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Abstract. Let Lb(i) denote the number of large digits (db/2e or more) in the

base b representation of the nonnegative integer i. We will use Delange’s method

to find moments of the large digit function.

1. Introduction. Let sb(i) denote the sum of the digits in the base b repre-

sentation of the nonnegative integer i and Lb(i) denote the number of large digits

(db/2e or more) in the base b representation of the nonnegative integer i. Delange

[5] and later Grabner, Kirschenhofer, Prodinger, and Tichy [6] proved that

∑

n<N

sb(n) =
b− 1

2
N logb N +Nδ(logbN),

where δ(u) is a fractal function and logb N denotes the base b logarithm of N .

Coquet [4] and Kirschenhofer [7] proved that

∑

n<N

sb(n)2 =

(

b− 1

2

)2

N log2
b N +N logb Nδ1(logb N) +Nδ2(logbN),

where δ1 and δ2 are continuous nowhere differentiable functions of period 1. Grab-

ner, Kirschenhofer, Prodinger, and Tichy also found higher moments of the sum-

of-digits function. Cooper and Kennedy [3] computed the first moment of the large

digit function using a method of Trollope [10]. Here, we will use Delange’s method

to find moments of the large digit function. Our result will be quite similar to

the results of Coquet, Kirschenhofer, and Grabner, Kirschenhofer, Prodinger, and

Tichy. We will conclude the paper with some open questions.

2. First Moment. Let

M1(N) =
∑

n<N

Lb(n).
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For j ≥ 0, let

fj(t) =

⌊

t

bj+1
+

bb/2c

b

⌋

−

⌊

t

bj+1

⌋

and

gj(t) = fj(t) −
bb/2c

b
.

Let L = blogb Nc. Then,

M1(N) =

∫ N

0

L
∑

j=0

fj(t)dt

=

∫ N

0

L
∑

j=0

gj(t)dt+
bb/2c

b
N(L+ 1)

=
bb/2c

b
N(L+ 1) +

L
∑

j=0

∫ N

0

gj(t)dt.

Now letting

u =
t

bj+1
,

and

gj(t) = g(u) =

⌊

u+
bb/2c

b

⌋

− buc −
bb/2c

b
,

we have

M1(N) =
bb/2c

b
N(L+ 1) +

L
∑

j=0

bj+1

∫ N/bj+1

0

g(u)du.

Letting k = L− j it follows that

M1(N) =
bb/2c

b
N(L+ 1) +

L
∑

k=0

bL+1−k

∫ N/bL+1−k

0

g(u)du.

But for each k > L,
∫ N/bL+1−k

0

g(u)du = 0.

Since L = blogbNc and {logb N} = logbN − blogb Nc,

N

bblogb Nc+1−k
=

N

blogb N−{logb N}+1−k
= bk+{logb N}−1.
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Therefore,

M1(N) =
bb/2c

b
N(L+ 1) + bL+1

∑

k≥0

b−k

∫ bk+{logb N}−1

0

g(u)du.

Since

L+ 1 = blogb Nc + 1 = logbN − {logbN} + 1,

it follows that

M1(N) =
bb/2c

b
N

(

logbN − {logb N} + 1

)

+N · b1−{logb N}
∑

k≥0

b−k

∫ bk+{logb N}−1

0

g(u)du.

Next, let

h1(x) =

∫ x

0

g(u)du.

Note that h1(0) = h1(1) = 0. Then

M1(N) =
bb/2c

b
N

(

logb N−{logb N}+1

)

+N ·b1−{logb N}
∑

k≥0

b−kh1(b
k+{logb N}−1).

Now letting

ψ1(x) = b1−{x}
∑

k≥0

b−kh1(b
kb{x}−1),

it follows that

M1(N) =
bb/2c

b
N

(

logb N − {logb N} + 1

)

+Nψ1(logb N).

Finally, letting

δ1(x) =
bb/2c

b

(

1 − {x}

)

+ ψ1(x),

we have that

M1(N) =
bb/2c

b
N logb N +N ·

(

bb/2c

b

(

1 − {logb N}

)

+ ψ1(logbN)

)

=
bb/2c

b
N logb N +Nδ1(logb N).
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3. Second Moment. Let

M2(N) =
∑

n<N

Lb(n)2.

