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Abstract.

Let l(m) denote the number of large digits (5 or bigger) in the base 10 repre-

sentation of the positive integer m and let

L(n) =
∑

1≤m<n

l(m),

where n is a positive integer. We will show that if n is a positive integer, then

1

2
n log n − 0.389n ≤ L(n) ≤

1

2
n logn.

Here log denotes the base 10 logarithm.

1. Introduction and Result.

Large digits are base 10 digits which are greater than or equal to 5, i.e., 5, 6, 7,

8, and 9. The number of large digits in a positive integer is the number of large digits

in its decimal representation. For example, there are no large digits in 34 and there

are 2 large digits in 84512. To present our results concerning large digits, we need

to use APL notation, which was discussed in [3, p. 24] and originally introduced by

Kenneth Iverson. The basic idea is to enclose a true-or-false statement in brackets,

and to say that the result is 1 if the statement is true, 0 if the statement is false.

For example,

[p prime] =

{

1, if p is a prime number;

0, if p is not a prime number.

1



A positive integer m can be uniquely represented in base 10 form as

m =
k

∑

i=0

di10i,

where the di’s are decimal digits for i = 0, . . . , k. Here, we assume that dk 6= 0.

Now, if m and n are positive integers, define

l(m) =
k

∑

i=0

[di ≥ 5] and L(n) =
∑

1≤m<n

l(m).

Now, let log denote the base 10 logarithm. It was shown by Cooper and Kennedy

in [1, pp. 26–27] that

L(n) =
1

2
n log n + O(n).

Here, O denotes the big-Oh notation. In what follows we will prove the following

theorem which gives us a better idea about the big-Oh term.

Theorem 1. Let n be a positive integer. Then

1

2
n log n − 0.389n ≤ L(n) ≤

1

2
n logn.

2. Proof of the Right Inequality of Theorem 1.

To begin the proof of Theorem 1, we need some lemmas which can be found in

[1, p. 28].

Lemma 2. Let d be a nonzero decimal digit, k be a nonnegative integer, and

m be a nonnegative integer less than 10k. Then

L(d · 10k) =
1

2
dk10k + [d ≥ 5](d − 5)10k

and

L(d · 10k + m) = L(d · 10k) + [d ≥ 5]m + L(m).

The following lemma is another one that we will need.
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Lemma 3. Let d be a nonzero decimal digit, k be a nonnegative integer, and

m be a nonnegative integer less than 10k. Then

[d ≥ 5](d − 5) ≤
1

2
d log d

and
2[d ≥ 5]

(

(d − 5)10k + m
)

d · 10k + m
≤ log

(

d +
m

10k

)

.

Proof. The first inequality of Lemma 3 follows by checking all the values of d

from 1 to 9. The second inequality of Lemma 3 is true for d = 1, 2, 3, 4 since the

left-hand side of the inequality is 0. To establish the inequality for d = 5, 6, 7, 8, 9

we can simplify the inequality. Therefore, if we can show

2(d · 10k + m) − 10k+1

d · 10k + m
≤ log

(

d +
m

10k

)

then we are done. Dividing both numerator and denominator of the left-hand side

of this last inequality by 10k, we are done if we can show that

2(d + m
10k ) − 10

d + m
10k

≤ log

(

d +
m

10k

)

.

If we generalize this result, we would be done if we could show that

2x − 10

x
≤ log x

for 5 ≤ x < 10. Simplifying the above inequality, we would be done if we could

show that

2(x − 10) + 10 ≤ x log x

for 5 ≤ x < 10. Letting x ∈ [5, 10), and applying the mean-value theorem to the

function

f(x) = x log x

we have that
f(x) − f(10)

x − 10
= f ′(ζ)
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for ζ ∈ (x, 10). But

f ′(x) = log e + log x

so
f(x) − f(10)

x − 10
= log e + log ζ ≤ 2.

But since x − 10 < 0 we have that

f(x) − f(10) ≥ 2(x − 10).

Thus,

x log x ≥ 10 + 2(x − 10).

This completes the proof.

We are now ready to prove the right inequality of Theorem 1. Let n = d ·

10k + m, where d is a nonzero decimal digit, k be a nonnegative integer, and m be

a nonnegative integer less than 10k. We will prove that

L(d · 10k + m) ≤
1

2
(d · 10k + m) log(d · 10k + m)

by induction on the number of nonzero decimal digits in d · 10k and m.

