AN EXPLICIT EXPRESSION FOR LARGE DIGIT SUMS IN BASE B EXPANSIONS

Curtis Cooper and Robert E. Kennedy
Department of Mathematics, Central Missouri State University
Warrensburg, MO 64093-5045

Abstract

Let n and b be positive integers. We will present a formula for the number of large digits ($\lceil b / 2\rceil$ or more) in the base b representation of the sequence of positive integers less than n.

AMS Classification number: 11A63

1. Introduction. Let $s_{b}(i)$ denote the sum of the digits in the base b representation of the nonnegative integer i and $L_{b}(i)$ denote the number of large digits ($\lceil b / 2\rceil$ or more) in the base b representation of the nonnegative integer i. Bush [1] showed that

$$
\sum_{n<x} s_{b}(n) \sim \frac{b-1}{2} x \log _{b} x
$$

Here, $\log _{b} x$ denotes the base b logarithm of x. Mirsky [4], and later Cheo and Yien [2], proved that

$$
\sum_{n<x} s_{b}(n)=\frac{b-1}{2} x \log _{b} x+O(x) .
$$

Trollope [5] discovered the following result. Let $g(x)$ be periodic of period one and defined on $[0,1]$ by

$$
g(x)= \begin{cases}\frac{1}{2} x, & 0 \leq x \leq \frac{1}{2} \\ \frac{1}{2}(1-x), & \frac{1}{2}<x \leq 1\end{cases}
$$

and let

$$
f(x)=\sum_{i=0}^{\infty} \frac{1}{2^{i}} g\left(2^{i} x\right)
$$

Now, if $n=2^{m}(1+x), 0 \leq x<1$, then

$$
\sum_{i<n} s_{2}(i)=\frac{1}{2} n \log _{2} n-E_{2}(n)
$$

where

$$
E_{2}(n)=2^{m-1}\left(2 f(x)+(1+x) \log _{2}(1+x)-2 x\right)
$$

We will discuss some similar results for L_{b}.
2. Main Term and Big-Oh Term. Our first result will be to give a main term and big-Oh term for a sum involving L_{b}. We will parallel a proof of Mirsky [4].

Theorem 1.

$$
\sum_{n<x} L_{b}(n)=\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} x \log _{b} x+O(x) .
$$

Proof. We begin by observing that if $k \geq 0$ and $0 \leq d \leq b-1$, then the representation of n in base b contains the term $d b^{k}$ if and only if n can be expressed in the form

$$
n=m b^{k+1}+\mu
$$

where $m \geq 0$ and $d b^{k} \leq \mu<(d+1) b^{k}$. Hence $f(x, k, d)$, the number of positive integers not exceeding x whose representation in base b contains the term $d b^{k}$, is given by

$$
\begin{aligned}
& f(x, k, d)=\sum_{\substack{m b^{k+1}+\mu \leq x \\
m \geq 0 ; d b^{k} \leq \mu<(d+1) b^{k}}} 1 \\
& =\sum_{d b^{k} \leq \mu<(d+1) b^{k}}\left(\frac{x}{b^{k+1}}+O(1)\right)=\frac{x}{b}+O\left(b^{k}\right) .
\end{aligned}
$$

But clearly

$$
\sum_{n<x} L_{b}(n)=\sum_{\substack{0 \leq k \leq \log _{b} x \\ 0 \leq d \leq b-1}}\left\lfloor\frac{d}{\left\lceil\frac{b}{2}\right\rceil}\right\rfloor f(x, k, d)
$$

Therefore, by the formula for $f(x, k, d)$,

$$
\begin{aligned}
\sum_{n<x} L_{b}(n) & =\sum_{\substack{0 \leq k \leq \log _{b} x \\
0 \leq d \leq b-1}}\left\lfloor\frac{d}{\left\lceil\frac{b}{2}\right\rceil}\right\rfloor\left(\frac{x}{b}+O\left(b^{k}\right)\right) \\
& =\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} x \log _{b} x+\left\lfloor\frac{b}{2}\right\rfloor O\left(\frac{1-b^{\log _{b} x+1}}{1-b}\right) \\
& =\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} x \log _{b} x+O(x)
\end{aligned}
$$

