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1. Introduction. For some time we have been concerned about the validity

of the statement

“s(2n) < 2n for all n > 3.”

Here, s(m) denotes the (base 10) digital sum of the integer m. We have been unable

to prove or disprove the above conjecture. But, based on the relation

s(2n) = 2s(2n−1) − 9L(2n−1)

where

L(m) = # of “large digits” of m

we have become interested in the number of large digits occurring in powers of 2.

Generalizing the concepts above, a “base b large digit” is a base b digit when

doubled involves a “carry.” For example, 6 is a base ten large digit since 2× 6 = 12

has two digits. The base b large digits are the digits

db/2e, db/2e + 1, db/2e + 2, . . . , b − 1.

So, for example, the base 7 large digits are

4, 5, and 6.

Digits which are not large digits are called, “small base b digits.” Hence the small

base 7 digits are

0, 1, 2, and 3.
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In general, Lb(m) denotes the number of base b large digits of the base b represen-

tation of the integer m.

A method due to Narkiewicz [2] and earlier by Gupta [1] was used in investi-

gating the question asked by Erdős:

“Does there exists an integer m 6= 0, 2, 8 such that

2m is a distinct sum of powers of 3?”

That is,

“Is it true that L3(2
m) 6= 0 for m ≥ 9?”

In Narkiewicz [2], it was shown that the number of nonnegative integers m ≤ x

such that 2m is the sum of distinct powers of 3 does not exceed

1.62x.631.

This method will be generalized in what follows.

2. Main Result.

Theorem. Let (a, b) = 1, that is a and b are relatively prime. Let

S = {n : Lb(a
n) = 0} and S(x) = #{n ≤ x : Lb(a

n) = 0}.

Let

β = #{d < b : (d, b) = 1 and d is small}

and

θ =
ln

(

b+1
2

)

ln b
.

Finally, let φ denote Euler’s phi function. Then

S(x) ≤ β

(

b(1 − θ)

θφ(b)

)θ(
1

1 − θ

)

xθ.
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Proof. Let

an =
s

∑

i=0

dib
i.

If Lb(a
n) = 0, then 0 ≤ di ≤ b(b − 1)/2c for all 0 ≤ i ≤ s. Then for any k ≥ 0 (we

will assume k ≥ 1)

an ≡

k−1
∑

i=0

dib
i (mod bk).

Note that d0 6= 0, since (a, b) = 1. In fact, (d0, b) = 1, since (a, b) = 1. By the

definition of β, β ≤ φ(b). So,

#{an (mod bk)} ≤ β

(⌊

b − 1

2

⌋

+ 1

)k−1

,

since (a, b) = 1.

The number of residue classes which n can belong to mod φ(bk) is at most

β

(⌊

b − 1

2

⌋

+ 1

)k−1

,

say,

r1, r2, . . . , rβ(b(b−1)/2c)k−1.

Hence, for any x,

#{n ≤ x : n ≡ ri (mod φ(bk))} ≤
x

φ(bk)
+ 1

and so,

S(x) ≤

β(b(b−1)/2c+1)k−1

∑

i=1

#{n ≤ x : n ≡ ri (mod φ(bk))}

≤ β

(⌊

b − 1

2

⌋

+ 1

)k−1(
x

φ(bk)
+ 1

)

≤ β

(

b + 1

2

)k−1(
x

φ(bk)
+ 1

)

=
β

2k−1
(b + 1)k−1 1

bk

(

bkx

φ(bk)

)

+ β

(

b + 1

2

)k−1

=
β

2k−1

(

b + 1

b

)k−1
1

b
·

bx

φ(b)
+ β

(

b + 1

2

)k−1

=
β

φ(b)

(

b + 1

2b

)k−1

x + β

(

b + 1

2

)k−1

.
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Let

f(z) =
β

φ(b)

(

b + 1

2b

)z−1

x + β

(

b + 1

2

)z−1

so,

f ′(z) =
β

φ(b)

(

b + 1

2b

)z−1

x ln

(

b + 1

2b

)

+ β

(

b + 1

2

)z−1

ln

(

b + 1

2

)

and thus, f ′(z) = 0 implies that

β

(

b + 1

2

)z−1[
1

φ(b)
·

x

bz−1
ln

(

b + 1

2b

)

+ ln

(

b + 1

2

)]

= 0

when
x

bz−1
=

− ln
(

b+1
2

)

ln
(

b+1
2b

) · φ(b)

=
ln

(

b+1
2

)

ln
(

2b
b+1

)φ(b).

Since

θ =
ln

(

b+1
2

)

ln b
,

ln

(

b + 1

2

)

= θ ln b

and

ln

(

2b

b + 1

)

= − ln

(

b + 1

2b

)

= − ln

(

b + 1

2

)

+ ln b

= −θ ln b + ln b,

and so,
x

bz−1
=

θ ln b

−θ ln b + ln b
· φ(b)

=
θ

1 − θ
φ(b).

Since
bz ≥ bbzc = bdze−1 ≥ bz−1,

1

b
·

x

φ(b)bz−1
≤

x

φ(b)bbzc
=

x

φ(b)bdze−1

≤
x

φ(b)bz−1
=

θ

1 − θ
.
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Therefore,
1

b
·

θ

1 − θ
≤

x

φ(b)bdze−1
≤

θ

1 − θ
.

Hence, there exists a k (= dze) that can be used. So let k = dze and we have

1

b
·

θ

1 − θ
≤

x

φ(b)bk−1
≤

θ

1 − θ
.

This implies
1

b
·

θ

1 − θ
≤

bx

φ(b)bk
≤

θ

1 − θ
.

This implies
1

b
·

θ

1 − θ
≤

x

φ(bk)
≤

θ

1 − θ
.

Therefore,

S(x) ≤ β

(

b + 1

2

)k−1(
θ

1 − θ
+ 1

)

= β

(

b + 1

2

)k−1(
1

1 − θ

)

.

But
(

b + 1

2

)k−1

= (bk−1)θ,

and

bk−1 ≤
bx(1 − θ)

θφ(b)
,

so
(

b + 1

2

)k−1

≤

(

b(1 − θ)

θφ(b)

)θ

xθ,

and we have

S(x) ≤ β

(

b(1 − θ)

θφ(b)

)θ(
1

1 − θ

)

xθ.

This completes the proof.

Note that

θ =
ln

(

b+1
2

)

ln b
< 1,
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since
b + 1

2
< b

for b ≥ 2.

3. Example. Suppose b = 5. Then φ(b) = 4, β = 2, and

θ =
ln 3

ln 5
≈ .68

and so

constant c ≈ 2

(

5(.32)

.68(4)

).68(
1

.32

)

≈ 2

(

1.6

2.72

).68(
1

.32

)

≈ 2.18.

Therefore,

S(x) ≤ 2.18x.68.
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