
BOUNDS ON A REMAINDER TERM ASSOCIATED WITH

THE NUMBER OF BASE q DIGITS ≥ d FUNCTION

Curtis Cooper
Department of Mathematics and Computer Science

Central Missouri State University
Warrensburg, MO 64093

U. S. A.
email: cnc8851@cmsu2.cmsu.edu

Abstract

Let q ≥ 2 be a fixed integer. The base q representation of a positive integer k

can be written in the form

k =
∞
∑

r=0

ar(q, k)qr, where ar(q, k) ∈ {0, 1, . . . , q − 1}.

To represent and study the ‘number of base q digits ≥ d’ function we need to

introduce the bracket notation. The basic idea is to enclose a true-or-false statement

in brackets, and to say that the result is 1 if the statement is true, 0 if the statement

is false. For example,

[p prime] =

{

1, if p is a prime number;

0, if p is not a prime number.

Let d be a nonzero base q digit. Define the ‘number of base q digits ≥ d’ function

as

α≥d(q, k) =

∞
∑

r=0

[ar(q, k) ≥ d].

For an integer n ≥ 1, let

A≥d(q, n) =

n−1
∑

k=1

α≥d(q, k).

First, we will show that

A≥d(q, n) =

(

1 −
d

q

)

n logq n + O(n).
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Second, we define

S≥d(q, n) = A≥d(q, n) −

(

1 −
d

q

)

nblogq nc

where logq denote the logarithm function with base q and b·c denotes the greatest

integer function. We then show that if

c > max

{

d

q
, 1 −

d

q

}

,

then

−c <
S≥d(q, n)

n
< 1 −

d

q
.

1. Introduction

Let q ≥ 2 be a fixed integer. The base q representation of a positive integer k

can be written in the form

k =

∞
∑

r=0

ar(q, k)qr, where ar(q, k) ∈ {0, 1, . . . , q − 1}.

To represent and study the ‘number of base q digits ≥ d’ function we need to

introduce the bracket notation. The basic idea is to enclose a true-or-false statement

in brackets, and to say that the result is 1 if the statement is true, 0 if the statement

is false. For example,

[p prime] =

{

1, if p is a prime number;

0, if p is not a prime number.

Let d be a nonzero base q digit. Define the ‘number of base q digits ≥ d’ function

as

α≥d(q, k) =

∞
∑

r=0

[ar(q, k) ≥ d].

The ‘number of base q digits ≥ d’ function is a generalization of the ‘number of

large digits’ function studied in [1,2].
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For an integer n ≥ 1, let

A≥d(q, n) =

n−1
∑

k=1

α≥d(q, k).

2. Properties of A≥d(q,n)

We begin by stating and proving some basic properties of the function

A≥d(q, n).

Lemma 1. Let q ≥ 2 be an integer, s and n be positive integers, and d be

nonzero base q digit. Then

A≥d(q, q
s) =

(

1 −
d

q

)

sqs (1)

and A≥d(q, qn) = qA≥d(q, n) + (q − d)n. (2)

Proof. We first prove (1) by induction on s. For s = 1 we have

A≥d(q, q
1) = q − d =

(

1 −
d

q

)

· 1 · q1.

Now for the induction step we assume that s ≥ 2 and that (1) is true for s − 1.

Then by counting the number of base q digits ≥ d in the numbers from 1 to qs−1,

1 · qs−1 to 2 · qs−1 , . . . , (q − 1) · qs−1 to q · qs−1, we have

A≥d(q, q
s) =

∑

1≤r<qs−1

α≥d(q, r) +

q−1
∑

t=1

∑

tqs−1≤r<(t+1)qs−1

α≥d(q, r).

Setting r = tqs−1 + u, where 0 ≤ u < qs−1 in the second (inner) sum and using the

fact that α≥d(q, r) = [t ≥ d] + α≥d(q, u), it follows that

A≥d(q, q
s) =

∑

1≤r<qs−1

α≥d(q, r) +

q−1
∑

t=1

∑

0≤u<qs−1

(

[t ≥ d] + α≥d(q, u)

)

=
∑

0≤u<qs−1

q−1
∑

t=1

[t ≥ d] +

q−1
∑

t=0

∑

0≤u<qs−1

α≥d(q, u)

= (q − d)qs−1 + qA≥d(q, q
s−1).
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Using the induction hypothesis it follows that

A≥d(q, q
s) =

(

1 −
d

q

)

qs + q

(

1 −
d

q

)

(s − 1)qs−1 =

(

1 −
d

q

)

sqs.

Thus, (1) is true for s. By mathematical induction we have proved (1).

To prove (2) we count the number of base q digits ≥ d from 1 to qn − 1 by

counting the number of base q digits ≥ d in the leading digits from 1 to qn− 1 and

then counting the number of base q digits ≥ d in the units digits from 1 to qn − 1.

