AN EXPLICIT EXPRESSION FOR LARGE DIGIT SUMS
IN BASE B EXPANSIONS

Curtis Cooper and Robert E. Kennedy
Department of Mathematics, Central Missouri State University
Warrensburg, MO 64093-5045

Abstract. Let n and b be positive integers. We will present a formula for the
number of large digits ([b/2] or more) in the base b representation of the sequence

of positive integers less than n.
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1. Introduction. Let s;(i) denote the sum of the digits in the base b repre-
sentation of the nonnegative integer i and Lj(i) denote the number of large digits
([b/2] or more) in the base b representation of the nonnegative integer i. Bush [1]
showed that

b—1
Z sp(n) ~ 5 xlogy x.

n<x
Here, log, x denotes the base b logarithm of x. Mirsky [4], and later Cheo and Yien
[2], proved that

b—1
Z sp(n) = 5 xlogy x + O(x).

n<x
Trollope [5] discovered the following result. Let g(x) be periodic of period one and
defined on [0, 1] by

and let

Now, if n =2"(1+ ), 0 <z < 1, then

5" 5a(0) = gnlogyn — Ba(n),
where
Ey(n) =21 (Qf(x) + (14 z)logy (1 + x) — 2:1:).
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We will discuss some similar results for L.

2. Main Term and Big-Oh Term. Our first result will be to give a main

term and big-Oh term for a sum involving L;. We will parallel a proof of Mirsky
[4].

Theorem 1.

ZLb :—Jxlogbx+0( ).
n<x
Proof. We begin by observing that if £ > 0 and 0 < d < b — 1, then the
representation of n in base b contains the term db”* if and only if n can be expressed
in the form

n =mb**l 4 p,

where m > 0 and db* < pu < (d + 1)b*. Hence f(z,k,d), the number of positive
integers not exceeding x whose representation in base b contains the term db*, is

given by

f(kaad): Z 1

mbk+1+u§m
m>0;db* <p<(d+1)b"

= Y (bkﬂ +0(1 )) =%+0(bk>.

dbk <pu<(d+1)bk

But clearly

d Ln)= > M%WJ (z,k, d).

n<x 0<k<log; =
0<d<b—1

Therefore, by the formula for f(z,k,d),

Sum= 3| (5+o0)

n<x 0<k<log, x
0<d<b—1
b log, z+1
b 1—b98%
= L—ijlogb” + H © (ﬁ)

b
LZJ xlogy x + O(x).



To show that this is best possible, we consider the sequence z = bV 1! 4+ b7,
We have that

Z Ly(n) = @(NJF DN 4 ﬂNbN
b b

n<Tn

= (V! +bN)ﬂN+ v L2
b

b
and )
@x lo
b N 108, TN
%J N+1 N LgJ N+1 N
Thus,
H
Z Ly(n) — %CEN logy z
n<Try
b b b b

= bN“%J - %J(bN“ + ") log, (b+1) + bN% - bN%

_ 5] N+1 | N MUILES!

= @(b“wzﬂv) 1 —log,(b+1) — 1),

b b b+ 1
Hence,
b
Z Ly(n) = L—ZJ:):N log, xn + cz N,
n<Tn
where LbJ
_ Ll b

3. Notation and Basic Results. We next present some notation. The first
idea is due to Kenneth Iverson, the creator of the programming language APL, and
is discussed in [3]. Suppose that k is an integer and P(k) is some statement about

k which is either true or false. Then

[ 1, P(k)is true
[P(k)] = { 0, P(k) is false.



Second, to make some of the results easier to state, we will use the notation

L(n) = Lyi).

<n
Our first result is a statement about the number of base b large digits in the

sequence of positive integers up to a digit times a power of b. The proof of this

formula follows from a straightforward counting argument and will be omitted.

Lemma 1. Let d be a nonzero digit and m a nonnegative integer. Then

L(d-b™) = [d > [b/2]] - (d — [b/2])b™ + [b/2]dmb™ 1.

Next, let n be a positive integer with base b representation

n=> dgb".
k=0
Also, let
n; = debk, for i >0; n_y=0.
k=0
Now, we make the important observation that if n = d,,b™ + n,,_1, then
L(dpb™ + np—1) = L(d,0™) + [dry > [0/2]] - 1 + L(np—1).

Hence, using mathematical induction on the number of digits in n, the above equa-

tion, and Lemma 1, we have the following more general result.

Lemma 2. Let n be a positive integer with base b representation

n= i dyb”
k=0

and define '
n; = debk, for i >0; n_y=0.
k=0
Then . .
L(n) = [b/2] > dpkbt* "+ "[dp > [b/2]] - (dy, — [b/2])b
k=0 k=0

+ ) [de > [b/2]] - 1.

k=0

4



4. The Remainder Term. The next step in analyzing L(n) is to study it

from a different perspective. Let

R(n) = @mn — [b/2] i dkbP1

b
m—1 m—1

[die > [b/2]] - (die — [/21)6" = > " [d > [b/2]] - e—1.
k=0 k=0

The next lemma will state some properties of R, which will be extremely useful

throughout the rest of the paper.

Lemma 3.
(a) For any positive integer n, R(bn) = bR(n).

(b) Let n be a positive integer with base b representation

n = idkbk.
k=0

Then ,

%Jm + [dm > [b/2]] — Lp(n).

(¢) Let m be a nonnegative integer, d a digit, and p an integer such that 0 < p <
(b—1)-b™. Then

R(n+1)— R(n) =

RV™ +bp+d)—d-R(bO™ +p+1)— (b—d) - R(b™ + p)

= =2=d — [d > [b/2])(d ~ [b/2]).