For j ≥ 0, let

fj(t) =

⌊

t

bj+1
+

bb/2c

b

⌋

−

⌊

t

bj+1

⌋

and

gj(t) = fj(t) −
bb/2c

b
.

Let L = blogb Nc. Then,

M2(N) =

∫ N

0

∑

0≤j1,j2≤L

fj1(t)fj2(t)dt

=

∫ N

0

∑

0≤j1,j2≤L

(

bb/2c

b
+ gj1(t)

)(

bb/2c

b
+ gj2(t)

)

dt

=

∫ N

0

∑

0≤j1,j2≤L

(

bb/2c2

b2
+

bb/2c

b
gj1(t) +

bb/2c

b
gj2(t) + gj1(t)gj2(t)

)

dt.

Letting

I2 =

∫ N

0

∑

0≤j1,j2≤L

gj1(t)gj2(t)dt,

we have that

M2(N) = I2 +
2bb/2c

b
(L+ 1)

∫ N

0

L
∑

j=0

gj(t)dt+
bb/2c2

b2
N(L+ 1)2

= I2 +
2bb/2c

b
(L+ 1)

∫ N

0

L
∑

j=0

fj(t)dt−
2bb/2c2

b2
N(L+ 1)2 +

bb/2c2

b2
N(L+ 1)2

= I2 +
2bb/2c

b
(L+ 1)M1(N) −

bb/2c2

b2
N(L+ 1)2.

Letting

K = logb N, y = 1 − {logbN}, δ1 = δ1(logb N),
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where δ1 comes from the first moment, it follows that

M2(N) = I2 +
2bb/2c

b
(L+ 1)M1(N) −

bb/2c2

b2
N(L+ 1)2

= I2 +
2bb/2c

b
(K + y)

(

bb/2c

b
NK +Nδ1

)

−
bb/2c2

b2
N(K + y)2

= I2 +
2bb/2c2

b2
NK2 +

2bb/2c

b
NKδ1 +

2bb/2c2

b2
NKy +

2bb/2c

b
Nyδ1

−
bb/2c2

b2
NK2 −

2bb/2c2

b2
NKy −

bb/2c2

b2
Ny2

= I2 +
bb/2c2

b2
NK2 +

2bb/2c

b
NKδ1 +

2bb/2c

b
Nyδ1 −

bb/2c2

b2
Ny2.

Now we compute I2 as

I2 =

∫ N

0

∑

0≤j1,j2≤L

gj1(t)gj2(t)dt

=

(

∑

0≤j1=j2≤L

+2
∑

0≤j1<j2≤L

)
∫ N

0

gj1(t)gj2(t)dt

=
L

∑

j=0

∫ N

0

gj(t)
2dt+ 2

∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

=

L
∑

j=0

∫ N

0

(

fj(t) −
bb/2c

b

)2

dt+ 2
∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

=

L
∑

j=0

∫ N

0

((

1 −
2bb/2c

b

)

fj(t) +
bb/2c2

b2

)

dt+ 2
∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

=

(

1 −
2bb/2c

b

)

M1(N) +
bb/2c2

b2
N(L+ 1) + 2

∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

=

(

1 −
2bb/2c

b

)

M1(N) +
bb/2c2

b2
N(K + y) + 2

∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

=

(

1 −
2bb/2c

b

)

M1(N) +
bb/2c2

b2
NK +

bb/2c2

b2
Ny

+ 2
∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt.

Now let

u =
t

bj2+1
.
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Then dt = bj2+1du and

gj2(t) = g(u) =

⌊

u+
bb/2c

b

⌋

− buc −
bb/2c

b
.

Thus,
∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

=
∑

0≤j1<j2≤L

bj2+1

∫ N/bj2+1

0

g(bj2−j1u)g(u)du.

Letting j = j2, d = j2 − j1, and k = L− j, it follows that

∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

=

L
∑

j=0

bj+1
∑

1≤d≤j

∫ N/bj+1

0

g(bdu)g(u)du

=

L
∑

k=0

bL+1−k
∑

1≤d≤L−k

∫ N/bL+1−k

0

g(bdu)g(u)dt.

But for each k > L and d ≥ 1 or 0 ≤ k ≤ L and d > L− k,

∫ N/bL+1−k

0

g(bdu)g(u)du = 0.

Since L = blogbNc,

N

bblogb Nc+1−k
=

N

blogb N−{logb N}+1−k
= bk+{logb N}−1.

