A GENERALIZATION OF A RESULT BY NARKIEWICZ CONCERNING LARGE DIGITS OF POWERS

Robert E. Kennedy and Curtis Cooper
Department of Mathematics
Central Missouri State University
Warrensburg, MO 64093
email: rkenedy@cmsuvmb.cmsu.edu
email: cnc8851@cmsu2.cmsu.edu

1. Introduction. For some time we have been concerned about the validity of the statement

$$
" s\left(2^{n}\right)<2 n \text { for all } n>3 . "
$$

Here, $s(m)$ denotes the (base 10) digital sum of the integer m. We have been unable to prove or disprove the above conjecture. But, based on the relation

$$
s\left(2^{n}\right)=2 s\left(2^{n-1}\right)-9 L\left(2^{n-1}\right)
$$

where

$$
L(m)=\# \text { of "large digits" of } m
$$

we have become interested in the number of large digits occurring in powers of 2 .
Generalizing the concepts above, a "base b large digit" is a base b digit when doubled involves a "carry." For example, 6 is a base ten large digit since $2 \times 6=12$ has two digits. The base b large digits are the digits

$$
\lceil b / 2\rceil,\lceil b / 2\rceil+1,\lceil b / 2\rceil+2, \ldots, b-1 .
$$

So, for example, the base 7 large digits are

$$
4,5, \text { and } 6
$$

Digits which are not large digits are called, "small base b digits." Hence the small base 7 digits are

$$
0,1,2, \text { and } 3
$$

In general, $L_{b}(m)$ denotes the number of base b large digits of the base b representation of the integer m.

A method due to Narkiewicz [2] and earlier by Gupta [1] was used in investigating the question asked by Erdős:
"Does there exists an integer $m \neq 0,2,8$ such that 2^{m} is a distinct sum of powers of 3 ?"

That is,

$$
\text { "Is it true that } L_{3}\left(2^{m}\right) \neq 0 \text { for } m \geq 9 \text { ?" }
$$

In Narkiewicz [2], it was shown that the number of nonnegative integers $m \leq x$ such that 2^{m} is the sum of distinct powers of 3 does not exceed

$$
1.62 x^{.631}
$$

This method will be generalized in what follows.

2. Main Result.

Theorem. Let $(a, b)=1$, that is a and b are relatively prime. Let

$$
S=\left\{n: L_{b}\left(a^{n}\right)=0\right\} \text { and } S(x)=\#\left\{n \leq x: L_{b}\left(a^{n}\right)=0\right\} .
$$

Let

$$
\beta=\#\{d<b:(d, b)=1 \text { and } d \text { is small }\}
$$

and

$$
\theta=\frac{\ln \left(\frac{b+1}{2}\right)}{\ln b}
$$

Finally, let ϕ denote Euler's phi function. Then

$$
S(x) \leq \beta\left(\frac{b(1-\theta)}{\theta \phi(b)}\right)^{\theta}\left(\frac{1}{1-\theta}\right) x^{\theta}
$$

Proof. Let

$$
a^{n}=\sum_{i=0}^{s} d_{i} b^{i}
$$

If $L_{b}\left(a^{n}\right)=0$, then $0 \leq d_{i} \leq\lfloor(b-1) / 2\rfloor$ for all $0 \leq i \leq s$. Then for any $k \geq 0$ (we will assume $k \geq 1$)

$$
a^{n} \equiv \sum_{i=0}^{k-1} d_{i} b^{i} \quad\left(\bmod b^{k}\right)
$$

Note that $d_{0} \neq 0$, since $(a, b)=1$. In fact, $\left(d_{0}, b\right)=1$, since $(a, b)=1$. By the definition of $\beta, \beta \leq \phi(b)$. So,

$$
\#\left\{a^{n} \quad\left(\bmod b^{k}\right)\right\} \leq \beta\left(\left\lfloor\frac{b-1}{2}\right\rfloor+1\right)^{k-1}
$$