To show that this is best possible, we consider the sequence $x_{N}=b^{N+1}+b^{N}$. We have that

$$
\begin{aligned}
\sum_{n<x_{N}} L_{b}(n) & =\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}(N+1) b^{N+1}+\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} N b^{N} \\
& =\left(b^{N+1}+b^{N}\right) \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} N+b^{N+1} \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} x_{N} \log _{b} x_{N} \\
& =\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}\left(b^{N+1}+b^{N}\right) N+\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}\left(b^{N+1}+b^{N}\right) \log _{b}(b+1) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \sum_{n<x_{N}} L_{b}(n)-\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} x_{N} \log _{b} x_{N} \\
& =b^{N+1} \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}-\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}\left(b^{N+1}+b^{N}\right) \log _{b}(b+1)+b^{N} \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}-b^{N} \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} \\
& =\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}\left(1-\log _{b}(b+1)\right)\left(b^{N+1}+b^{N}\right)-b^{N} \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} \frac{b+1}{b+1} \\
& =\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}\left(b^{N+1}+b^{N}\right)\left(1-\log _{b}(b+1)-\frac{1}{b+1}\right) .
\end{aligned}
$$

Hence,

$$
\sum_{n<x_{N}} L_{b}(n)=\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} x_{N} \log _{b} x_{N}+c x_{N}
$$

where

$$
c=\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}\left(1-\log _{b}(b+1)-\frac{1}{b+1}\right)
$$

3. Notation and Basic Results. We next present some notation. The first idea is due to Kenneth Iverson, the creator of the programming language APL, and is discussed in [3]. Suppose that k is an integer and $P(k)$ is some statement about k which is either true or false. Then

$$
[P(k)]= \begin{cases}1, & P(k) \text { is true } \\ 0, & P(k) \text { is false }\end{cases}
$$

Second, to make some of the results easier to state, we will use the notation

$$
L(n)=\sum_{i<n} L_{b}(i)
$$

Our first result is a statement about the number of base b large digits in the sequence of positive integers up to a digit times a power of b. The proof of this formula follows from a straightforward counting argument and will be omitted.

Lemma 1. Let d be a nonzero digit and m a nonnegative integer. Then

$$
L\left(d \cdot b^{m}\right)=[d>\lceil b / 2\rceil] \cdot(d-\lceil b / 2\rceil) b^{m}+\lfloor b / 2\rfloor d m b^{m-1} .
$$

Next, let n be a positive integer with base b representation

$$
n=\sum_{k=0}^{m} d_{k} b^{k}
$$

Also, let

$$
n_{i}=\sum_{k=0}^{i} d_{k} b^{k}, \text { for } \quad i \geq 0 ; \quad n_{-1}=0
$$

Now, we make the important observation that if $n=d_{m} b^{m}+n_{m-1}$, then

$$
L\left(d_{m} b^{m}+n_{m-1}\right)=L\left(d_{m} b^{m}\right)+\left[d_{m} \geq\lceil b / 2\rceil\right] \cdot n_{m-1}+L\left(n_{m-1}\right)
$$

Hence, using mathematical induction on the number of digits in n, the above equation, and Lemma 1, we have the following more general result.

Lemma 2. Let n be a positive integer with base b representation

$$
n=\sum_{k=0}^{m} d_{k} b^{k}
$$

and define

$$
n_{i}=\sum_{k=0}^{i} d_{k} b^{k}, \quad \text { for } \quad i \geq 0 ; \quad n_{-1}=0
$$

Then

$$
\begin{aligned}
L(n) & =\lfloor b / 2\rfloor \sum_{k=0}^{m} d_{k} k b^{k-1}+\sum_{k=0}^{m}\left[d_{k}>\lceil b / 2\rceil\right] \cdot\left(d_{k}-\lceil b / 2\rceil\right) b^{k} \\
& +\sum_{k=0}^{m}\left[d_{k} \geq\lceil b / 2\rceil\right] \cdot n_{k-1} .
\end{aligned}
$$

4. The Remainder Term. The next step in analyzing $L(n)$ is to study it from a different perspective. Let

$$
\begin{aligned}
& R(n)=\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m n-\lfloor b / 2\rfloor \sum_{k=0}^{m} d_{k} k b^{k-1} \\
& -\sum_{k=0}^{m-1}\left[d_{k}>\lceil b / 2\rceil\right] \cdot\left(d_{k}-\lceil b / 2\rceil\right) b^{k}-\sum_{k=0}^{m-1}\left[d_{k} \geq\lceil b / 2\rceil\right] \cdot n_{k-1} .
\end{aligned}
$$

The next lemma will state some properties of R, which will be extremely useful throughout the rest of the paper.

