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Abstract. The k-generalized Fibonacci numbers are defined as

F
(k)
n =

����� ����
0, for n < k − 1

1, for n = k − 1�
k

i=1 F
(k)
n−i

, for n ≥ k.

The k-Zeckendorf representation of a positive integer is defined as

n = �
i≥k

εiF
(k)
i

,

where εi ∈ {0, 1} and for all i ≥ k we have εiεi+1 · · · εi+k−1 = 0. Given this
representation of a number n we say the k-Zeckendorf digital sum of n is zk(n) =�

i≥k
εi and if zk(n) �� n then n is called a k-Zeckendorf Niven number. We prove

that the natural density of the k-Zeckendorf Niven numbers is zero.

1. Introduction

Niven numbers are a well known topic in number theory. A Niven number is a
number which is divisible by the sum of its digits (its digital sum). For example 12
is a Niven number since the sum of its digits is 3, and 3 divides 12. But 25 is not
Niven because the sum of its digits is 7, which does not divide 25. Niven numbers
are named after Ivan Niven, the mathematician who motivated the study of these
numbers in 1977.

The Zeckendorf representation of a number is another well known topic in number
theory. We obtain the Zeckendorf representation of a positive number by represent-
ing it as the sum of non consecutive Fibonacci numbers. It is well known that this
representation is unique and can be obtained by using the greedy algorithm. For
example the Zeckendorf representation of 100 is 89+8+3. The Zeckendorf represen-
tation is attributed to the number theorist Edouard Zeckendorf who among other
things was an officer in the Belgian Army and a medical doctor.

2. Definitions

We begin by defining the k-generalized Fibonacci numbers which are a general-
ization of the normal Fibonacci numbers, which are obtained when k = 2.
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Definition 2.1. Let k ≥ 2 be an integer. The k-generalized Fibonacci numbers are

defined by

F (k)
n =



















0, for n < k − 1

1, for n = k − 1
∑k

i=1 F
(k)
n−i, for n ≥ k.

For example the 3-generalized Fibonacci numbers for n ≥ 0 would be

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, . . .

We will now define the k-Zeckendorf representation of a non-negative integer.
This is a generalization of the well known Zeckendorf representation of a number,
which we obtain when k = 2.

Definition 2.2. Let k ≥ 2 be an integer. The k-Zeckendorf representation of a

nonnegative integer n is the unique representation of n as

n =
∑

i≥k

εiF
(k)
i

where εi ∈ {0, 1} and for all i ≥ k we have εiεi+1 · · · εi+k−1 = 0.

It can easily be seen that every integer has at least one representation of this form
by applying the greedy algorithm. However, to show this representation is unique,
we can apply a Theorem proved by Fraenkel that deals with unique representation
in a numeration system defined by a sequence [2, Theorem 2].

The shorthand we will use to write a number in its k-Zeckendorf representation,
will be to treat εk as the least significant digit, εk+1 as the next most significant
digit, and so on. For example the 3-Zeckendorf representation of 12 is 1101 since

12 = F
(3)
3 + F

(3)
5 + F

(3)
6 .

This representation would be the natural way to represent a number with 1’s and
0’s using no more than k − 1 1’s in a row.

Definition 2.3. Let n be a nonnegative integer, k ≥ 2 be an integer, and n =
∑

i≥k εiF
(k)
i be the k-Zeckendorf representation of n. Then the k-Zeckendorf digital

sum is defined to be

zk(n) =
∑

i≥k

εi.

For example z3(12) = 3 since 12 = F
(3)
3 + F

(3)
5 + F

(3)
6 .

A Niven number is one that is divisible by the sum of its digits. We generalize
this definition to the k-Zeckendorf representation as follows.

Definition 2.4. Let n be a positive integer, and k ≥ 2 be an integer. Then n is

k-Zeckendorf Niven number if and only if zk(n)
∣

∣n.

Thus our example, 12 is 3-Zeckendorf Niven since z3(12)
∣

∣12.
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3. Natural Density

We begin by defining natural density.

Definition 3.1. If A is a set of positive integers and A(x) = #{a ∈ A : a ≤ x},
where # means the number of elements in the set, then the “natural density” of A
is defined as

lim
x→∞

A(x)

x
,

if the limit exists.

The natural density is the portion of the natural numbers included in some set.
It is one way of measuring the size of subsets of the natural numbers.

We will prove that the natural density of the k-Zeckendorf Niven numbers is zero.
To do this we will use a theorem proved by Cooper and Kennedy [1, Theorem 2].

Theorem 3.1. Let an be the nth term of an increasing sequence and for each n, let

µn = mean f([0, an)) and σ2
n = variance f([0, an)) for an integer-valued function f .

Then for S = {n : f(n)|n} and S(x) = #{n ∈ S : n ≤ x}, if

lim
n→∞

µn = ∞,

lim
n→∞

µn

σn
= ∞,

and if an/an−1 is bounded, then

lim
n→∞

S(x)

x
= 0.

This theorem was used in Winter’s thesis to prove that the natural density of the
base b Niven numbers is zero [5, Theorem 2.1]. Base b Niven numbers are those who
are divisible by the sum of their digits in the base b representation of the number.

Cooper and Kennedy also proved that the natural density of the 2-Zeckendorf
Niven numbers is zero [3]. That is the base case where a number is divisible by the
number of Fibonacci numbers in its Zeckendorf representation.

4. The ϕk function

To find the natural density of the k-Zeckendorf Niven numbers using Theorem
3.1, we need to determine the mean and variance of the k-Zeckendorf digital sums.
To find these we must first determine

∑

0≤n<x

zk(n) and
∑

0≤n<x

(zk(n))2.

