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Introduction. In [1], Trollope discovered a formula for the sum of the digital

sums of the positive integers (written in a generalized base) less than n. In [2],

he found a particular expression for this sum when the base is two. Here, we are

interested in a slightly different problem. Specifically, we will determine a formula

for the number of occurrences of the digit 1 in the sequence of positive integers

(written in base ten) less than n. Although Trollope’s problem and this problem

are different, we will proceed in much the same spirit as Trollope.

Initially, our motivation for studying this problem was our interest in digit

problems. We had no application in mind when we began this investigation. How-

ever, as we worked on this problem, we were able to create a “practical” problem

which is related to the number of 1’s problem.

Suppose you own a company which types page numbers on book

pages. You would like to obtain estimates for the number of times

the number keys on the typewriter are used. In particular,

1. How much use will the “1” key get when page numbers

are typed on an n page book?

2. Will the number keys wear evenly? That is, will the “1”

key get as much use as the “2” key, etc.?

With this justification of our work, we now set out to answer the number of

1’s problem and discuss some related questions.

Notation and Basic Results. We begin with some notation. Let n be a

positive integer. Let D1(n) denote the number of occurrences of the digit 1 in the

sequence 1, 2, . . . , n − 1. For example, D1(100) = 20 since there are twenty 1’s in

the sequence 1, 2, 3, . . .98, 99. Ten 1’s occur in the units digits of 1, 11, 21, . . . , 91

and ten 1’s occur in the tens digits of 10, 11, 12, . . . , 19.
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Next, we define a notation which will be used extensively throughout this paper.

The idea is due to Kenneth Iverson, the creator of the programming language APL,

and is discussed in [3]. Suppose that k is an integer and P (k) is some statement

about k which is either true or false. Then

[P (k)] =

{

1, P(k) is true;

0, P(k) is false.

Our first result is a statement about the number of 1’s in the sequence of

positive integers up to a digit times a power of ten. The proof of this formula

follows from a straightforward counting argument, and will be omitted.

Lemma 1. Let d be a non-zero digit and m a non-negative integer. Then

D1(d · 10m) = [d > 1] · 10m + d · m · 10m−1.

As an example of Lemma 1, we have that

D1(2000) = [2 > 1] · 103 + 2 · 3 · 102 = 1600.

Next, let n be a positive integer with decimal representation

n =
m

∑

k=0

ak · 10k.

Also, let

ni =
i

∑

k=0

ak · 10k, for i ≥ 0; n−1 = 0.

For example, 7583341094 = 34109. Note that for any i ≥ −1, 0 ≤ ni < 10i+1.

Now, we make the important observation, i.e.,

D1(n) = D1(am · 10m + nm−1)

= D1(am · 10m) + [am = 1] · nm−1 + D1(nm−1).

Then, using mathematical induction on the number of digits in n, the above equation

and Lemma 1, we have the following more general result.

Lemma 2.

D1(n) =
m

∑

k=0

ak · k · 10k−1 +
m

∑

k=0

[ak > 1] · 10k +
m

∑

k=0

[ak = 1] · nk−1.
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From this formula, we can obtain a main term and a big-oh term for D1(n).

To do this, we first note that

m
∑

k=0

ak · k · 10k−1 −
1

10
nm ≤ 9

m
∑

k=0

(k − m) · 10k−1.

Next, by the “perturbation method” ala [3], we have that

m
∑

k=0

(k − m) · 10k−1 = −
10

81
10m −

m

9
+

10

81
.

Thus,
m

∑

k=0

ak · k · 10k−1 =
1

10
nm + O(10m).

But m = log n + O(1), where log n denotes the base 10 logarithm of n. Therefore,

m
∑

k=0

ak · k · 10k−1 =
1

10
n log n + O(n).

Finally,
m

∑

k=0

[ak > 1] · 10k +
m

∑

k=0

[ak = 1] · nk−1 = O(n).

