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Abstract. Let n and b be positive integers. We will present a formula for the

number of large digits (db/2e or more) in the base b representation of the sequence

of positive integers less than n.
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1. Introduction. Let sb(i) denote the sum of the digits in the base b repre-

sentation of the nonnegative integer i and Lb(i) denote the number of large digits

(db/2e or more) in the base b representation of the nonnegative integer i. Bush [1]

showed that
∑

n<x

sb(n) ∼
b − 1

2
x logb x.

Here, logb x denotes the base b logarithm of x. Mirsky [4], and later Cheo and Yien

[2], proved that
∑

n<x

sb(n) =
b − 1

2
x logb x + O(x).

Trollope [5] discovered the following result. Let g(x) be periodic of period one and

defined on [0, 1] by

g(x) =

{ 1
2x, 0 ≤ x ≤ 1

2
1
2
(1 − x), 1

2
< x ≤ 1,

and let

f(x) =

∞
∑

i=0

1

2i
g(2ix).

Now, if n = 2m(1 + x), 0 ≤ x < 1, then

∑

i<n

s2(i) =
1

2
n log2 n − E2(n),

where

E2(n) = 2m−1

(

2f(x) + (1 + x) log2(1 + x) − 2x

)

.
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We will discuss some similar results for Lb.

2. Main Term and Big-Oh Term. Our first result will be to give a main

term and big-Oh term for a sum involving Lb. We will parallel a proof of Mirsky

[4].

Theorem 1.
∑

n<x

Lb(n) =
b b

2
c

b
x logb x + O(x).

Proof. We begin by observing that if k ≥ 0 and 0 ≤ d ≤ b − 1, then the

representation of n in base b contains the term dbk if and only if n can be expressed

in the form

n = mbk+1 + µ,

where m ≥ 0 and dbk ≤ µ < (d + 1)bk. Hence f(x, k, d), the number of positive

integers not exceeding x whose representation in base b contains the term dbk, is

given by

f(x, k, d) =
∑

mbk+1+µ≤x

m≥0;dbk≤µ<(d+1)bk

1

=
∑

dbk≤µ<(d+1)bk

(

x

bk+1
+ O(1)

)

=
x

b
+ O(bk).

But clearly
∑

n<x

Lb(n) =
∑

0≤k≤log
b

x
0≤d≤b−1

⌊

d
⌈

b
2

⌉

⌋

f(x, k, d).

Therefore, by the formula for f(x, k, d),

∑

n<x

Lb(n) =
∑

0≤k≤log
b

x
0≤d≤b−1

⌊

d
⌈

b
2

⌉

⌋(

x

b
+ O(bk)

)

=

⌊

b
2

⌋

b
x logb x +

⌊

b

2

⌋

O

(

1 − blog
b

x+1

1 − b

)

=

⌊

b
2

⌋

b
x logb x + O(x).
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To show that this is best possible, we consider the sequence xN = bN+1 + bN .

We have that
∑

n<xN

Lb(n) =

⌊

b
2

⌋

b
(N + 1)bN+1 +

⌊

b
2

⌋

b
NbN

= (bN+1 + bN )

⌊

b
2

⌋

b
N + bN+1

⌊

b
2

⌋

b

and
⌊

b
2

⌋

b
xN logb xN

=

⌊

b
2

⌋

b
(bN+1 + bN )N +

⌊

b
2

⌋

b
(bN+1 + bN ) logb(b + 1).

Thus,

∑

n<xN

Lb(n) −

⌊

b
2

⌋

b
xN logb xN

= bN+1

⌊

b
2

⌋

b
−

⌊

b
2

⌋

b
(bN+1 + bN ) logb(b + 1) + bN

⌊

b
2

⌋

b
− bN

⌊

b
2

⌋

b

=

⌊

b
2

⌋

b
(1 − logb(b + 1))(bN+1 + bN ) − bN

⌊

b
2

⌋

b

b + 1

b + 1

=

⌊

b
2

⌋

b
(bN+1 + bN )

(

1 − logb(b + 1) −
1

b + 1

)

.

Hence,
∑

n<xN

Lb(n) =

⌊

b
2

⌋

b
xN logb xN + cxN ,

where

c =

⌊

b
2

⌋

b

(

1 − logb(b + 1) −
1

b + 1

)

.

3. Notation and Basic Results. We next present some notation. The first

idea is due to Kenneth Iverson, the creator of the programming language APL, and

is discussed in [3]. Suppose that k is an integer and P (k) is some statement about

k which is either true or false. Then

[P (k)] =

{

1, P (k) is true

0, P (k) is false.
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Second, to make some of the results easier to state, we will use the notation

L(n) =
∑

i<n

Lb(i).