Lemma 3.

(a) For any positive integer $n, R(b n)=b R(n)$.
(b) Let n be a positive integer with base b representation

$$
n=\sum_{k=0}^{m} d_{k} b^{k} .
$$

Then

$$
R(n+1)-R(n)=\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m+\left[d_{m} \geq\lceil b / 2\rceil\right]-L_{b}(n) .
$$

(c) Let m be a nonnegative integer, d a digit, and p an integer such that $0 \leq p<$ $(b-1) \cdot b^{m}$. Then

$$
\begin{aligned}
& R\left(b^{m+1}+b p+d\right)-d \cdot R\left(b^{m}+p+1\right)-(b-d) \cdot R\left(b^{m}+p\right) \\
& =\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} d-[d>\lceil b / 2\rceil](d-\lceil b / 2\rceil) .
\end{aligned}
$$

Proof. The proof of (a) involves a fairly easy, but tedious, derivation using the definition of $R(n)$. In passing, we note that using Lemma 3(a) and the fact that

$$
\begin{aligned}
L(n) & =\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m n+\left[d_{m}>\lceil b / 2\rceil\right] \cdot\left(d_{m}-\lceil b / 2\rceil\right) b^{m} \\
& +\left[d_{m} \geq\lceil b / 2\rceil\right] \cdot n_{m-1}-R(n),
\end{aligned}
$$

it is immediate that

$$
L(b n)=b L(n)+\lfloor b / 2\rfloor n
$$

for all $n \geq 1$.

The proof of (b) follows from scrutinizing three cases. The first case is when n and $n+1$ have a different number of digits. Thus, $n=b^{m+1}-1$. The second case is when n and $n+1$ have the same number of digits but have a different first digit. Thus $n=d \cdot b^{m}-1$ for $d=2,3, \ldots, b-1$. The third case is the rest of the story, i.e., when n and $n+1$ have the same number of digits and the same first digit. In every case, we have that

$$
R(n+1)-R(n)=\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m+\left[d_{m} \geq\lceil b / 2\rceil\right]-L_{b}(n)
$$

The proof of (c) is a little more involved. Using Lemma 3(b) twice, Lemma $3(\mathrm{a})$ once, and the assumption that the base b representation of $b^{m}+p$ is

$$
b^{m}+p=\sum_{k=0}^{m} d_{k} b^{k}
$$

we have the following sequence of equalities.

$$
\begin{aligned}
& R\left(b^{m+1}+b p+d\right)-d R\left(b^{m}+p+1\right)-(b-d) R\left(b^{m}+p\right) \\
& =R\left(b^{m+1}+b p+d\right)-d\left(R\left(b^{m}+p+1\right)-R\left(b^{m}+p\right)\right)-b R\left(b^{m}+p\right) \\
& =R\left(b^{m+1}+b p+d\right)-R\left(b^{m+1}+b p\right)-d\left(\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m+\left[d_{m} \geq\lceil b / 2\rceil\right]-L_{b}\left(b^{m}+p\right)\right) \\
& =\sum_{k=0}^{d-1}\left(R\left(b^{m+1}+b p+k+1\right)-R\left(b^{m+1}+b p+k\right)\right)-d \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m \\
& -\left[d_{m} \geq\lceil b / 2\rceil\right] d+d L_{b}\left(b^{m}+p\right) \\
& =\sum_{k=0}^{d-1}\left(\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}(m+1)+\left[d_{m} \geq\lceil b / 2\rceil\right]-L_{b}\left(b^{m+1}+b p+k\right)\right)-d \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m \\
& -\left[d_{m} \geq\lceil b / 2\rceil\right] d+d L_{b}\left(b^{m}+p\right) \\
& =d \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m+d \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}+d\left[d_{m} \geq\lceil b / 2\rceil\right]-\sum_{k=0}^{d-1} L_{b}\left(b^{m+1}+b p+k\right)-d \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m \\
& -\left[d_{m} \geq\lceil b / 2\rceil\right] d+d L_{b}\left(b^{m}+p\right) \\
& =d \frac{\left\lfloor\frac{b}{2}\right\rfloor}{b}-[d>\lceil b / 2\rceil](d-\lceil b / 2\rceil) .
\end{aligned}
$$