since $(a, b)=1$.
The number of residue classes which n can belong to $\bmod \phi\left(b^{k}\right)$ is at most

$$
\beta\left(\left\lfloor\frac{b-1}{2}\right\rfloor+1\right)^{k-1}
$$

say,

$$
r_{1}, r_{2}, \ldots, r_{\beta(\lfloor(b-1) / 2\rfloor)^{k-1}}
$$

Hence, for any x,

$$
\#\left\{n \leq x: n \equiv r_{i} \quad\left(\bmod \phi\left(b^{k}\right)\right)\right\} \leq \frac{x}{\phi\left(b^{k}\right)}+1
$$

and so,

$$
\begin{aligned}
S(x) & \leq \sum_{i=1}^{\beta(\lfloor(b-1) / 2\rfloor+1)^{k-1}} \#\left\{n \leq x: n \equiv r_{i}\left(\bmod \phi\left(b^{k}\right)\right)\right\} \\
& \leq \beta\left(\left\lfloor\frac{b-1}{2}\right\rfloor+1\right)^{k-1}\left(\frac{x}{\phi\left(b^{k}\right)}+1\right) \\
& \leq \beta\left(\frac{b+1}{2}\right)^{k-1}\left(\frac{x}{\phi\left(b^{k}\right)}+1\right) \\
& =\frac{\beta}{2^{k-1}}(b+1)^{k-1} \frac{1}{b^{k}}\left(\frac{b^{k} x}{\phi\left(b^{k}\right)}\right)+\beta\left(\frac{b+1}{2}\right)^{k-1} \\
& =\frac{\beta}{2^{k-1}}\left(\frac{b+1}{b}\right)^{k-1} \frac{1}{b} \cdot \frac{b x}{\phi(b)}+\beta\left(\frac{b+1}{2}\right)^{k-1} \\
& =\frac{\beta}{\phi(b)}\left(\frac{b+1}{2 b}\right)^{k-1} x+\beta\left(\frac{b+1}{2}\right)^{k-1} .
\end{aligned}
$$

Let

$$
f(z)=\frac{\beta}{\phi(b)}\left(\frac{b+1}{2 b}\right)^{z-1} x+\beta\left(\frac{b+1}{2}\right)^{z-1}
$$

so,

$$
f^{\prime}(z)=\frac{\beta}{\phi(b)}\left(\frac{b+1}{2 b}\right)^{z-1} x \ln \left(\frac{b+1}{2 b}\right)+\beta\left(\frac{b+1}{2}\right)^{z-1} \ln \left(\frac{b+1}{2}\right)
$$

and thus, $f^{\prime}(z)=0$ implies that

$$
\beta\left(\frac{b+1}{2}\right)^{z-1}\left[\frac{1}{\phi(b)} \cdot \frac{x}{b^{z-1}} \ln \left(\frac{b+1}{2 b}\right)+\ln \left(\frac{b+1}{2}\right)\right]=0
$$

when

$$
\begin{aligned}
\frac{x}{b^{z-1}} & =\frac{-\ln \left(\frac{b+1}{2}\right)}{\ln \left(\frac{b+1}{2 b}\right)} \cdot \phi(b) \\
& =\frac{\ln \left(\frac{b+1}{2}\right)}{\ln \left(\frac{2 b}{b+1}\right)} \phi(b) .
\end{aligned}
$$

Since

$$
\begin{gathered}
\theta=\frac{\ln \left(\frac{b+1}{2}\right)}{\ln b} \\
\ln \left(\frac{b+1}{2}\right)=\theta \ln b
\end{gathered}
$$

and

$$
\begin{aligned}
\ln \left(\frac{2 b}{b+1}\right) & =-\ln \left(\frac{b+1}{2 b}\right) \\
& =-\ln \left(\frac{b+1}{2}\right)+\ln b \\
& =-\theta \ln b+\ln b,
\end{aligned}
$$

and so,

$$
\begin{aligned}
\frac{x}{b^{z-1}} & =\frac{\theta \ln b}{-\theta \ln b+\ln b} \cdot \phi(b) \\
& =\frac{\theta}{1-\theta} \phi(b) .
\end{aligned}
$$