In an effort to find these formulas we will make the following definition.

Definition 4.1. Let n and m be integers; we define

ϕk(n,m) = #{0 ≤ i < F (k)
n : zk(i) = m}.

The ϕk function counts the number of nonnegative integers less than F
(k)
n which

have a k-Zeckendorf digital sum of m. Note that the k-Zeckendorf representation of

F
(k)
n (n ≥ k) is a 1 followed by n − k 0’s.
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Lemma 4.1. For n ≥ k we have

ϕk(n,m) =
k−1
∑

i=0

ϕk(n − i − 1,m − i).

Proof. We will obtain a recursive formula for ϕk(n,m) by partitioning the numbers

from 0 to F
(k)
n −1 whose k-Zeckendorf digital sum is m into k disjoint sets. To parti-

tion the numbers whose k-Zeckendorf digital sum is m, we look at the k-Zeckendorf

digital expansion of the numbers from 0 to F
(k)
n − 1, i.e., the digits

εn−1εn−2 · · · εk.

In our partition, the first set consists of the numbers with k-Zeckendorf digital sum
m whose k-Zeckendorf representation has εn−1 = 0. The number of elements in this
set is ϕk(n − 1,m). The next set, disjoint from the first set, is the set consisting
of the numbers with k-Zeckendorf digital sum m whose k-Zeckendorf representation
has εn−1 = 1 and εn−2 = 0. The number of elements in this set is ϕk(n − 2,m − 1).
The third set will consist of the numbers with k-Zeckendorf digital sum m whose
k-Zeckendorf representation is εn−1 = 1, εn−2 = 1, and εn−3 = 0. This set is disjoint
from the first and second sets we have given. And the number of elements in this
set is ϕk(n − 3,m − 2). Continue this process until we get to the kth set consisting
of the numbers with k-Zeckendorf digital sum m whose k-Zeckendorf representation
is εn−1 = 1, εn−2 = 1, . . ., εn−k+1 = 1, and εn−k = 0. This set is disjoint from all the
other sets. And the number of elements in this set is ϕk(n−k,m−k+1). And all of

these sets unioned together give us all the numbers up to F
(k)
n with a k-Zeckendorf

digital sum of m. Therefore, the recurrence relation has just been proved. �

Remark 4.1. Note that ϕk(n,m) = 0 if m > n − k ≥ 0 or m < 0 or n < k − 1.

Remark 4.2. Note that ϕk(n, 0) = 1 if n ≥ k − 1.

Remark 4.3. Note that
∑

m∈ �
ϕk(n,m) = F (k)

n .

5. The M
(k)
t function

Definition 5.1. Let t be a nonnegative integer. Then

M
(k)
t (n) =

∑

m∈ �
mtϕk(n,m).

Remark 5.1. Note that

M
(k)
1 (n) =

∑

0≤i<F
(k)
n

zk(i)

and

M
(k)
2 (n) =

∑

0≤i<F
(k)
n

(zk(i))
2 .
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Unfortunately, our current definitions of M
(k)
1 and M

(k)
2 are not very easy to

compute. Therefore, we will apply what we know about ϕk by substituting our

recursive definition of ϕk into the definition of M
(k)
1 (n) and M

(k)
2 (n). Doing so we

arrive at the following recursive definition of M
(k)
1 (n).

Theorem 5.2. Let k ≥ 2 and n ≥ k be integers. Then

M
(k)
1 (n) =

k−1
∑

i=0

(

M
(k)
1 (n − i − 1) + iF

(k)
n−i−1

)

.

Proof. By the definition of M
(k)
1 ,

M
(k)
1 (n) =

∑

m∈ �
mϕk(n,m).

Substituting for the recursive definition of ϕk and distributing m, we obtain

M
(k)
1 (n) =

∑

m∈ �

(

k−1
∑

i=0

mϕk(n − i − 1,m − i)

)

.

Switching the order of the sums and rewriting m, we obtain

M
(k)
1 (n) =

k−1
∑

i=0

(

∑

m∈ �
(m − i + i)ϕk(n − i − 1,m − i)

)

.

Reindexing the inner sums, we get

M
(k)
1 (n) =

k−1
∑

i=0

(

∑

m∈ �
(m + i)ϕk(n − i − 1,m)

)

.

Upon distributing ϕk we obtain

M
(k)
1 (n) =

k−1
∑

i=0

(

∑

m∈ �
mϕk(n − i − 1,m) +

∑

m∈ �
iϕk(n − i − 1,m)

)

.

Substituting from the definition of M
(k)
1 and Remark 4.3, we get

M
(k)
1 (n) =

k−1
∑

i=0

(

M
(k)
1 (n − i − 1) + iF

(k)
n−i−1

)

.

�

We get a similar result for M
(k)
2 (n).

Theorem 5.3. Let k ≥ 2 and n ≥ k be integers. Then

M
(k)
2 (n) =

k−1
∑

i=0

(

M
(k)
2 (n − i − 1) + 2iM

(k)
1 (n − i − 1) + i2F

(k)
n−i−1

)

.
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Proof. By the definition of M
(k)
2 , we know that

M
(k)
2 (n) =

∑

m∈ �
m2ϕk(n,m).

Substituting the recursive definition of ϕk and distributing m2, we obtain

M
(k)
2 (n) =

∑

m∈ �

(

k−1
∑

i=0

m2ϕk(n − i − 1,m − i)

)

.