Therefore,
∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

= bL+1
∑

k≥0

b−k
∑

1≤d

∫ bk+{logb N}−1

0

g(bdu)g(u)du.

Since

L+ 1 = blogb Nc + 1 = logbN − {logbN} + 1,
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it follows that

∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

= N · b1−{logb N}
∑

k≥0

b−k
∑

1≤d

∫ bk+{logb N}−1

0

g(bdu)g(u)du.

Next, let

h2(x) =
∑

1≤d

∫ x

0

g(bdu)g(u)du.

Note that h2(0) = h2(1) = 0. Then

∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

= N · b1−{logb N}
∑

k≥0

b−kh2(b
k+{logb N}−1).

Now letting

ψ2(x) = b1−{x}
∑

k≥0

b−kh2(b
kb{x}−1),

it follows that
∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt = Nψ2(logbN).

Thus, letting ψ2 = ψ2(logbN) and substituting for I2, M1(N), the integral, and
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K = logb N , we have

M2(N) = I2 +
bb/2c2

b2
NK2 +

2bb/2c

b
NKδ1 +

2bb/2c

b
Nyδ1 −

bb/2c2

b2
Ny2

=

(

1 −
2bb/2c

b

)

M1(N) +
bb/2c2

b2
NK +

bb/2c2

b2
Ny

+ 2
∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt+
bb/2c2

b2
NK2

+
2bb/2c

b
NKδ1 +

2bb/2c

b
Nyδ1 −

bb/2c2

b2
Ny2

=

(

1 −
2bb/2c

b

)(

bb/2c

b
NK +Nδ1

)

+
bb/2c2

b2
NK +

bb/2c2

b2
Ny + 2

∑

0≤j1<j2≤L

∫ N

0

gj1(t)gj2(t)dt

+
bb/2c2

b2
NK2 +

2bb/2c

b
NKδ1 +

2bb/2c

b
Nyδ1 −

bb/2c2

b2
Ny2

=

(

1 −
2bb/2c

b

)(

bb/2c

b
NK +Nδ1

)

+
bb/2c2

b2
NK +

bb/2c2

b2
Ny + 2Nψ2

+
bb/2c2

b2
NK2 +

2bb/2c

b
NKδ1 +

2bb/2c

b
Nyδ1 −

bb/2c2

b2
Ny2

=

(

bb/2c

b
−

2bb/2c2

b2

)

NK +

(

1 −
2bb/2c

b

)

Nδ1 +
bb/2c2

b2
NK +

bb/2c2

b2
Ny

+ 2Nψ2 +
bb/2c2

b2
NK2 +

2bb/2c

b
NKδ1 +

2bb/2c

b
Nyδ1 −

bb/2c2

b2
Ny2.

Collecting terms, we have that

M2(N) =
bb/2c2

b2
NK2 +NK

((

bb/2c

b
−

bb/2c2

b2

)

+
2bb/2c

b
δ1

)

+N

((

1 −
2bb/2c

b

)

δ1 +
bb/2c2

b2
y +

2bb/2c

b
yδ1 −

bb/2c2

b2
y2 + 2ψ2

)

.

Finally, letting

δ21(x) =

(

bb/2c

b
−

bb/2c2

b2

)

+
2bb/2c

b
δ1(x)

and

δ22(x) =

(

1 −
2bb/2c

b

)

δ1(x) +
bb/2c2

b2

(

1 − {x}

)

+
2bb/2c

b

(

1 − {x}

)

δ1(x) −
bb/2c2

b2

(

1 − {x}

)2

+ 2ψ2(x),
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it follows that

M2(N) =
bb/2c2

b2
N log2

b N +N logb Nδ21(logbN) +Nδ22(logbN).

4. Questions. Some open questions remain. What can be said about higher

moments of the Lb function using Delange’s method? For example, what are the

third and fourth moments of the Lb function? In addition, is the main term of the

jth moment a constant times N times logj
b N? If so, what is this constant as a

function of b? We now state the following conjecture.

Conjecture. Let m be a positive integer. Then

Mm(N) =
bb/2cm

bm
N logm

b N +

m−1
∑

k=0

N logk
b Nδk(logb N),

where δk is a fractal function for k = 0, . . . ,m− 1.

Finally, Grabner’s method [6] finds moments of the sum-of-digits function using the

Mellin transform. Can Grabner’s method be used to find moments of the large digit

function?
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