sequential Results. Let

Lemma 2.1. Let n be a non-negative integer. Then

a™ — (3"
u= L8
a—f
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Lemma 2.2. Let n > —1 be an integer. Then

r _ _
Up4+1 = Z (n - ,r) (I,QT npn=r.

T

Lemma 2.3. Let n > 2 be an integer. Then

(a) Uup + bup_o = a1 4+ gr 1L

(b) bupty,_o —bu?_; =" 1L

Lemma 2.4. Let k be a positive integer and 0 < r < n be integers. Then
(up + bug—1)" (upr1x + bug)" ™"

_ Z n—r n—r . n—Tg-1 akn—r—2r1—~~—2rk,1—rkbrl—l—---—i—rkmn—rk.
! T2 Tk

T1,.-,Tk

3. Matrix Results. Let

Api1 = {( " )aﬂrc_"b”_c}, 0<rc<n,

n—=c

be a matrix of order n 4+ 1. For example, for n = 3,

0 0 0 1
0 0 b a
0 b2 2ab  a?
b 3ab®> 3a?b o

Ay =

Lemma 3.1.

k Ukn+k
tr(An—‘,—l) = /:k

for any positive integer k.
It is worth noting that the case k = 1 is exactly Lemma 2.2 so that Lemma 3.1
is in some sense a generalization of Lemma 2.2.

Lemma 3.2. The eigenvalues of A,,+1 are

a”, a"_lﬂ, ey ozﬁ”_l, 6"
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Lemma 3.3.
n n+1 1
[ - a57) = 3o (st (M) gneics
Jj=0 i=0 A u
The next lemma is similar to a result in Hoggatt and Bicknell [3].

Lemma 3.4.

n k % —1
(A1), = (i)un—l—l(bun)k .

4. Jarden’s Result.
Theorem 4.1.
}§<_1)i(i+1)/2b(i—1)i/2 <k ﬂ; 1) & —o.
i=0 u
5. More Results and Open Questions. More identities, like the one just
derived, need to be studied. For example it can be shown, using the computer

algebra system DERIVE, that if xg, 1, and x5 are arbitrary and
Ty = aTp_1 + bTp_2 + CTp_3,

then

22 = (a® +b)x2_| + (a®b+ b* +ac)r_, + (aPc + dabe — b* + 2¢%)x2_,
(—ab’c+a*c® —bc*)x?_, + (VP —ac®)a?_ —cta? g

n

Is there a similar formula for third powers? Also, what about formulas for
Ty = QLp—1 + bxp_o + cxp_3 + drp_a?

6. Proofs.



Proof of Lemma 2.1. Let

G(2) = ug +urz +ugz® +---.
Then
azG(2) = aupz + auy 2° + - -
and
b22G(2) = bugz® + - - -.
Substracting the last two equations from the first and using the definition of wu.,,,

(1—az—b22)G(2) =2

SO
1 1 1
G(z) = & = — :
l—az—0bz2 a—-p\1l—az 1-02
Thus,
a™ — ﬁn
Upy = ——————.
a—p3
Proof of Lemma 2.2. By induction on n. First of all, the result is true for
n = —1 and n = 0. Now assume that n > 0 and that the result is true for n and
n — 1. Then

Upt1 = AUy + bup—1

— r 2r—n—|—1bn—1—r b r 2r—n—|—2bn—2—r
azr:(n—l—r)a N XT:(?’L—Q—T ¢

Sl e

1
— Z ( T+ )a2r—n+2bn—1—r
— \n — 1—r
— Z < r )a2r—nbn—r‘
- n—r



Proof of Lemma 2.3.

(a) By the definition of u,, and Lemma 2.1,
Un + bDlip—2 = Up + Up — GUp—1

a — ﬂn an—l _ ﬂn—l

—22 = (a2

2" =2B" —a" + af"~ ! — pan—t 4+ g

= o

_a" ="+ af" = pant

- o

_ofa"H 4" = Bla" T 4 8T

a—f

@A@Y g

a—f

(b) By the definition of u,, and Lemma 2.1,

2 2
buptn—o —bus 1 = Up(Up — ap_1) — bui _4

= U2 — QUptp_q —bu?_,

2 2
= Uy, — Up—1(AUp + DUy 1) = Uy, — Up—1Un 11

_ (an . ﬁn)2 an—l o ﬁn—l an—i—l o 671—1—1

a-p a—f a—pf
— ﬁ(oﬂn o 2anﬂn + 6271 i a2n . 6271 +an+16n—1 + an—16n+1)
n—1on—1
= %(OP — QOzﬁ + ﬂ2) — Oén_l/Bn_l_

Proof of Lemma 2.4. By induction on k. The result is true for £ = 1, since

2" (ax +b)"" = Z <n ; T) a" TS S,

S

Now assume the result is true for some positive integer k. In this result, substitute

a + bz~ for z and multiply by z”. The left side of this equation is

(augx + bug_12 + bug)" (augr12 + bugz + bug1)" "
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which is equal to

(Up12 + bug)" (Ukr22 + bugyr)" ™"
Expanding the right side of this equation and simplifying, we obtain
Z <n—7°) <n—r1) (n—rk)
T1see03Th41 1 - Tkt
. a(k—i—l)n—r—ZTl—---—27"k—rk+1 prit Tt rebl pn TR

Therefore, the result is proved.