For the base step, we assume that d · 10k and m have exactly one nonzero

decimal digit, i.e., m = 0. Then, by Lemma 2

L(d · 10k + 0) = L(d · 10k) =
1

2
dk10k + [d ≥ 5](d − 5)10k

and
1

2
(d · 10k + 0) log(d · 10k + 0) =

1

2
(d · 10k) log(d · 10k)

=
1

2
(d · 10k)(k + log d) =

1

2
dk10k +

1

2
d log d · 10k.

To prove

L(d · 10k + 0) ≤
1

2
(d · 10k + 0) log(d · 10k + 0)
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we need to show that

[d ≥ 5](d − 5) ≤
1

2
d log d.

But this is the first part of Lemma 3. This completes the base step of the induction.

For the induction step, we assume that our result is true for d · 10k and m

having fewer that j nonzero decimal digits, i.e., if d · 10k and m have fewer than j

nonzero decimal digits then

L(d · 10k + m) ≤
1

2
(d · 10k + m) log(d · 10k + m).

Now suppose d · 10k and m have j nonzero decimal digits. But, by Lemma 2

L(d · 10k + m) = L(d · 10k) + [d ≥ 5]m + L(m)

=
1

2
dk10k + [d ≥ 5](d − 5)10k + [d ≥ 5]m + L(m)

=
1

2
dk10k + L(m) + [d ≥ 5](d − 5)10k + [d ≥ 5]m

and by simplifying

1

2
(d · 10k + m) log(d · 10k + m) =

1

2
(d · 10k + m) log 10k

(

d +
m

10k

)

=
1

2
(d · 10k + m)

(

k + log

(

d +
m

10k

))

=
1

2
dk10k +

1

2
km +

1

2
(d · 10k + m) log

(

d +
m

10k

)

.

The first terms of the above 2 expressions match, i.e.,

1

2
dk10k.

Since m has less than j nonzero decimal digits, by the induction hypothesis,

L(m) ≤
1

2
m log m ≤

1

2
km.

Finally, by the second part of Lemma 3

[d ≥ 5](d − 5)10k + [d ≥ 5]m ≤
1

2
(d · 10k + m) log

(

d +
m

10k

)

.

5



This completes the proof of the right inequality of Theorem 1.

3. Proof of the Left Inequality of Theorem 1.

To start the proof of the left inequality of Theorem 1, we need the following

lemmas.

Lemma 4. Let n and k be a positive integers, m be a nonnegative integer less

than 10k, and d be a decimal digit. Then

L(10n) = 10L(n) + 5n,

L(10kn + m) = L(10kn) + L(m) + ml(n),

and L(10d) = 5d + [d ≥ 5](d − 5)10.

Proof. The first formula of Lemma 4 can be found in [1, pp. 28–29]. The

second formula is a generalization of the second formula of Lemma 2. The proof

is similar to the proof of the second formula of Lemma 2. The proof of the third

formula follows by examining L(0), L(10), L(20), . . . , L(90).

Lemma 5. Let m be a positive integer and d be a decimal digit. Then

L(10m) − 1

2
(10m + 10) log(10m + 10)

10m

≤
L(10m + d) − 1

2
(10m + d) log(10m + d)

10m + d

Proof. To show the above inequality, it suffices to show that

(10m + d)L(10m) −
1

2
(10m + d)(10m + 10) log(10m + 10)

≤ 10mL(10m + d) −
1

2
10m(10m + d) log(10m + d).

But since

L(10m + d) = L(10m) + L(d) + dl(m)
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by the second formula in Lemma 4 and moving some terms around, it suffices to

show that

10mL(10m) + dL(10m) +
1

2
10m(10m + d) log(10m + d)

≤ 10mL(10m) + 10mL(d) + 10mdl(m) +
1

2
(10m + d)(10m + 10) log(10m + 10).

Cancelling the first term and using the right inequality of Theorem 1, i.e.,

L(10m) ≤
1

2
10m log 10m,

we are done if we show the stronger inequality that

1

2
d · 10m log 10m +

1

2
10m(10m + d) log(10m + d)

≤ 10mL(d) + 10mdl(m) +
1

2
(10m + d)(10m + 10) log(10m + 10)

= 10mL(d) + 10mdl(m) +
1

2
(10m + d) · 10m log(10m + 10)

+
1

2
(10m + d) · 10 log(10m + 10).

But,

1

2
d · 10m log 10m ≤

1

2
10 · (10m + d) log(10m + 10)

=
1

2
(10m + d) · 10 log(10m + 10)

and
1

2
10m(10m + d) log(10m + d) ≤

1

2
10m(10m + d) log(10m + 10)

so the above inequality is true. This completes the proof.