The first quantity is qA≥d(q, n) and the second quantity is (q − d)n. This proves

(2).

Corollary 2. Let q ≥ 2 be an integer, s be a positive integer, and a and d be

nonzero base q digits. Then

A≥d(q, aqs) = a

(

1 −
d

q

)

sqs + (a − d)[a ≥ d]qs. (3)

Proof. We will prove this result by counting the number of base q digits ≥ d

from 1 to aqs − 1 by counting the number of base q digits ≥ d in the trailing digits

from 1 to aqs − 1 and then counting the number of base q digits ≥ d in the leading

digit from 1 to aqs − 1. By (2) and the fact that there are a copies of the trailing

digits from 1 to qs − 1 in 1 to aqs − 1 the first quantity is

a

(

1 −
d

q

)

sqs

and the number of base q digits ≥ d in the leading digits from 1 to aqs − 1 is

(a − d)[a ≥ d]qs.

The result follows.

3. Main Term and Error Term

The next result gives a main term and an error term for A≥d(q, n).
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Theorem 3. Let q ≥ 2 be an integer, d be a nonzero digit in base q, and n be

a positive integer. Then

A≥d(q, n) =

(

1 −
d

q

)

n logq n + O(n),

where logq denotes the logarithm function with base q.

Proof. We begin by observing that if s ≥ 1 and a is a nonzero base q digit,

then the representation of k in base q contains the term aqs if and only if k can be

expressed in the form

k = mqs+1 + µ,

where m ≥ 0 and aqs ≤ µ < (a + 1)qs. Hence f(n, s, a), the number of positive

integers not exceeding n whose representation in base q contains the term aqs, is

given by

f(n, s, a) =
∑

mqs+1+µ≤n
m≥0; aqs≤µ<(a+1)qs

1

=
∑

aqs≤µ<(a+1)qs

(

n

qs+1
+ O(1)

)

=
n

q
+ O(qs).

But clearly

A≥d(q, n) =
∑

0≤s≤logq n

0≤a≤q−1

[d ≥ a]f(n, s, a).

Therefore, by the formula for f(n, s, a),

A≥d(q, n) =
∑

0≤s≤logq n
0≤a≤q−1

[d ≥ a]

(

n

q
+ O(qs)

)

= (q − d)
n

q
logq n + O(n) + (q − d)O

(

1 − qlogq x+1

1 − q

)

=

(

1 −
d

q

)

n logq n + O(n).
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4. Upper Bound

In [3], Foster derived some upper and lower bounds for the difference between

the ‘sum of digits’ function and its main term. We would like to do the same for

the ‘number of base q digits ≥ d’ function. Let q ≥ 2 be an integer, d a nonzero

digit in base q, and n a positive integer. Then, we define

S≥d(q, n) = A≥d(q, n)−

(

1 −
d

q

)

nblogq nc.

Here, b·c denotes the greatest integer function. We next have the following property

of S≥d. This is a corollary to Lemma 1.

Corollary 4. Let k be a nonnegative integer and n be a positive integer. Then

S≥d(q, q
kn)

qkn
=

S≥d(q, n)

n
. (4)

Proof. The proof is by induction on k. If k = 0 the result is clear. Now assume

that k ≥ 1 and that (4) is true for k. Then by the definition of S≥d and (2)

S≥d(q, q
k+1n) = A≥d(q, q

k+1n) −

(

1 −
d

q

)

qk+1nblogq qk+1nc

= qA≥d(q, q
kn) + (q − d)qkn −

(

1 −
d

q

)

qk+1n

(

1 + blogq qknc

)

= qA≥d(q, q
kn) +

(

1 −
d

q

)

qk+1n −

(

1 −
d

q

)

qk+1n − q

(

1 −
d

q

)

qknblogq qknc

= qA≥d(q, q
kn) − q

(

1 −
d

q

)

qknblogq qknc

= qS≥d(q, q
kn).

By the induction hypothesis,

S≥d(q, q
k+1n)

qk+1n
=

qS≥d(q, q
kn)

qk+1n
=

S≥d(q, q
kn)

qkn
=

S≥d(q, n)

n
.

Therefore, (4) is true for k + 1. Thus, by mathematical induction the result is true.
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Because of (4), to find bounds on

S≥d(q, n)

n

we can assume without loss of generality that n 6≡ 0 (mod q). This leads to the

following definition.

Definition 5. Let n 6≡ 0 (mod q). Then n is of the form n = nm where

nm = a0q
t0 + a1q

t0+t1 + a2q
t0+t1+t2 + · · ·+ amqt0+t1+t2+···+tm

for some nonnegative integer m, t0 = 0, positive integers t1, t2, . . . , tm and nonzero

coefficients a0, a1, a2, . . . , am ∈ {1, 2, . . . , q − 1}. Also, define

n0 = a0 and ni = a0 + a1q
t1 + · · · + aiq

t1+···+ti

for 1 ≤ i ≤ m.