Since

$$
\begin{aligned}
b^{z} \geq b^{\lfloor z\rfloor} & =b^{\lceil z\rceil-1} \geq b^{z-1} \\
\frac{1}{b} \cdot \frac{x}{\phi(b) b^{z-1}} & \leq \frac{x}{\phi(b) b b^{[z\rceil}}=\frac{x}{\phi(b) b^{\lceil z\rceil-1}} \\
& \leq \frac{x}{\phi(b) b^{z-1}}=\frac{\theta}{1-\theta} .
\end{aligned}
$$

Therefore,

$$
\frac{1}{b} \cdot \frac{\theta}{1-\theta} \leq \frac{x}{\phi(b) b^{\lceil z\rceil-1}} \leq \frac{\theta}{1-\theta}
$$

Hence, there exists a $k(=\lceil z\rceil)$ that can be used. So let $k=\lceil z\rceil$ and we have

$$
\frac{1}{b} \cdot \frac{\theta}{1-\theta} \leq \frac{x}{\phi(b) b^{k-1}} \leq \frac{\theta}{1-\theta}
$$

This implies

$$
\frac{1}{b} \cdot \frac{\theta}{1-\theta} \leq \frac{b x}{\phi(b) b^{k}} \leq \frac{\theta}{1-\theta}
$$

This implies

$$
\frac{1}{b} \cdot \frac{\theta}{1-\theta} \leq \frac{x}{\phi\left(b^{k}\right)} \leq \frac{\theta}{1-\theta}
$$

Therefore,

$$
\begin{aligned}
S(x) & \leq \beta\left(\frac{b+1}{2}\right)^{k-1}\left(\frac{\theta}{1-\theta}+1\right) \\
& =\beta\left(\frac{b+1}{2}\right)^{k-1}\left(\frac{1}{1-\theta}\right)
\end{aligned}
$$

But

$$
\left(\frac{b+1}{2}\right)^{k-1}=\left(b^{k-1}\right)^{\theta}
$$

and

$$
b^{k-1} \leq \frac{b x(1-\theta)}{\theta \phi(b)}
$$

so

$$
\left(\frac{b+1}{2}\right)^{k-1} \leq\left(\frac{b(1-\theta)}{\theta \phi(b)}\right)^{\theta} x^{\theta}
$$

and we have

$$
S(x) \leq \beta\left(\frac{b(1-\theta)}{\theta \phi(b)}\right)^{\theta}\left(\frac{1}{1-\theta}\right) x^{\theta}
$$

This completes the proof.
Note that

$$
\theta=\frac{\ln \left(\frac{b+1}{2}\right)}{\ln b}<1
$$

since

$$
\frac{b+1}{2}<b
$$

for $b \geq 2$.
3. Example. Suppose $b=5$. Then $\phi(b)=4, \beta=2$, and

$$
\theta=\frac{\ln 3}{\ln 5} \approx .68
$$

and so

$$
\text { constant } \begin{aligned}
c & \approx 2\left(\frac{5(.32)}{.68(4)}\right)^{.68}\left(\frac{1}{.32}\right) \\
& \approx 2\left(\frac{1.6}{2.72}\right)^{.68}\left(\frac{1}{.32}\right) \\
& \approx 2.18
\end{aligned}
$$

Therefore,

$$
S(x) \leq 2.18 x^{.68}
$$

References

1. H. Gupta, "Powers of 2 and Sums of Distinct Powers of 3," Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 602-633 (1978), 151-158.
2. W. Narkiewicz, "A Note on a Paper of H. Gupta Concerning Powers of Two and Three," Univ. Beograd Elektrotehn. Fak. Ser. Mat., 678-715 (1980), 173-174.

AMS Classification Numbers: 11A63.