This completes the proof of (c) and the proof of Lemma 3.
5. Some Functions. Let m be a nonnegative integer and p be an integer such that $0 \leq p<(b-1) b^{m}$. Define the function $\phi(x)$ by

$$
\phi\left(\frac{p}{(b-1) b^{m}}\right)=\frac{R\left(b^{m}+p\right)}{b^{m}}
$$

Note that by Lemma $3(\mathrm{a}), \phi(x)$ is uniquely defined. For if x has any other representation, i.e.

$$
\frac{p^{\prime}}{(b-1) b^{m^{\prime}}},
$$

then

$$
p^{\prime}=b^{m^{\prime}-m} p
$$

If we assume, without loss of generality, that $m^{\prime}>m$, then $m^{\prime}-m$ is a positive integer. Therefore,

$$
\frac{R\left(b^{m^{\prime}}+p^{\prime}\right)}{b^{m^{\prime}}}=\frac{R\left(b^{m}+p\right)}{b^{m}}
$$

The function $\phi(x)$ is defined only on a subset of $[0,1]$. We now consider the problem of extending this function continuously to $[0,1]$. Here, we solve this problem by considering the limit of a sequence of "polygonal" functions which identify with $\phi(x)$ on the rationals of the form

$$
\frac{p}{(b-1) b^{m}} .
$$

These polygonal functions are defined in the following way. Let m be a nonnegative integer. $f_{m}(x)$ is defined on $[0,1]$ to be the function whose graph is the polygon joining the points

$$
\begin{aligned}
& \left\{(0,0),\left(\frac{1}{(b-1) b^{m}}, \phi\left(\frac{1}{(b-1) b^{m}}\right)\right)\right. \\
& \left.\cdots,\left(\frac{p}{(b-1) b^{m}}, \phi\left(\frac{p}{(b-1) b^{m}}\right)\right), \cdots,(1,0)\right\} .
\end{aligned}
$$

Then, the definition of $\left\{f_{m}(x)\right\}$ is extended to the reals by $f_{m}(x \pm 1)=f_{m}(x)$. From the definition, $f_{0}=0$. In addition, $f_{1}(x)$ is equal to the auxiliary function $g(x)$, which is defined on the $[0,1 /(b-1)]$ by

$$
\begin{aligned}
g(x) & =\left[0 \leq x \leq \frac{\lceil b / 2\rceil}{(b-1) b}\right] \frac{(b-1)\lfloor b / 2\rfloor}{b} x \\
& +\left[\frac{\lceil b / 2\rceil}{(b-1) b}<x \leq \frac{1}{b-1}\right] \frac{(b-1)\lceil b / 2\rceil}{b}\left(\frac{1}{b-1}-x\right)
\end{aligned}
$$

and extended to the reals by $g(x \pm 1 /(b-1))=g(x)$. Furthermore, using Lemma $3(\mathrm{c})$, it follows that for any nonnegative integer m and all real x,

$$
f_{m+1}(x)-f_{m}(x)=\frac{1}{b^{m}} g\left(b^{m} x\right)
$$

Repeated iterations of this equation yields

$$
f_{m+1}(x)=\sum_{i=0}^{m} \frac{1}{b^{i}} g\left(b^{i} x\right) .
$$

Since $g(x)$ is bounded, the sequence $\left\{f_{m}(x)\right\}$ converges uniformly for all x. Hence, the limiting function

$$
f(x)=\sum_{i=0}^{\infty} \frac{1}{b^{i}} g\left(b^{i} x\right)
$$

is a continuous extension of $\phi(x)$.