Switching the order of the sums we obtain

M
(k)
2 (n) =

k−1
∑

i=0

(

∑

m∈ �
m2ϕk(n − i − 1,m − i)

)

.

By reindexing the inner sums, we get

M
(k)
2 (n) =

k−1
∑

i=0

(

∑

m∈ �
(m + i)2ϕk(n − i − 1,m)

)

.

Then, we rewrite (m + i)2 as m2 + 2im + i2 to get

M
(k)
2 (n) =

k−1
∑

i=0

(

∑

m∈ �
(m2 + 2im + i2)ϕk(n − i − 1,m)

)

.

Thus, by distributing ϕk and splitting up the inner sums, we obtain

M
(k)
2 (n) =

k−1
∑

i=0

(

∑

m∈ �
m2ϕk(n − i − 1,m) +

∑

m∈ �
2imϕk(n − i − 1,m)

+
∑

m∈ �
i2ϕk(n − i − 1,m)

)

.

Substituting for the definition of M
(k)
1 , M

(k)
2 , and Remark 4.3, we get

M
(k)
2 (n) =

k−1
∑

i=0

(

M
(k)
2 (n − i − 1) + 2iM

(k)
1 (n − i − 1) + i2F

(k)
n−i−1

)

.

�

6. Closed form for F
(k)
n , M

(k)
1 , and M

(k)
2

We wish to find a closed form for F
(k)
n , M

(k)
1 (n), and M

(k)
2 (n), or at least an

approximation. This will make it easier to apply Cooper and Kennedy’s Theorem
3.1 to prove the natural density of the k-Zeckendorf Niven numbers is zero. But
before we can do that we need to prove the following lemmas that will help us with
simplifying the closed form.

Lemma 6.1. Let rk(z) = 1 −

k
∑

i=1

zi. Then rk(z) =

k−1
∏

i=0

(1 − αiz) where α0 is real

with 1 < α0 < 2 and all the remaining αi’s lie within the unit circle of the complex

plane. Furthermore, all of the αi’s are distinct.
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Proof. Let fk(z) = zk − zk−1 − · · · − z − 1. Miller [4] proved that fk has a real zero
α0 such that 1 < α0 < 2, the remaining k − 1 zeros of fk, {αi : i = 1, . . . , k − 1} lie
within the unit circle in the complex plane, and the zeros of fk are all simple (i.e.,

distinct.) Thus rk(z) = zkfk(
1
z
) = zk

∏k−1
i=0 (1

z
− αi) =

∏k−1
i=0 (1 − αiz). �

Remark 6.1. The derivative of rk(z) is

r′k(z) = −

k
∑

i=1

izi−1 =

k−1
∑

i=0









−αi

k−1
∏

j=0
j 6=i

(1 − αjz)









and

r′k

(

1

αi

)

= −
k
∑

m=1

m

(

1

αi

)m−1

= −αi

k−1
∏

j=0
j 6=i

(

1 − αj

(

1

αi

))

Lemma 6.2. Let rk(z) =
∏k−1

i=0 (1 − αiz) where αi, i = 0, 1, . . . , k − 1 are the roots

of fk given in the proof of Lemma 6.1. Then

(

1

αi
− 1

)p [

r′k

(

1

αi

)]p

=

[

2 − (k + 1)

(

1

αi

)k
]p

Proof. We begin by simply combining the factors to obtain
(

1

αi

− 1

)p [

r′k

(

1

αi

)]p

=

[(

1

αi

− 1

)

r′k

(

1

αi

)]p

.

Then we substitute the result of Remark 6.1 and multiply it out to obtain

(

1

αi
− 1

)p [

r′k

(

1

αi

)]p

=

[

−

k
∑

m=1

m

(

1

αi

)m

+

k
∑

m=1

m

(

1

αi

)m−1
]p

.

Combining terms, we obtain

(

1

αi

− 1

)p [

r′k

(

1

αi

)]p

=

[

1 +
k−1
∑

m=1

(

1

αi

)m

− k

(

1

αi

)k
]p

.

This can be rewritten as
(

1

αi
− 1

)p [

r′k

(

1

αi

)]p

=

[

2 −

(

1 −

k
∑

m=1

(

1

αi

)m
)

− (k + 1)

(

1

αi

)k
]p

.

However, r

(

1

αi

)

= 1 −
k
∑

m=1

(

1

αi

)m

is zero. Thus, we have

(

1

αi
− 1

)p [

r′k

(

1

αi

)]p

=

[

2 − (k + 1)

(

1

αi

)k
]p

.

�
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Lemma 6.3. Let αi, i = 0, 1, . . . , k − 1 be the roots of fk given in the proof of

Lemma 6.1. Then
(

1

α0
− 1

)p
[

k
∑

i=1

(i − 1)

(

1

α0

)i
]p

=

[

−2

(

1

α0

)2

+

(

1

α0

)k+2

+ k

(

1

α0

)k+1
]p

.

Proof. We begin by factoring out a common factor and reindexing the sum to obtain
[

k
∑

i=1

(i − 1)

(

1

α0

)i
]p

=

[

(

1

α0

)2 k−1
∑

m=1

m

(

1

α0

)m−1
]p

.

Using Remark 6.1 we rewrite this as
[

k
∑

i=1

(i − 1)

(

1

α0

)i
]p

=

[

(

1

α0

)2
(

−r′k

(

1

α0

)

− k

(

1

α0

)k−1
)]p

.