Lemma 6. Let m be a positive integer and d be a decimal digit. Then

L(10m) − 1

2
(10m + 10) log(10m + 10)

10m

≤
L(100m + 10d) − 1

2
(100m + 10d + 10) log(100m + 10d + 10)

100m + 10d
.
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Proof. First of all, by the first formula of Lemma 4, we have that

L(10m) − 1

2
(10m + 10) log(10m + 10)

10m

=
10L(10m) − 1

2
(100m + 100) log(10m + 10)

100m

=
L(100m) − 1

2
10 · 10m − 1

2
(100m + 100) log(10m + 10)

100m
.

Second by simplifying, we have that

L(100m + 10d) − 1

2
(100m + 10d + 10) log(100m + 10d + 10)

100m + 10d

=
L(100m + 10d) − 1

2
(100m + 10d + 10)(1 + log(10m + d + 1))

100m + 10d

=
L(100m + 10d) − 1

2
(100m + 10d + 10) − 1

2
(100m + 10d + 10) log(10m + d + 1)

100m + 10d
.

To prove our result, we must show that

(100m + 10d)

(

L(100m) −
1

2
10 · 10m −

1

2
(100m + 100) log(10m + 10)

)

≤ 100m

(

L(100m + 10d) −
1

2
(100m + 10d + 10) −

1

2
(100m + 10d + 10) log(10m + d + 1)

)

.

Now since

L(100m + 10d) = L(100m) + 10dl(m) + L(10d)

by the second formula of Lemma 4, we must show that

(100m + 10d)

(

L(100m) −
1

2
10 · 10m −

1

2
(100m + 100) log(10m + 10)

)

≤ 100m

(

L(100m) + 10dl(m) + L(10d)

−
1

2
(100m + 10d + 10) −

1

2
(100m + 10d + 10) log(10m + d + 1)

)

.
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Multiplying terms and juggling terms so that every term is positive, we must show

that

100mL(100m) + 10dL(100m) +
1

2
100m(100m + 10d + 10)

+
1

2
100m(100m + 10d + 10) log(10m + d + 1)

≤ 100mL(100m) + 10d · 100ml(m) + 100mL(10d)

+
1

2
100m(100m + 10d) +

1

2
(100m + 10d)(100m + 100) log(10m + 10).

Canceling the terms

100mL(100m) and
1

2
100m(100m + 10d)

we must show that

10dL(100m) +
1

2
10 · 100m +

1

2
100m(100m + 10d + 10) log(10m + d + 1)

≤ 10d · 100ml(m) + 100m · L(10d) +
1

2
(100m + 10d)(100m + 100) log(10m + 10).

But by the right inequality of Theorem 1,

L(100m) ≤
1

2
100m log 100m

=
1

2
100m(1 + log 10m)

=
1

2
100m +

1

2
100m log 10m.

So if we can show the stronger inequality that

1

2
10d · 100m +

1

2
10d · 100m log 10m

+
1

2
10 · 100m +

1

2
100m(100m + 10d + 10) log(10m + d + 1)

≤ 10d · 100ml(m) + 100mL(10d) +
1

2
(100m + 10d)(100m + 100) log(10m + 10)

then we can go back and we are done. Now for any decimal digit d

L(10d) = 5d + [d ≥ 5](d − 5)10
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by the third formula of Lemma 4. Therefore combining terms on the left side and

using this result on the right side, we are done if we can show that

100m(5d + 5) +
1

2
10d · 100m log 10m +

1

2
100m(100m + 10d + 10) log(10m + d + 1)

≤ 100m(5d + [d ≥ 5](d − 5)10) + 10d · 100ml(m)

+
1

2
(100m + 10d)(100m + 100) log(10m + 10).

Reworking the right-hand side of the above inequality, we must show that

100m(5d + 5) +
1

2
10d · 100m log 10m +

1

2
100m(100m + 10d + 10) log(10m + d + 1)

≤ 100m(5d + [d ≥ 5](d − 5)10) + 10d · 100ml(m)

+
1

2
100m(100m + 100) log(10m + 10) +

1

2
10d(100m + 100) log(10m + 10).

Again, reworking the right-hand side, we must show that

100m(5d + 5) +
1

2
10d · 100m log 10m +

1

2
100m(100m + 10d + 10) log(10m + d + 1)

≤ 100m(5d + [d ≥ 5](d − 5)10) + 10d · 100ml(m)

+
1

2
100m(100m + 10d + 10) log(10m + 10)

+
1

2
100m(100 − 10d − 10) log(10m + 10) +

1

2
10d(100m + 100) log(10m + 10).