Therefore, by use of Lemma 2, we have the following corollary.

Corollary.

D1(n) =
1

10
n log n + O(n).

However, our goal is to examine and more explicitly state the O(n) term.

The Remainder Term. The next step in analyzing D1(n) is to study it from

a different perspective. Let

R1(n) =
1

10
mn −

m
∑

k=0

ak · k · 10k−1 −

m−1
∑

k=0

[ak > 1] · 10k −

m−1
∑

k=0

[ak = 1] · nk−1.

The next lemma will state some properties of R1, which will be extremely useful

throughout the rest of the paper.
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Lemma 3.

(a) For any positive integer n, R1(10n) = 10 · R1(n).

(b) Let n be a positive integer with decimal representation

n =
m

∑

k=0

ak · 10k.

Then

R1(n + 1) − R1(n) =
m

10
+ [am = 1] − d1(n),

where d1(n) denotes the number of 1’s in the decimal representation of n.

(c) Let m be a non-negative integer, d a digit, and p an integer such that

0 ≤ p < 9 · 10m. Then

R1(10m+1 + 10p + d)− d ·R1(10m + p + 1)− (10− d) ·R1(10m + p) =
d

10
− [d > 1].

Proof. The proof of (a) involves a fairly easy, but tedious, derivation using the

definition of R1(n). In passing, we note that using Lemma 3(a) and the fact that

D1(n) =
1

10
mn + [am = 1] · nm−1 + [am > 1] · 10m − R1(n),

it is immediate that

D1(10n) = 10 · D1(n) + n for all n ≥ 1.

The proof of (b) follows from scrutinizing three cases. The first case is when n

and n + 1 have a different number of digits. Thus n = 10m+1 − 1. The second case

is when n and n + 1 have the same number of digits but have a different first digit.

Thus n = d · 10m − 1 for d = 2, 3, . . . , 9. The third case is the rest of the story, i.e.,

when n and n+1 have the same number of digits and the same first digit. In every

case we have that

R1(n + 1) − R1(n) =
m

10
+ [am = 1] − d1(n).

The proof of (c) is a little more involved. Using Lemma 3(b) twice, Lemma

3(a) once, and the assumption that the decimal representation of 10m + p is

10m + p =
m

∑

k=0

ak · 10k,
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we have the following sequence of equalities.

R1(10m+1 + 10p + d) − d · R1(10m + p + 1) − (10 − d) · R1(10m + p)

= R1(10m+1 + 10p + d) − d · (R1(10m + p + 1) − R1(10m + p))

− 10 · R1(10m + p)

= R1(10m+1 + 10p + d) − R1(10m+1 + 10p)

− d ·
( m

10
+ [am = 1] − d1(10m + p)

)

=
d−1
∑

k=0

(

R1(10m+1 + 10p + k + 1) − R1(10m+1 + 10p + k)
)

− d ·
m

10
− [am = 1] · d + d · d1(10m + p)

=
d−1
∑

k=0

(

m + 1

10
+ [am = 1] − d1(10m+1 + 10p + k)

)

− d ·
m

10
− [am = 1] · d + d · d1(10m + p)

= d ·
m

10
+

d

10
+ [am = 1] · d −

d−1
∑

k=0

d1(10m+1 + 10p + k)

− d ·
m

10
− [am = 1] · d + d · d1(10m + p)

=
d

10
− [d > 1].

This completes the proof of (c) and the proof of Lemma 3.

Next, let m be a non-negative integer and p be an integer such that 0 ≤ p <

9 · 10m. Define the function φ(x) by

φ
( p

9 · 10m

)

=
R1(10m + p)

10m
.

Note that by Lemma 3(a), φ(x) is uniquely defined. For if x has any other repre-

sentation, i.e.

p′

9 · 10m′

,

then

p′ = 10m
′
−mp.
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If we assume, without loss of generality, that m′ > m, then m′ − m is a positive

integer. Therefore,
R1(10m

′

+ p′)

10m′
=

R1(10m + p)

10m
.