Distributing
(

1
α0

)2
and replacing r′k

(

1
α0

)

with the result from Lemma 6.2 we get

[

k
∑

i=1

(i − 1)

(

1

α0

)i
]p

=









−

(

1

α0

)2

[

2 − (k + 1)
(

1
αi

)k
]

(

1
αi

− 1
) − k

(

1

α0

)k+1









p

.

Multiplying each side of this equation by
(

1
α0

− 1
)p

we obtain

(

1

α0
− 1

)p
[

k
∑

i=1

(i − 1)

(

1

α0

)i
]p

=

[

−

(

1

α0

)2
[

2 − (k + 1)

(

1

αi

)k
]

− k

(

1

α0
− 1

)(

1

α0

)k+1
]p

.

Simplifying the right hand side we obtain
(

1

α0
− 1

)p
[

k
∑

i=1

(i − 1)

(

1

α0

)i
]p

=

[

−2

(

1

α0

)2

+

(

1

α0

)k+2

+ k

(

1

α0

)k+1
]p

.

�

Using generating function techniques and the previous lemmas we can derive the
following closed formula for the k-generalized Fibonacci numbers.

Lemma 6.4. Let n ≥ 0 and k ≥ 2 be integers. Then a closed form of the k-

generalized Fibonacci numbers is

F (k)
n =

k−1
∑

i=0

α2
i − αi

2αk
i − (k + 1)

αn
i ,

where the αi’s are given in Lemma 6.1.

Proof. Define

F (z) =
∑

n≥0

znF (k)
n .
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Then, substituting the recursive definition of F
(k)
n we get

F (z) = zk−1 +
∑

n≥k

(

zn
k
∑

i=1

F
(k)
n−i

)

.

Distributing the zn we obtain

F (z) = zk−1 +
∑

n≥k

(

k
∑

i=1

znF
(k)
n−i

)

.

Switching the order of the sums and factoring out z i we get

F (z) = zk−1 +
k
∑

i=1



zi
∑

n≥k

zn−iF
(k)
n−i



 .

Now we reindex the inner sum to get

F (z) = zk−1 +

k
∑

i=1



zi
∑

n≥k−i

znF (k)
n



 .

But since F
(k)
n = 0 for n < k − 1, we can add these terms to the sum to produce

F (z) = zk−1 +

k
∑

i=1



zi
∑

n≥0

znF (k)
n



 .

Thus, substituting for F (z) we have

F (z) = zk−1 +
k
∑

i=1

ziF (z).

Solving for F (z) we obtain

F (z) =
zk−1

1 −
∑k

i=1 zi
.

Therefore by Lemma 6.1, we have

F (z) =
zk−1

∏k−1
i=0 (1 − αiz)

.

Using the partial fraction decomposition

k−1
∑

i=0

Ai

1 − αiz

and geometric series, this is equal to

k−1
∑

i=0



Ai

∑

n≥0

(αiz)n



 .
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Therefore,

F (k)
n =

k−1
∑

i=0

Aiα
n
i .

Thus, we can solve for Ai. To do this, we begin with

zk−1

∏k−1
i=0 (1 − αiz)

=

k−1
∑

i=0

Ai

1 − αiz
.

We then multiply each side by
k−1
∏

i=0

(1 − αiz) to get

zk−1 =
k−1
∑

i=0









Ai

k−1
∏

j=0
j 6=i

(1 − αjz)









.

We can then substitute z = 1
αi

. Note that this makes all terms in the sum zero

except for the ith term, and so
(

1

αi

)k−1

= Ai

k−1
∏

j=0
j 6=i

(

1 − αj
1

αi

)

.

Therefore,

Ai =

(

1
αi

)k−1

∏k−1
j=0
j 6=i

(

1 − αj
1
αi

) .

But by Remark 6.1, this is

Ai =
−
(

1
αi

)k−2

r′k

(

1
αi

) .

Now we apply the result of Lemma 6.2 to get

Ai =
−
(

1
αi

)k−2 (
1
αi

− 1
)

2 − (k + 1)
(

1
αi

)k
.

Distributing the top and multiplying the top and bottom by αk
i we get

Ai =
α2

i − αi

2αk
i − (k + 1)

.

Therefore, if we substitute this result back into the earlier equation we obtain

F (k)
n =

k−1
∑

i=0

α2
i − αi

2αk
i − (k + 1)

αn
i .

�

In a similar manner we can find an approximate formula for M
(k)
1 (n).
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Theorem 6.2. Let k ≥ 2 and n ≥ k be integers. Let α0 be as defined in Lemma

6.1. Then

M
(k)
1 (n) =

(α0 − 1)
(

2αk
0 − 1 − kα0

)

[

2αk
0 − (k + 1)

]2 nαn
0 + O(αn

0 ).

Proof. We begin with the definition of M
(k)
1 ,

M
(k)
1 (n) =

k−1
∑

i=0

(

M
(k)
1 (n − i − 1) + iF

(k)
n−i−1

)

,

that we will reindex to get

M
(k)
1 (n) =

k
∑

i=1

(

M
(k)
1 (n − i) + (i − 1)F

(k)
n−i

)

.

Define the generating function G1(z) as

G1(z) =
∑

n≥0

M
(k)
1 (n)zn.

Substituting the previous recursive definition of M
(k)
1 (n) we obtain

G1(z) =
∑

n≥0

[

k
∑

i=1

(

M
(k)
1 (n − i) + (i − 1)F

(k)
n−i

)

]

zn.

Distributing the zn, splitting up the sums, reordering them, and factoring i− 1 out
of the left inner sum we obtain

G1(z) =
k
∑

i=1

∑

n≥0

M
(k)
1 (n − i)zn +

k
∑

i=1



(i − 1)
∑

n≥0

F
(k)
n−iz

n



 .