Our first result is a statement about the number of base b large digits in the

sequence of positive integers up to a digit times a power of b. The proof of this

formula follows from a straightforward counting argument and will be omitted.

Lemma 1. Let d be a nonzero digit and m a nonnegative integer. Then

L(d · bm) = [d > db/2e] · (d − db/2e)bm + bb/2cdmbm−1.

Next, let n be a positive integer with base b representation

n =

m
∑

k=0

dkbk.

Also, let

ni =
i

∑

k=0

dkbk, for i ≥ 0; n−1 = 0.

Now, we make the important observation that if n = dmbm + nm−1, then

L(dmbm + nm−1) = L(dmbm) + [dm ≥ db/2e] · nm−1 + L(nm−1).

Hence, using mathematical induction on the number of digits in n, the above equa-

tion, and Lemma 1, we have the following more general result.

Lemma 2. Let n be a positive integer with base b representation

n =

m
∑

k=0

dkbk

and define

ni =

i
∑

k=0

dkbk, for i ≥ 0; n−1 = 0.

Then

L(n) = bb/2c

m
∑

k=0

dkkbk−1 +

m
∑

k=0

[dk > db/2e] · (dk − db/2e)bk

+
m

∑

k=0

[dk ≥ db/2e] · nk−1.
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4. The Remainder Term. The next step in analyzing L(n) is to study it

from a different perspective. Let

R(n) =
b b

2
c

b
mn − bb/2c

m
∑

k=0

dkkbk−1

−

m−1
∑

k=0

[dk > db/2e] · (dk − db/2e)bk −

m−1
∑

k=0

[dk ≥ db/2e] · nk−1.

The next lemma will state some properties of R, which will be extremely useful

throughout the rest of the paper.

Lemma 3.

(a) For any positive integer n, R(bn) = bR(n).

(b) Let n be a positive integer with base b representation

n =

m
∑

k=0

dkbk.

Then

R(n + 1) − R(n) =
b b

2c

b
m + [dm ≥ db/2e] − Lb(n).

(c) Let m be a nonnegative integer, d a digit, and p an integer such that 0 ≤ p <

(b − 1) · bm. Then

R(bm+1 + bp + d) − d · R(bm + p + 1) − (b − d) · R(bm + p)

=
b b

2
c

b
d − [d > db/2e](d − db/2e).

Proof. The proof of (a) involves a fairly easy, but tedious, derivation using the

definition of R(n). In passing, we note that using Lemma 3(a) and the fact that

L(n) =
b b

2
c

b
mn + [dm > db/2e] · (dm − db/2e)bm

+ [dm ≥ db/2e] · nm−1 − R(n),

it is immediate that

L(bn) = bL(n) + bb/2cn

for all n ≥ 1.
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The proof of (b) follows from scrutinizing three cases. The first case is when n

and n + 1 have a different number of digits. Thus, n = bm+1 − 1. The second case

is when n and n + 1 have the same number of digits but have a different first digit.

Thus n = d · bm − 1 for d = 2, 3, . . . , b − 1. The third case is the rest of the story,

i.e., when n and n + 1 have the same number of digits and the same first digit. In

every case, we have that

R(n + 1) − R(n) =
b b

2
c

b
m + [dm ≥ db/2e] − Lb(n).

The proof of (c) is a little more involved. Using Lemma 3(b) twice, Lemma

3(a) once, and the assumption that the base b representation of bm + p is

bm + p =

m
∑

k=0

dkbk,

we have the following sequence of equalities.

R(bm+1 + bp + d) − dR(bm + p + 1) − (b − d)R(bm + p)

= R(bm+1 + bp + d) − d
(

R(bm + p + 1) − R(bm + p)
)

− bR(bm + p)

= R(bm+1 + bp + d) − R(bm+1 + bp) − d

(

b b
2c

b
m + [dm ≥ db/2e] − Lb(b

m + p)

)

=

d−1
∑

k=0

(

R(bm+1 + bp + k + 1) − R(bm+1 + bp + k)
)

− d
b b

2c

b
m

− [dm ≥ db/2e]d + dLb(b
m + p)

=

d−1
∑

k=0

(

b b
2
c

b
(m + 1) + [dm ≥ db/2e] − Lb(b

m+1 + bp + k)

)

− d
b b

2
c

b
m

− [dm ≥ db/2e]d + dLb(b
m + p)

= d
b b

2
c

b
m + d

b b
2
c

b
+ d[dm ≥ db/2e] −

d−1
∑

k=0

Lb(b
m+1 + bp + k) − d

b b
2
c

b
m

− [dm ≥ db/2e]d + dLb(b
m + p)

= d
b b

2
c

b
− [d > db/2e](d − db/2e).