Proof. The proof of (a) involves a fairly easy, but tedious, derivation using the

definition of R(n). In passing, we note that using Lemma 3(a) and the fact that

b
L(n) = %mn + [dm > [b/2]] - (dum — [b/2])0™

+ [dm = [6/2]] - nip—1 — R(n),

it is immediate that
L(bn) = bL(n) + [b/2]|n

for all n > 1.



The proof of (b) follows from scrutinizing three cases. The first case is when n
and n + 1 have a different number of digits. Thus, n = ™! — 1. The second case
is when n and n + 1 have the same number of digits but have a different first digit.
Thus n =d-b" —1 for d =2,3,...,b— 1. The third case is the rest of the story,
i.e., when n and n + 1 have the same number of digits and the same first digit. In
every case, we have that

R(n+1) = R(n) = “2m 4 [dn, > [b/2]] = Lo(n).

c*‘wlc-

The proof of (c) is a little more involved. Using Lemma 3(b) twice, Lemma

3(a) once, and the assumption that the base b representation of ™ + p is
m
b p = dib¥,
k=0
we have the following sequence of equalities.

RO +bp+d) —dR(D™ +p+1) — (b— d)R(™ + p)
=RV +bp+d) —d(ROO™ +p+1) — R(b™ +p)) — bR(b™ + p)

= R(™ ! + bp+d) — RV + bp) — d(%m + [dm > [b/2]] — Ly(b™ + p))
= 5]
=> (RO +bp+k+1)— RO +bp+k)) — d%m
k=0
— [dm > [b/2])d + dLy(b™ + p)
/L5 5]
— %(m%—l) + [dm > [b/2]] — Lyp(b™ +bp+k)) —d%m
k=0
— [dm > [b/2])d + dLy(b™ + p)
=d 3 +dL%J +d[dy, > [b/2] diL (O™ +bp + k) dL%J
_Tm o [dm > [b/ ]—k_ob P _Tm
— [dm > [b/2])d + dLy(b™ + p)
5]

d=3= — [d > [b/2]](d - [b/2]).

This completes the proof of (¢) and the proof of Lemma 3.



5. Some Functions. Let m be a nonnegative integer and p be an integer
such that 0 < p < (b—1)b"™. Define the function ¢(x) by
s p _ R(™+p)
(b—1)bm b
Note that by Lemma 3(a), ¢(z) is uniquely defined. For if z has any other

representation, i.e.
/

R
(b—1)b™ ’
then
p/ — bm/—mp.

If we assume, without loss of generality, that m’ > m, then m’ —m is a positive

integer. Therefore,
R(O™ +p')  R(™ +p)

pm’ pm
The function ¢(z) is defined only on a subset of [0,1]. We now consider the

problem of extending this function continuously to [0, 1]. Here, we solve this problem
by considering the limit of a sequence of “polygonal” functions which identify with

¢(x) on the rationals of the form

__r
®— om

These polygonal functions are defined in the following way. Let m be a non-
negative integer. f,,(x) is defined on [0, 1] to be the function whose graph is the
polygon joining the points

{00 (=5 )
(aeam)) 0o

Then, the definition of { f,,,(x)} is extended to the reals by f,(x£1) = f.(x).
From the definition, fo = 0. In addition, fi(x) is equal to the auxiliary function
g(x), which is defined on the [0,1/(b— 1)] by

%ﬂ1}®—1MW%x
(b—1)b b

[
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and extended to the reals by g(z +1/(b— 1)) = g(z). Furthermore, using Lemma

3(c), it follows that for any nonnegative integer m and all real z,

1

Fini1(@) = ) = 1g(b7)

Repeated iterations of this equation yields
1
fm—|—1 Z(; b_

Since g(x) is bounded, the sequence {f,,(x)} converges uniformly for all z.

Hence, the limiting function
9=3 5
is a continuous extension of ¢(z).

6. The Main Result.

Theorem 2. Let n be a positive integer with base b representation

n= f: dy.b*.
k=0

Next, let n = 0™ + p and
p

(b—1)b™
Finally, let g(x) be periodic of period 1/(b — 1) and defined by

[b/2] | (b —=1)[b/2]
g(z) = [0< < (b—l)b} ) x

[

=1
2 =2 ol

€r =

and let

Then
ZLb ——Jnlogbn—Eb( ),

<n



where
Ey(n) = pm—t (bf(x) + [6/2](1 4 (b—1)z)logy(1 4+ (b —1)z)

= [dm = [0/2]] - b(1 = dp + (b= 1)) = [dim > [b/2]] - b(dim — Wﬂ))

Proof.

b
Ln) = Honn + 4., > o/21)- (@, - or20pm
+ [dn = [6/2]] - npn—1 — R(n)
b
:%mepmmu%—wmm
+ [dm > [6/2]] - N1 —bmf(ﬁ).
Next, since
n:bm+p:bm<1+b%),
m = logbn—logb(l + b%)
Also,

o1 = 11— dyb™ = b™ + p — dypyb™ :bm<1+b% —dm).
Substituting for these three quantities, setting

b
b— 1)pm’

xr =

and simplifying, we have

L(n) = %Jnlogb n— %nlogb(l +(b—1)x) =" f(x)
+ [dp > [b/2]] - 0™ (1 — dp, + (b— 1)) + [dp, > [0/2]] - (dp, — [b/2])0™.

Thus, we have the result.



7. Questions. Some open questions remain. One problem is to study the
function f in Theorem 2. Another problem that is noteworthy is concerning Trol-

lope’s result. Trollope’s original result is in base 2. What would Trollope’s result
be for base b7
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