Factoring zi out of each inner sum and reindexing them we obtain

G1(z) =

k
∑

i=1



zi
∑

n≥−i

M
(k)
1 (n)zn



+

k
∑

i=1



(i − 1)zi
∑

n≥−i

F (k)
n zn



 .

But since M
(k)
1 (n) and F

(k)
n are zero for n < 0, we can delete these terms to get

G1(z) =

k
∑

i=1



zi
∑

n≥0

M
(k)
1 (n)zn



+

k
∑

i=1



(i − 1)zi
∑

n≥0

F (k)
n zn



 .

Now we can substitute G1(z) for
∑

n≥0

M
(k)
1 (n)zn and F (z) for

∑

n≥0

F (k)
n zn to get

G1(z) =

k
∑

i=1

ziG1(z) +

k
∑

i=1

(i − 1)ziF (z).

Solving for G1(z) we obtain

G1(z) =
F (z)

∑k
i=1(i − 1)zi

1 −
∑k

i=1 zi



12 ANDREW RAY AND CURTIS COOPER

To complete the generating function G1(z) we substitute F (z) = zk−1

1− � k

i=1 zi
to get

G1(z) =

zk−1

1− � k

i=1 zi

∑k
i=1(i − 1)zi

1 −
∑k

i=1 zi
.

This simplifies to

G1(z) =
zk−1

∑k
i=1(i − 1)zi

(

1 −
∑k

i=1 zi
)2 .

Using the factorization of 1 −

k
∑

i=1

zi given in Lemma 6.1, we can rewrite the right

hand side to get

G1(z) =
zk−1

∑k
i=1(i − 1)zi

∏k−1
i=0 (1 − αiz)2

.

Using partial fractions we have

k−1
∑

i=0

(

Ai

1 − αiz
+

Bi

(1 − αiz)2

)

,

and then by geometric series, this is equal to

k−1
∑

i=0



Ai

∑

n≥0

(αiz)n + Bi

∑

n≥0

(n + 1)(αiz)n



 .

Since we defined G1(z) =
∑

n≥0 M
(k)
1 (n)zn we have

M
(k)
1 (n) =

k−1
∑

i=0

(Aiα
n
i + Bi(n + 1)αn

i ) .

This becomes

M
(k)
1 (n) =

k−1
∑

i=0

((Ai + Bi(n + 1))αn
i ) .

Now the only term of significance as n → ∞ on the right hand of this equation is
the term with α0 since 1 < α0 < 2 and ‖αi‖ < 1 for all i 6= 0. Of that term only
the constant B0 matters as n → ∞ since it is multiplied by (n + 1) and A0 is just
a constant. Therefore, we can restate the equation using the big O notation and
Miller’s facts about the αi’s.

M
(k)
1 (n) = B0nαn

0 + O(αn
0 ).

Thus, we must solve for B0. To do that we will begin with

zk−1
∑k

i=1(i − 1)zi

∏k−1
i=0 (1 − αiz)2

=
k−1
∑

i=0

(

Ai

1 − αiz
+

Bi

(1 − αiz)2

)

.
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We then multiply each side by
∏k−1

i=0 (1 − αiz)2 to get

zk−1
k
∑

i=1

(i − 1)zi =
k−1
∑

i=0









(Ai(1 − αiz) + Bi)
k−1
∏

j=0
j 6=i

(1 − αjz)2









.

We can then substitute z = 1
α0

. Note that this makes all terms in the right sum

zero except for the first term (i = 0) and this yields

(

1

α0

)k−1 k
∑

i=1

(i − 1)

(

1

α0

)i

=

[

A0

(

1 − α0
1

α0

)

+ B0

] k−1
∏

j=0
j 6=0

(

1 − αj
1

α0

)2

.

This simplifies to

(

1

α0

)k−1 k
∑

i=1

(i − 1)

(

1

α0

)i

= B0

k−1
∏

j=1

(

1 − αj
1

α0

)2

.

Therefore,

B0 =

(

1
α0

)k−1
∑k

i=1(i − 1)
(

1
α0

)i

∏k−1
j=1

(

1 − αj
1
α0

)2 .

Multiply the numerator and denominator by
(

1
α0

− 1
)2

α2
0 to obtain

B0 =

(

1
α0

)k−3 (
1
α0

− 1
)2
∑k

i=1(i − 1)
(

1
α0

)i

(

1
α0

− 1
)2

α2
0

∏k−1
j=1

(

1 − αj
1
α0

)2 .

By applying Lemma 6.3 we obtain

B0 =

(

1
α0

)k−3 (
1
α0

− 1
)

[

−2
(

1
α0

)2
+
(

1
α0

)k+2
+ k

(

1
α0

)k+1
]

[

2 − (k + 1)
(

1
αi

)k
]2 .

Simplifying and multiplying the numerator and denominator by α2k
0 we get

B0 =
(α0 − 1)

(

2αk
0 − 1 − kα0

)

[

2αk
0 − (k + 1)

]2 .

Therefore, if we substitute this result back into the earlier equation we obtain

M
(k)
1 (n) =

(α0 − 1)
(

2αk
0 − 1 − kα0

)

[

2αk
0 − (k + 1)

]2 nαn
0 + O(αn

0 ).