The function φ(x) is defined only on a subset of [0, 1]. We now consider the

problem of extending this function continuously to [0, 1]. Here, we solve this problem

by considering the limit of a sequence of “polygonal” functions which identify with

φ(x) on the rationals of the form

p

9 · 10m
.

These polygonal functions are defined in the following way. Let m be a non-negative

integer. {fm(x)} is defined on [0, 1] to be the function whose graph is the polygon

joining the points

{(0, 0),

(

1

9 · 10m
, φ(

1

9 · 10m
)

)

, . . . ,
( p

9 · 10m
, φ(

p

9 · 10m
)
)

, . . . , (1, 0)}.

Then the definition of {fm(x)} is extended to the reals by fm(x±1) = fm(x). From

the definition, f0(x) ≡ 0. In addition, f1(x) is equal to the auxiliary function g(x),

which is defined on the reals by

g(x) =











9

10
x, 0 ≤ x < 1

90
;

− 81

10
x + 1

10
, 1

90
≤ x < 2

90
;

9

10
x − 1

10
, 2

90
≤ x < 1

9
.

and g(x ± 1

9
) = g(x). Furthermore, using Lemma 3(c), it follows that for any

non-negative integer m and all real x,

fm+1(x) − fm(x) =
1

10m
g(10mx).

Repeated iterations of this equation yields

fm+1(x) =

m
∑

i=0

1

10i
g(10ix).

Since g(x) is bounded, the sequence {fm(x)} converges uniformly for all x. Hence

the limiting function

f(x) =
∞
∑

i=0

1

10i
g(10ix)
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is a continuous extension of φ(x).

The Main Result. Let m be a non-negative integer and p be an integer

such that 0 ≤ p < 9 · 10m. In addition, let n = 10m + p and suppose the decimal

representation of n is

n =
m

∑

k=0

ak · 10k.

Then

D1(n) =
1

10
mn + [am = 1] · nm−1 + [am > 1] · 10m − R1(n)

=
1

10
mn + [am = 1] · nm−1 + [am > 1] · 10m − 10m · f(

p

9 · 10m
).

Next, since

n = 10m + p = 10m(1 +
p

10m
),

m = log n − log
(

1 +
p

10m

)

.

Also,

nm−1 = n − am · 10m = 10m + p − am · 10m = 10m

(

1 +
p

10m
− am

)

.

Substituting for these two quantities and setting

x =
p

9 · 10m
,

we have

D1(n) =
1

10
n · (log n − log(1 + 9x))

+ [am = 1] · 10m(1 − am + 9x) + [am > 1] · 10m − 10mf(x)

=
1

10
n log n −

1

10
n log(1 + 9x)

+ [am = 1] · 10m(1 − am + 9x) + [am > 1] · 10m − 10mf(x).

Finally, substituting n = 10m(1 + 9x) for the second n, we restate the result in the

following theorem.

Theorem. Let n be a positive integer with decimal representation

n =
m

∑

k=0

ak · 10k.
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In addition, let n = 10m + p and

x =
p

9 · 10m
.

Then

D1(n) =
1

10
n log n − 10m−1

(

10f(x) + (1 + 9x) log(1 + 9x)

− [am > 1] · 10 − [am = 1] · 90x

)

.

Questions. We end this paper with some questions for further work. First of

all, we would like to find an expression for the number of 0’s, or 2’s, or 3’s, etc. in

the decimal representation of the sequence of positive integers less than n. We feel

that this question is assessible using the techniques in this paper. Another question

is the matter of different bases. That is, can we find a formula for the number

of 1’s in the base b representation of the sequence of positive integers less than n.

Therefore, in general, we would like to determine a formula for the number of digits

d in the base b representation of the sequence of positive integers less than n.
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