Lemma 6. Let q ≥ 2 and let m ≥ 1. Then

A≥d(q, nm) = A≥d(q, nm−1) + am

(

1 −
d

q

)

(t1 + · · · + tm)qt1+···+tm

+ [am ≥ d]nm−1 + (am − d)[am ≥ d]qt1+···+tm (5)

and S≥d(q, nm) = S≥d(q, nm−1) + (am − d)[am ≥ d]qt1+···+tm

+

(

[am ≥ d] −

(

1 −
d

q

)

tm

)

nm−1 (6)

Proof. By (3) we have that

A≥d(q, nm) = A≥d(q, amqt1+···+tm) +
∑

amqt1+···+tm≤r<nm

α≥d(q, r)

= am

(

1 −
d

q

)

(t1 + · · ·+ tm)qt1+···+tm + (am − d)[am ≥ d]qt1+···+tm

+ [am ≥ d]nm−1 + A≥d(q, nm−1).
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This is (5). Using the definition of S≥d and (5), we have

S≥d(q, nm) = A≥d(q, nm) −

(

1 −
d

q

)

nmblogq nmc

= A≥d(q, nm−1) + am

(

1 −
d

q

)

(t1 + · · · + tm)qt1+···+tm

+ [am ≥ d]nm−1 + (am − d)[am ≥ d]qt1+···+tm −

(

1 −
d

q

)

nmblogq nmc

= A≥d(q, nm−1) + am

(

1 −
d

q

)

(t1 + · · · + tm)qt1+···+tm

+ [am ≥ d]nm−1 + (am − d)[am ≥ d]qt1+···+tm

−

(

1 −
d

q

)

(amqt1+···+tm + nm−1)

(

tm + blogq nm−1c

)

= A≥d(q, nm−1) + am

(

1 −
d

q

)

(t1 + · · · + tm)qt1+···+tm + [am ≥ d]nm−1

+ (am − d)[am ≥ d]qt1+···+tm −

(

1 −
d

q

)

nm−1blogq nm−1c −

(

1 −
d

q

)

(amtmqt1+···+tm)

−

(

1 −
d

q

)

amqt1+···+tm(t1 + · · · tm−1) −

(

1 −
d

q

)

nm−1tm

= A≥d(q, nm−1) −

(

1 −
d

q

)

nm−1blogq nm−1c + [am ≥ d]nm−1

+ (am − d)[am ≥ d]qt1+···+tm −

(

1 −
d

q

)

nm−1tm

= S≥d(q, nm−1) + [am ≥ d]nm−1

+ (am − d)[am ≥ d]qt1+···+tm −

(

1 −
d

q

)

nm−1tm

This is (6).

Theorem 7. Let q ≥ 2, 1 ≤ d ≤ q − 1 and m ≥ 0. Then

S≥d(q, nm)

nm

< 1 −
d

q
.

Proof. The proof is by induction on m. If m = 0, we have nm = n0 = a0 so

that
S≥d(q, n0)

n0
=

(a0 − d)[a0 ≥ d]

a0
< 1 −

d

q
,
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which is the stated result.

Now choose m ≥ 1 and assume that

S≥d(q, nm−1)

nm−1
< 1 −

d

q
.

By (6) and since tm ≥ 1, we have that

S≥d(q, nm) = S≥d(q, nm−1) + (am − d)[am ≥ d]qt1+···+tm

+

(

[am ≥ d] −

(

1 −
d

q

)

tm

)

nm−1

= S≥d(q, nm−1) + (amqt1+···+tm − dqt1+···+tm)[am ≥ d]

+

(

[am ≥ d] −

(

1 −
d

q

)

tm

)

nm−1

= S≥d(q, nm−1) + (nm − nm−1 − dqt1+···+tm)[am ≥ d]

+

(

[am ≥ d] −

(

1 −
d

q

)

tm

)

nm−1

≤ S≥d(q, nm−1) + (nm − nm−1 − dqt1+···+tm)[am ≥ d]

+

(

[am ≥ d] −

(

1 −
d

q

))

nm−1

= S≥d(q, nm−1) + (nm − dqt1+···+tm)[am ≥ d]

−

(

1 −
d

q

)

nm−1

By the induction hypothesis,

S≥d(q, nm−1) + (nm − dqt1+···+tm)[am ≥ d] −

(

1 −
d

q

)

nm−1

<

(

1 −
d

q

)

nm−1 + (nm − dqt1+···+tm)[am ≥ d] −

(

1 −
d

q

)

nm−1

=

(

nm − dqt1+···+tm

)

[am ≥ d].

Therefore,
S≥d(q, nm)

nm

<

(

1 −
dqt1+···+tm

nm

)

[am ≥ d].