�

We also find an approximate formula for M
(k)
2 (n).
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Theorem 6.3. Let k ≥ 2 and n ≥ k be integers. Let α0 be as defined in Lemma

6.1. Then

M
(k)
2 (n) =

(

1 − 1
α0

)

[

2αk
0 − 1 − kα0

]2

[

2αk
0 − (k + 1)

]3 n2αn
0 + O(nαn

0 ).

Proof. We begin with the definition of M
(k)
2 ,

M
(k)
2 (n) =

k−1
∑

i=0

(

M
(k)
2 (n − i − 1) + 2iM

(k)
1 (n − i − 1) + i2F

(k)
n−i−1

)

,

that we reindex to get

M
(k)
2 (n) =

k
∑

i=1

(

M
(k)
2 (n − i) + 2(i − 1)M

(k)
1 (n − i) + (i − 1)2F

(k)
n−i

)

.

Define the generating function G2(z) as

G2(z) =
∑

n≥0

M
(k)
2 (n)zn.

Then substituting the previous recursive definition of M
(k)
2 (n) we get

G2(z) =
∑

n≥0

[

k
∑

i=1

(

M
(k)
2 (n − i) + 2(i − 1)M

(k)
1 (n − i) + (i − 1)2F

(k)
n−i

)

]

zn.

Distributing the zn, splitting up the sums, reordering them, and factoring 2(i − 1)
out of the center inner sum, and (i − 1)2 out of the right inner sum we obtain

G2(z) =

k
∑

i=1

∑

n≥0

M
(k)
2 (n − i)zn +

k
∑

i=1



2(i − 1)
∑

n≥0

M
(k)
1 (n − i)zn





+

k
∑

i=1



(i − 1)2
∑

n≥0

F
(k)
n−iz

n



 .

Factoring zi out of each inner sum and reindexing them we get

G2(z) =

k
∑

i=1



zi
∑

n≥−i

M
(k)
2 (n)zn



+

k
∑

i=1



2(i − 1)zi
∑

n≥−i

M
(k)
1 (n)zn





+
k
∑

i=1



(i − 1)2zi
∑

n≥−i

F (k)
n zn



 .
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But since M
(k)
2 (n), M

(k)
1 (n), and F

(k)
n are zero for n < 0, we can delete these terms

to get

G2(z) =

k
∑

i=1



zi
∑

n≥0

M
(k)
2 (n)zn



+

k
∑

i=1



2(i − 1)zi
∑

n≥0

M
(k)
1 (n)zn





+
k
∑

i=1



(i − 1)2zi
∑

n≥0

F (k)
n zn



 .

Now we can substitute G2(z) for
∑

n≥0

M
(k)
2 (n)zn, G1(z) for

∑

n≥0

M
(k)
1 (n)zn, and F (z)

for
∑

n≥0

F (k)
n zn, to get

G2(z) =

k
∑

i=1

ziG2(z) +

k
∑

i=1

2(i − 1)ziG1(z) +

k
∑

i=1

(i − 1)2ziF (z).

Solving for G2(z) we obtain

G2(z) =
2G1(z)

∑k
i=1(i − 1)zi + F (z)

∑k
i=1(i − 1)2zi

1 −
∑k

i=1 zi
.

To complete the generating function G2(z) we substitute G1(z) =
zk−1 � k

i=1(i−1)zi

(1− � k

i=1 zi)
2

and F (z) = zk−1

1− � k

i=1 zi
to get

G2(z) =

2
zk−1 � k

i=1(i−1)zi

(1− � k

i=1 zi)
2

∑k
i=1(i − 1)zi + zk−1

1− � k

i=1 zi

∑k
i=1(i − 1)2zi

1 −
∑k

i=1 zi
.

This simplifies to

G2(z) =
2zk−1

(

∑k
i=1(i − 1)zi

)2
+ zk−1

(

∑k
i=1(i − 1)2zi

)(

1 −
∑k

i=1 zi
)

(

1 −
∑k

i=1 zi
)3 .

Using the factorization of 1 −
k
∑

i=1

zi given in Lemma 6.1, we rewrite the right hand

side to get

G2(z) =
2zk−1

(

∑k
i=1(i − 1)zi

)2
+ zk−1

(

∑k
i=1(i − 1)2zi

)(

1 −
∑k

i=1 zi
)

∏k−1
i=0 (1 − αiz)3

.

Using partial fractions we have

k−1
∑

i=0

(

Ai

1 − αiz
+

Bi

(1 − αiz)2
+

Ci

(1 − αiz)3

)

,
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and then by geometric series this is equal to

k−1
∑

i=0



Ai

∑

n≥0

(αiz)n + Bi

∑

n≥0

(n + 1)(αiz)n + Ci

∑

n≥0

(n + 1)(n + 2)

2
(αiz)n



 .

Since we defined G2(z) =
∑

n≥0 M
(k)
2 (n)zn we have

M
(k)
2 (n) =

k−1
∑

i=0

(

Aiα
n
i + Bi(n + 1)αn

i + Ci
(n + 1)(n + 2)

2
αn

i

)

.

This becomes

M
(k)
2 (n) =

k−1
∑

i=0

((

Ai + Bi(n + 1) + Ci
(n + 1)(n + 2)

2

)

αn
i

)

.

Now the only term of significance as n → ∞ on the right hand of this equation is
the term with α0 since 1 < α0 < 2 and ‖αi‖ < 1 for all i 6= 0. Of that term only the

constant C0 matters as n → ∞ since it is multiplied by (n+1)(n+2)
2 , B0 is multiplied

by (n + 1), and A0 is just a constant. Therefore, we can restate the equation using
the big O notation and Miller’s facts about the αi’s.