6. The Main Result.

Theorem 2. Let n be a positive integer with base b representation

$$
n=\sum_{k=0}^{m} d_{k} b^{k} .
$$

Next, let $n=b^{m}+p$ and

$$
x=\frac{p}{(b-1) b^{m}} .
$$

Finally, let $g(x)$ be periodic of period $1 /(b-1)$ and defined by

$$
\begin{aligned}
g(x) & =\left[0 \leq x \leq \frac{\lceil b / 2\rceil}{(b-1) b}\right] \frac{(b-1)\lfloor b / 2\rfloor}{b} x \\
& +\left[\frac{\lceil b / 2\rceil}{(b-1) b}<x \leq \frac{1}{b-1}\right] \frac{(b-1)\lceil b / 2\rceil}{b}\left(\frac{1}{b-1}-x\right)
\end{aligned}
$$

and let

$$
f(x)=\sum_{i=0}^{\infty} \frac{1}{b^{i}} g\left(b^{i} x\right)
$$

Then

$$
\sum_{i<n} L_{b}(i)=\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} n \log _{b} n-E_{b}(n)
$$

where

$$
\begin{aligned}
& E_{b}(n)=b^{m-1}\left(b f(x)+\lfloor b / 2\rfloor(1+(b-1) x) \log _{b}(1+(b-1) x)\right. \\
& \left.-\left[d_{m} \geq\lceil b / 2\rceil\right] \cdot b\left(1-d_{m}+(b-1) x\right)-\left[d_{m}>\lceil b / 2\rceil\right] \cdot b\left(d_{m}-\lceil b / 2\rceil\right)\right) .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
L(n) & =\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m n+\left[d_{m}>\lceil b / 2\rceil\right] \cdot\left(d_{m}-\lceil b / 2\rceil\right) b^{m} \\
& +\left[d_{m} \geq\lceil b / 2\rceil\right] \cdot n_{m-1}-R(n) \\
& =\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} m n+\left[d_{m}>\lceil b / 2\rceil\right] \cdot\left(d_{m}-\lceil b / 2\rceil\right) b^{m} \\
& +\left[d_{m} \geq\lceil b / 2\rceil\right] \cdot n_{m-1}-b^{m} f\left(\frac{p}{(b-1) b^{m}}\right) .
\end{aligned}
$$

Next, since

$$
\begin{aligned}
& n=b^{m}+p=b^{m}\left(1+\frac{p}{b^{m}}\right) \\
& m=\log _{b} n-\log _{b}\left(1+\frac{p}{b^{m}}\right)
\end{aligned}
$$

Also,

$$
n_{m-1}=n-d_{m} b^{m}=b^{m}+p-d_{m} b^{m}=b^{m}\left(1+\frac{p}{b^{m}}-d_{m}\right)
$$

Substituting for these three quantities, setting

$$
x=\frac{p}{(b-1) b^{m}},
$$

and simplifying, we have

$$
\begin{aligned}
& L(n)=\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} n \log _{b} n-\frac{\left\lfloor\frac{b}{2}\right\rfloor}{b} n \log _{b}(1+(b-1) x)-b^{m} f(x) \\
& +\left[d_{m} \geq\lceil b / 2\rceil\right] \cdot b^{m}\left(1-d_{m}+(b-1) x\right)+\left[d_{m}>\lceil b / 2\rceil\right] \cdot\left(d_{m}-\lceil b / 2\rceil\right) b^{m} .
\end{aligned}
$$

Thus, we have the result.
7. Questions. Some open questions remain. One problem is to study the function f in Theorem 2. Another problem that is noteworthy is concerning Trollope's result. Trollope's original result is in base 2. What would Trollope's result be for base b ?

$\underline{\text { References }}$

1. L. E. Bush, "An Asymptotic Formula for the Average Sum of Digits of Integers," American Mathematical Monthly, 47 (1940), 154-156.
2. P. Cheo and S. Yien, "A Problem on the K-adic Representation of Positive Integers," Acta Math. Sinica, 5 (1955), 433-438.
3. R. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Reading, Massachusetts, Addison-Wesley Publishing Company, 1989, 24-25, 33.
4. L. Mirsky, "A Theorem on Representations of Integers in the Scale of r," Scripta. Math., 15 (1949), 11-12.
5. J. R. Trollope, "An Explicit Expression for Binary Digital Sums," Mathematics Magazine, 41 (1968), 21-25.