But, nm < qt1+···+tm+1. Thus,

S≥d(q, nm)

nm

< 1 −
d

q
.

Therefore, by mathematical induction, the result is true.
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5. Lower Bound

The following lemma will help in finding a lower bound for

S≥d(q, nm)

nm

.

Lemma 8. Let m ≥ 1 be an integer. Then

nm−1

nm

<
1

1 + amqtm−1
. (7)

Proof. See [3, p. 113].

Theorem 9. Let m ≥ 0, q ≥ 2, and 1 ≤ d ≤ q − 1. Also, let

c > max

{

d

q
, 1 −

d

q

}

.

Then
S≥d(q, nm)

nm

> −c.

Proof. By induction on m. Let m = 0. Then

S≥d(q, n0)

n0
=

(a0 − d)[a0 ≥ d]

a0
≥ 0 > −c.

For the induction step, let m ≥ 1 and assume that

S≥d(q, nm′)

nm′

> −c for all integers m′ with 0 ≤ m′ ≤ m − 1.

By (6), the induction hypothesis, and the fact that (am − d)[am ≥ d]qt1+···+tm ≥ 0,

we have that

S≥d(q, nm)

= S≥d(q, nm−1) + (am − d)[am ≥ d]qt1+···+tm +

(

[am ≥ d] −

(

1 −
d

q

)

tm

)

nm−1

> −cṅm−1 +

(

[am ≥ d] −

(

1 −
d

q

)

tm

)

nm−1.
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Thus,
S≥d(q, nm)

nm

>
nm−1

nm

(

[am ≥ d] −

(

1 −
d

q

)

tm − c

)

> −c

provided that
nm−1

nm

<
c

c − [am ≥ d] +

(

1 − d
q

)

tm

.

To prove this last inequality we are assuming that

[am ≥ d] <

(

1 −
d

q

)

tm + c

or

c > [am ≥ d] −

(

1 −
d

q

)

tm.

This is true for all 1 ≤ am ≤ q − 1, tm ≥ 1, d a nonzero digit in base q ≥ 2 since

c > d/q. By (7),
nm−1

nm

<
1

1 + amqtm−1
,

so if we can show that

1

1 + amqtm−1
<

c

c − [am ≥ d] +
(

1 − d
q

)

tm

for all am ≥ 1 and tm ≥ 1 we are done. But this last inequality is true if and only if

c − [am ≥ d] +

(

1 −
d

q

)

tm < c + amcqtm−1.

But this inequality is true if and only if

c >

(

1 − d
q

)

tm − [am ≥ d]

amqtm−1
.

But this last inequality is true for all tm ≥ 1, am ≥ 1, and d a nonzero digit in base

q ≥ 2 since tm/qtm−1 ≤ 1 and c > 1 − (d/q) so we are done. Therefore, the result

is true for m. Hence, by mathematical induction, the result is true.
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6. Questions

In [3], Foster’s ‘sum of base 2 digits’ function is identical to our ‘number of base

2 digits ≥ 1’ function. Translating his result to our situation gives us the following

definition and theorem. The proof of the result follows Foster’s proof.

Definition 11. Let m be a nonnegative integer. Let

h2(m) =
22m − 1

13 · 22m − 1
.

Theorem 12. Let m be a nonnegative integer. Then

−h2(m) ≤
S≥1(2, nm)

nm

≤
1

2
−

m + 1

2(2m+1 − 1)
.

For base 2 numbers with units digit 1, the largest value of

S≥1(2, nm)

nm

occurs when nm = 1 + 2 + 22 + · · · + 2m and the smallest value occurs nm =

1 + 22 + 24 + · · ·+ 22(m−1) + 22(m+1) for m ≥ 1.

Are there similar results for other bases and digits? For example, what about

q = 3 and d = 1. We conclude with the following definition and conjecture.

Definition 13. Let

h3(m) =











11·27
m+1

2 −63

246·27
m+1

2 −90
if m is odd

11·27
m
2 −11

246·27
m
2 −12

if m is even.

Also, let

g3(m) =
2 · 3m+1 − m − 3

3 · 3m+1 − 3
.
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Conjecture 14. Let m ≥ 0. Then

−h3(m) ≤
S≥1(3, nm)

nm

≤ g3(m).

Equality on the left occurs for n0 = 1, n1 = 28 = 1 + 33, and for m ≥ 2,

nm =















∑

m−2

2

i=0

(

3i(1+2) + 3i(1+2)+1

)

+ 33 m
2

+1 = 41
1327

m
2 − 2

13 m even

∑

m−3

2

i=0

(

3i(2+1) + 3i(2+1)+2

)

+ 33 m+1

2 + 33 m+3

2 = 41
3927

m+1

2 − 5
13 m odd.

Equality on the right occurs for nm = 3m+1 − 1.
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