M
(k)
2 (n) = C0

n2

2
αn

0 + O(nαn
0 ).

Thus, we must solve for C0. To do that we begin with

2zk−1
(

∑k
i=1(i − 1)zi

)2
+ zk−1

(

∑k
i=1(i − 1)2zi

)(

1 −
∑k

i=1 zi
)

∏k−1
i=0 (1 − αiz)3

=

k−1
∑

i=0

(

Ai

1 − αiz
+

Bi

(1 − αiz)2
+

Ci

(1 − αiz)3

)

.

We then multiply each side by
∏k−1

i=0 (1 − αiz)3 to get

2zk−1

(

k
∑

i=1

(i − 1)zi

)2

+ zk−1

(

k
∑

i=1

(i − 1)2zi

)(

1 −

k
∑

i=1

zi

)

=
k−1
∑

i=0









(

Ai(1 − αiz)2 + Bi(1 − αiz) + Ci

)

k−1
∏

j=0
j 6=i

(1 − αjz)3









.

We can then substitute z = 1
α0

and note that this makes all terms in the right sum

zero except for the first term (i = 0); this also makes the second term on the left
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zero since 1
α0

is a root of 1 −
∑k

i=1 zi and this yields

2

(

1

α0

)k−1
(

k
∑

i=1

(i − 1)

(

1

α0

)i
)2

=

[

A0

(

1 − α0
1

α0

)2

+ B0

(

1 − α0
1

α0

)

+ C0

]

k−1
∏

j=0
j 6=0

(

1 − αj
1

α0

)3

.

This simplifies to

2

(

1

α0

)k−1
(

k
∑

i=1

(i − 1)

(

1

α0

)i
)2

= C0

k−1
∏

j=1

(

1 − αj
1

α0

)3

.

Therefore,

C0 =

2
(

1
α0

)k−1
(

∑k
i=1(i − 1)

(

1
α0

)i
)2

∏k−1
j=1

(

1 − αj
1
α0

)3 .

Multiply the numerator and denominator by
(

1
α0

− 1
)3

(−α3
0) to obtain

C0 =

−2
(

1
α0

)k−4 (
1
α0

− 1
)3
(

∑k
i=1(i − 1)

(

1
α0

)i
)2

(

1
α0

− 1
)3

(−α3
0)
∏k−1

j=1

(

1 − αj
1
α0

)3 .

By applying Lemma 6.3 we obtain

C0 =

−2
(

1
α0

)k−4 (
1
α0

− 1
)

[

−2
(

1
α0

)2
+
(

1
α0

)k+2
+ k

(

1
α0

)k+1
]2

[

2 − (k + 1)
(

1
α0

)k
]3 .

Simplifying and multiplying the numerator and denominator by α3k
0 we get

C0 =
2
(

1 − 1
α0

)

[

2αk
0 − 1 − kα0

]2

[

2αk
0 − (k + 1)

]3 .

Therefore, if we substitute this result back into the earlier equation we obtain

M
(k)
2 (n) =

(

1 − 1
α0

)

[

2αk
0 − 1 − kα0

]2

[

2αk
0 − (k + 1)

]3 n2αn
0 + O(nαn

0 ).

�
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7. The mean and variance of the k-Zeckendorf digital sums

Now we have the proper tools to compute the mean and variance of the k-

Zeckendorf digital sums up to F
(k)
n .

Note that if x ≥ 0 is an integer, µ = 1
x

∑

0≤k<x f(k) is the mean and σ2 =
1
x

∑

0≤k<x(f(k))2 −µ2 is the variance of the set {f(0), f(1), f(2), . . . , f(x− 1)}. For

convenience, we will let x = F
(k)
n for some n.

Lemma 7.1. Let µn be the mean of
{

zk(0), zk(1), zk(2), . . . , zk

(

F
(k)
n − 1

)}

. Then

µn =
M

(k)
1 (n)

F
(k)
n

.

Proof. From the above note we have that

µn =
1

F
(k)
n

∑

0≤i<F
(k)
n

zk(i).

But since ϕk is defined as the quantity of numbers less than F
(k)
n with k-Zeckendorf

digital sum of m, we can rewrite this as

µn =
1

F
(k)
n

n
∑

m=1

mϕk(n,m).

But this is

µn =
M

(k)
1 (n)

F
(k)
n

.

�

Lemma 7.2. Let σ2
n be the variance of

{

zk(0), zk(1), zk(2), · · · , zk

(

F
(k)
n − 1

)}

.

Then

σ2
n =

M
(k)
2 (n)

F
(k)
n

− µ2
n.

Proof. From the above note we have that

σ2
n =

1

F
(k)
n

∑

0≤i<F
(k)
n

(zk(i))
2 − µ2

n.

But since ϕk is defined as the quantity of numbers less than F
(k)
n with k-Zeckendorf

digital sum of m, we can rewrite this as

σ2
n =

1

F
(k)
n

n
∑

m=1

m2ϕk(n,m) − µ2
n.

But this is

σ2
n =

M
(k)
2 (n)

F
(k)
n

− µ2
n.

�
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8. The Natural Density of the k-Zeckendorf Niven Numbers

Now we will give proofs for all the conditions specified in Theorem 3.1 so that we
can conclude that the natural density of the k-Zeckendorf Niven numbers is zero.

Lemma 8.1. The sequence F
(k)
n is increasing.

Proof. This is obvious since F
(k)
n is the sum of F

(k)
n−1 and other nonnegative terms. �

Lemma 8.2. Let µn be the mean of
{

zk(0), zk(1), zk(2), . . . , zk

(

F
(k)
n − 1

)}

. Then

lim
n→∞

µn = ∞.