For d = 6, 7, 8, 9,

100m(5d + 5) ≤ 100m(5d + [d ≥ 5](d − 5)10),

1

2
10d · 100m log 10m ≤

1

2
10d(100m + 100) log(10m + 10), and

1

2
100m(100m + 10d + 10) log(10m + d + 1) ≤

1

2
100m(100m + 10d + 10) log(10m + 10)

and the other terms on the right-hand side of the inequality are 0 or positive so our

inequality is true. For d = 0, 1, 2, 3, 4, 5,

100m · 5d = 100m · 5d,

100m · 5 =
1

2
10 · 100m ≤

1

2
100m(100 − 10d − 10) log(10m + 10),

1

2
10d · 100m log 10m ≤

1

2
10d(100m + 100) log(10m + 10), and

1

2
100m(100m + 10d + 10) log(10m + d + 1) ≤

1

2
100m(100m + 10d + 10) log(10m + 10)
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and the other terms on the right-hand side of the inequality are 0 or positive so our

inequality is true. This completes the proof of Lemma 6.

We are now ready to prove the left inequality of Theorem 1. Define

S = {100, 101, 102, 103, . . . , 999}.

Let

µ = min
n∈S

L(10n) − 1

2
(10n + 10) log(10n + 10)

10n
.

By some calculations, we have that

µ ≈ −.3884483 . . . ≥ −.389.

In addition, this minimum value occurs at n = 455. Now we wish to show that

−.389 is smaller than any value of

R(n) =
L(n) − 1

2
n log n

n
,

for any positive integer n. To do this we need the following lemma, which can be

found in [1, pp. 28–29].

Lemma 7. Let n be a positive integer. Then

R(10n) = R(n).

Now if n < 1000, then R(n) = R(10n) = R(100n) = R(1000n) so it is enough

to consider only n ≥ 1000. Write n = 10m + d, where d is a decimal digit. Also,

write m in its decimal representation, i.e.,

m =

k
∑

i=0

di10i.

Finally, for 0 ≤ j ≤ k, let

mj =

k
∑

i=j

di10i−j .
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Note that m0 = m and for j = k, k − 1, k − 2, . . . , 2, 1

mj−1 = 10mj + dj−1.

Now we have the following sequence of inequalities.

− .389 ≤ µ ≤
L(10mk−2) −

1

2
(10mk−2 + 10) log(10mk−2 + 10)

10mk−2

≤
L(100mk−2 + 10dk−3) −

1

2
(100mk−2 + 10dk−3 + 10) log(100mk−2 + 10dk−3 + 10)

100mk−2 + 10dk−3

=
L(10mk−3) −

1

2
(10mk−3 + 10) log(10mk−3 + 10)

10mk−3

≤ · · ·

≤
L(10m1) −

1

2
(10m1 + 10) log(10m1 + 10)

10m1

≤
L(100m1 + 10d0) −

1

2
(100m1 + 10d0 + 10) log(100m1 + 10d0 + 10)

100m1 + 10d0

=
L(10m0) −

1

2
(10m0 + 10) log(10m0 + 10)

10m0

=
L(10m) − 1

2
(10m + 10) log(10m + 10)

10m
.

The second inequality follows from the definition of µ. The next set of inequalities

follow by applying Lemma 6 successively with mk−2, dk−3; mk−3, dk−4; . . . ; m1, d0.

Now applying Lemma 5 with m and d we get

L(10m) − 1

2
(10m + 10) log(10m + 10)

10m
≤

L(10m + d) − 1

2
(10m + d) log(10m + d)

10m + d
.

Since n = 10m + d was arbitrary, we have the left inequality of Theorem 1.

4. Further Questions.

The result in Theorem 1 for the main term and error term of L(n) was done for

base 10. Can Theorem 1 be extended to determine the main term and error term
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of L(n) in base k, where k > 1 is an integer? Here, L(n) is the number of large

digits in base k. Next, in [2, pp. 37–41] it was shown that

∑

1≤m<n

l(m)2 =
1

4
n log2 n + O(n logn)?

Can we find bounds for the big-Oh term in the above formula? Finally, we conjecture

that the sequence

n = 5, 45, 455, 4545, 45455, 454545, . . .

gives the smallest value for
L(n) − 1

2
n log n

n

for 1, 2, 3, 4, 5, 6, . . . digit numbers. Also, we ask to find the limit of those values

above, if it exist?
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