This completes the proof of (c) and the proof of Lemma 3.
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5. Some Functions. Let m be a nonnegative integer and p be an integer

such that 0 ≤ p < (b − 1)bm. Define the function φ(x) by

φ

(

p

(b − 1)bm

)

=
R(bm + p)

bm
.

Note that by Lemma 3(a), φ(x) is uniquely defined. For if x has any other

representation, i.e.
p′

(b − 1)bm′
,

then

p′ = bm′−mp.

If we assume, without loss of generality, that m′ > m, then m′−m is a positive

integer. Therefore,
R(bm′

+ p′)

bm′
=

R(bm + p)

bm
.

The function φ(x) is defined only on a subset of [0, 1]. We now consider the

problem of extending this function continuously to [0, 1]. Here, we solve this problem

by considering the limit of a sequence of “polygonal” functions which identify with

φ(x) on the rationals of the form

p

(b − 1)bm
.

These polygonal functions are defined in the following way. Let m be a non-

negative integer. fm(x) is defined on [0, 1] to be the function whose graph is the

polygon joining the points
{

(0, 0),

(

1

(b − 1)bm
, φ

(

1

(b − 1)bm

))

,

· · · ,

(

p

(b − 1)bm
, φ

(

p

(b − 1)bm

))

, · · · , (1, 0)

}

.

Then, the definition of {fm(x)} is extended to the reals by fm(x± 1) = fm(x).

From the definition, f0 = 0. In addition, f1(x) is equal to the auxiliary function

g(x), which is defined on the [0, 1/(b− 1)] by

g(x) =

[

0 ≤ x ≤
db/2e

(b − 1)b

]

(b − 1)bb/2c

b
x

+

[

db/2e

(b − 1)b
< x ≤

1

b − 1

]

(b − 1)db/2e

b

(

1

b − 1
− x

)
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and extended to the reals by g(x ± 1/(b − 1)) = g(x). Furthermore, using Lemma

3(c), it follows that for any nonnegative integer m and all real x,

fm+1(x) − fm(x) =
1

bm
g(bmx).

Repeated iterations of this equation yields

fm+1(x) =

m
∑

i=0

1

bi
g(bix).

Since g(x) is bounded, the sequence {fm(x)} converges uniformly for all x.

Hence, the limiting function

f(x) =
∞
∑

i=0

1

bi
g(bix)

is a continuous extension of φ(x).

6. The Main Result.

Theorem 2. Let n be a positive integer with base b representation

n =

m
∑

k=0

dkbk.

Next, let n = bm + p and

x =
p

(b − 1)bm
.

Finally, let g(x) be periodic of period 1/(b − 1) and defined by

g(x) =

[

0 ≤ x ≤
db/2e

(b − 1)b

]

(b − 1)bb/2c

b
x

+

[

db/2e

(b − 1)b
< x ≤

1

b − 1

]

(b − 1)db/2e

b

(

1

b − 1
− x

)

and let

f(x) =
∞
∑

i=0

1

bi
g(bix).

Then
∑

i<n

Lb(i) =
b b

2c

b
n logb n − Eb(n),
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where

Eb(n) = bm−1

(

bf(x) + bb/2c(1 + (b − 1)x) logb(1 + (b − 1)x)

− [dm ≥ db/2e] · b(1 − dm + (b − 1)x) − [dm > db/2e] · b(dm − db/2e)

)

.

Proof.

L(n) =
b b

2
c

b
mn + [dm > db/2e] · (dm − db/2e)bm

+ [dm ≥ db/2e] · nm−1 − R(n)

=
b b

2c

b
mn + [dm > db/2e] · (dm − db/2e)bm

+ [dm ≥ db/2e] · nm−1 − bmf

(

p

(b − 1)bm

)

.

Next, since

n = bm + p = bm

(

1 +
p

bm

)

,

m = logb n − logb

(

1 +
p

bm

)

.

Also,

nm−1 = n − dmbm = bm + p − dmbm = bm

(

1 +
p

bm
− dm

)

.

Substituting for these three quantities, setting

x =
p

(b − 1)bm
,

and simplifying, we have

L(n) =
b b

2c

b
n logb n −

b b
2c

b
n logb(1 + (b − 1)x) − bmf(x)

+ [dm ≥ db/2e] · bm(1 − dm + (b − 1)x) + [dm > db/2e] · (dm − db/2e)bm.

Thus, we have the result.
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7. Questions. Some open questions remain. One problem is to study the

function f in Theorem 2. Another problem that is noteworthy is concerning Trol-

lope’s result. Trollope’s original result is in base 2. What would Trollope’s result

be for base b?
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