Proof. By Lemma 7.1, we have

lim
n→∞

µn = lim
n→∞

M
(k)
1 (n)

F
(k)
n

.

Substituting the closed forms of M
(k)
1 (n) and F

(k)
n into the right hand side we get

lim
n→∞

µn = lim
n→∞

(α0−1)(2αk

0−1−kα0)
(2αk

0−(k+1))2
nαn

0 + O(αn
0 )

∑k−1
i=0

α2
i
−αi

2αk

i
−(k+1)

αn
i

.

Replacing the denominator by
α2

0−α0

2αk

0−(k+1)
αn

0 + O(1) and taking the limit we get

lim
n→∞

µn = lim
n→∞

(α0−1)(2αk

0−1−kα0)
[2αk

0−(k+1)]
2 nαn

0 + O(αn
0 )

α2
0−α0

2αk

0−(k+1)
αn

0 + O(1)
= ∞.

�

Lemma 8.3. Let µn and σn be the mean and variance of {zk(0), zk(1), zk(2), . . . ,

zk

(

F
(k)
n − 1

)}

. Then

lim
n→∞

µn

σn
= ∞.

Proof. To prove this result we will show that limn→∞
µ2

n

σ2
n

= ∞. To this end we begin

by using Lemma 7.1 and Lemma 7.2 to obtain

µ2
n

σ2
n

=

(

M
(k)
1 (n)

F
(k)
n

)2

M
(k)
2 (n)

F
(k)
n

−

(

M
(k)
1 (n)

F
(k)
n

)2 .

Multiplying the numerator and denominator by
(

F
(k)
n

)2
we get

µ2
n

σ2
n

=

(

M
(k)
1 (n)

)2

F
(k)
n M

(k)
2 (n) −

(

M
(k)
1 (n)

)2 .
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Now, multiplying the numerator and denominator by
[

2αk
0 − (k + 1)

]4
we have that

µ2
n

σ2
n

=

[

2αk
0 − (k + 1)

]4 (
Mk

1 (n)
)2

[

2αk
0 − (k + 1)

]4
F

(k)
n M

(k)
2 (n) −

[

2αk
0 − (k + 1)

]4
(

M
(k)
1 (n)

)2 .

Now we substitute the closed forms of F
(k)
n , M

(k)
1 (n), and M

(k)
2 (n) into this last

expression and simplify. These closed forms are

F (k)
n =

α2
0 − α0

2αk
0 − (k + 1)

αn
0 + O(1),

M
(k)
1 (n) =

(α0 − 1)(2αk
0 − 1 − kα0)

(2αk
0 − (k + 1))2

nαn
0 + O(αn

0 ),

and M
(k)
2 (n) =

(1 − 1
α0

)(2αk
0 − 1 − kα0)

2

(2αk
0 − (k + 1))3

n2αn
0 + O(nαn

0 ).

It follows that

µ2
n

σ2
n

=
(α0−1)2(2αk

0−1−kα0)2n2α2n

0 +O(nα2n

0 )

(α2
0−α0)(1−

1
α0

)(2αk

0−1−kα0)2n2αn

0 +O(nα2n

0 )−(α0−1)2(2αk

0−1−kα0)2n2α2n

0 +O(nα2n

0 )

=
(α0−1)2(2αk

0−1−kα0)2n2α2n

0 +O(nα2n

0 )

O(nα2n

0 )
.

Taking the limit of the last expression as n → ∞ we obtain

lim
n→∞

µ2
n

σ2
n

= lim
n→∞

(α0 − 1)2(2αk
0 − 1 − kα0)

2n2α2n
0 + O(nα2n

0 )

O(nα2n
0 )

= ∞.

�

Lemma 8.4. The sequence
F

(k)
n+1

F
(k)
n

is bounded.

Proof.

F
(k)
n+1

F
(k)
n

=

[

F
(k)
n + F

(k)
n−1 + · · · + F

(k)
n−k+1

]

+ F
(k)
n−k − F

(k)
n−k

F
(k)
n

=
2F

(k)
n − F

(k)
n−k

F
(k)
n

≤
2F

(k)
n

F
(k)
n

= 2

�

We can now state the following major result.

Theorem 8.1. The natural density of the k-Zeckendorf Niven numbers is 0.

Proof. To prove this, we apply Theorem 3.1, noting that all of the conditions for its
use have been shown in the previous lemmas. �
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9. Open Questions

We conclude this paper with some open questions. In the proof of Theorem
6.2 we computed the constant B0. Because of our error analysis we did not need
to calculate A0, A1, . . . , Ak−1 and B1, B2, . . . , Bk−1. Although the calculation of
B1, B2, . . . , Bk−1 would be similar, an open question is to determine exact formulas
for A0, A1, . . . , Ak−1.

Similarly, in the proof of Theorem 6.3 we computed the constant C0. Although
the calculation of C1, C2, . . . , Ck−1 would be similar, an open question is to deter-
mine exact formulas for A0, A1, . . . , Ak−1 and B0, B1, . . . , Bk−1. Note that these are
different from the constants in Theorem 6.2.

Finally, we proved here that the natural density of the k-Zeckendorf Niven num-
bers is zero. To study how many k-Zeckendorf Niven numbers there are, we ask to
find an asymptotic formula for Zk(n), the number of k-Zeckendorf Niven numbers
less than n. That is, can we find a non-trivial function f(n) such that

Zk(n) ∼ f(n).
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