Proof of Lemma 3.1. We first recall Lemma 2.4, that is, for any positive integer

k,

(urx + bug—1)" (up417 + bug)" ™"
= Z (n N T) (n N Tl) SN (n - Tk_l)akn—r—2rl—'“—27"k—1—7“kbT1+"'+7"kxn—7"k‘
1 T2 Tk
T1,..,Tk
Multiplying both sides of this equation by " and summing over r, we have

Zxr(ukx + buk_l)r(ukﬂx + buk)n_r
r=0

(n—r) (n—rl) (n—rk_l)
Z r r
T, Tk Tl 2 k

i akn—r—2r1—---—2rk_1—rk bT'l+"'7'k

l,n—i—r—rk )

The coefficient of ™ on the right side of this equation is

tr(AX, ).

The coefficient of ™ on the left side of this equation is

r n-—r —s n—r—
> ()" ks
r+s+t=n
T n—r r—s s
= Z (s)( . )(buk_l)r_SuZuZH (bug)®.
r+s<n



Let v,, be this last term. Thus,

> > T > n r
2 :Unxn — § : (S> bruvl; sluisxr—i—s § ( ) ) (uk+1x>n—r—s
n=0

r,s=0 n=r+s
_ - r br r—s _2s_.r—+s . —s—1
=D w_jup e (1 — upgax)

r,s=0 o
= stu2s 251 — wppq ) ! Z ( ) (bug—12)" "

s=0 r>s
= Z b uP* (1 — upsr2) 7 (1 = bug—y2) 7!
- 1 1

1 —upp12)(1 — bug_1x buf x>

( kHl )( k=1 ) 1 - (1—uk+1m)?1—buk,1x)
_ 1

(1 — up12)(1 — bug_1z) — buia?

1
1 — (upyr +bup_ 1)z + (bupgup_1 — bu3 )x?

Next, by Lemma 2.3, the last expression is equal to

1 1 aF gk
1— (af + R+ akpha? ok —pk\1—-akx 1—pkz)’

Thus,

Ukn+k
Uk '

n:

Therefore,

k _ Ukn+k

Proof of Lemma 3.2. Let

fn+1(.’13) = det(ac[ — An+1).
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If the eigenvalues of A, 11 are A\g, A1,..., Ay, then by Lemmas 3.1 and 2.1,

n

() 1 —k—1 k
fnil(x)zzx_)‘j Z Z)\

=0 k=0

o0 o0 nk+k nk+k
_ —k—1 k k-1 —
S et ) = Y -

k=0 k=0

O n n 1
D M

x—adfna
k=0 =0 §=0

Thus,

fun(e) = [[ - a76")

Jj=0

so the eigenvalues of A,, 41 are

a”, a"_lﬂ, ey ozﬁ”_l, 6"

Proof of Lemma 3.3. To begin the proof of Lemma 3.3, we need the identity

j=0 i=0

where

(1)

1] = U

Replacing ¢ in (1) by 8/« and using Lemma 2.1, we find that [ﬂ is

Thus, (1) becomes

n—1 n
l—adf3is) = )i i+1)/2—ni g(i-1)i/2 n i
[0 - a7oa) = (- pjaceeniamgectia (1)

§=0 i=0



Substituting o™ 'z for  and using the fact that o3 = —b we have

]j:(l — an—j—lﬁjx) — Z(_l)i(aﬁ>(i—1)i/2 (n) :L'i

X X 1
7=0 =0

_ (_1)1(i+1)/2b(i—1)i/2 (n) 2
i
0 u

3 |

(2

Replacing = by z~! gives

n—1 n
H (z — an—j—lﬂj) _ Z(_l)i(i+1)/2b(i—1)i/2 <n) "

5 ; 1
J =0 =0

which is what we wanted to prove.

Proof of Lemma 3.4. Let k£ be a fixed non-negative integer. We will prove the

result by induction on n. The above equality is true for n = 0. Now assume the

result is true for some n > 0. Then since A’,;LLI = AR Agr,

(A Dk = (AR (A1),

kY. kg J ik k—i
bu,, J Jri—kpk—t
(j)um( ) (k_)

To continue the equalities, we use the identity

<.
I Mk‘
[e)

I

Il
=

J



to obtain

Xk: (’f ]i Z) (z +; _ /{;) (bni1) " (atingr )R (buy )

=0
k .
k bu +1 k zZ( 1 )(au +1>H—J k(bu )
n Z+] K n

<

M

- (5)¢
(’“) bty 1) ml_o <?;) (@t 1)™ (bt )i~
()
(

bun+1 “Hatpq1 + buy)’

k —i
) n—|—2 bun+1)k .

Thus, the result is true by induction on n.

Proof of Theorem 4.1. By Lemma 3.3, the characteristic polynomial of Ay

is
k+1

Z(_l)i(i+1)/2b(i—l)i/2 <k "‘ 1) LR
¢ u

i=0
But, by the Cayley-Hamilton Theorem, every matrix satisfies its characteristic poly-
nomial. Thus, forn —1 >k + 1,
k+1
E+1

2 z(z+1)/2b(z 1)i/2 AN 1—1 -0

) > (- ;) Ani=o,
where O denotes the (k+1) x (k+1) zero matrix. Now, taking the result of Lemma

3.4 (with ¢ = k and n = n — 1 — ¢) and substituting this result into (2), we obtain

Jarden’s result.
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