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Abstract. Let a1, a2, b1, and b2 be real numbers. The period 2
second order linear recurrence system is defined to be the sequence
x0 = 1, x1 = a1, and

x2n+2 = a2x2n+1 + b1x2n,

x2n+3 = a1x2n+2 + b2x2n+1,

for n ≥ 0. We will show that for n ≥ 4,

xn = (a1a2 + b1 + b2)xn−2 − b1b2xn−4.

Then we will then find and prove a similar identity for the period
k ≥ 2 second order linear recurrence system.

1. Introduction

Let a1 and b1 be real numbers. A second order linear recurrence is
defined by x0 = 1, x1 = a1 and for n ≥ 2,

xn = a1xn−1 + b1xn−2.

We define this to be the period 1 second order linear recurrence system.
We now define the period 2 second order linear recurrence system [2].

Definition 1.1. Let a1, a2, b1, and b2 be real numbers. The period 2 second

order linear recurrence system is defined to be the sequence x0 = 1, x1 = a1,

and

x2n+2 = a2x2n+1 + b1x2n,

x2n+3 = a1x2n+2 + b2x2n+1,

for n ≥ 0.

Next, we define a period k ≥ 2 second order linear recurrence system [2].

Definition 1.2. Let k ≥ 2 be a positive integer. Let a1, a2, . . . , ak and

b1, b2, . . . , bk be real numbers. The period k second order linear recurrence
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system is defined to be the sequence x0 = 1, x1 = a1, and

xkn+2 = a2xkn+1 + b1xkn,

xkn+3 = a3xkn+2 + b2xkn+1,

... =
...

xkn+k = akxkn+k−1 + bk−1xkn+k−2,

xkn+k+1 = a1xkn+k + bkxkn+k−1,

for n ≥ 0.

2. Period 2 and Period 3 Identities

We will state and prove the identity for the period 2 second order linear
recurrence system.

Theorem 2.1. Let {xn} be the period 2 second order linear recurrence

system. Then for n ≥ 4,

xn = (a1a2 + b1 + b2)xn−2 − b1b2xn−4.

Proof. We will consider two cases.

Case 1: n ≥ 4 is even. Then

xn = a2xn−1 + b1xn−2

= a2(a1xn−2 + b2xn−3) + b1xn−2

= (a1a2 + b1)xn−2 + b2(a2xn−3)

= (a1a2 + b1)xn−2 + b2(xn−2 − b1xn−4)

= (a1a2 + b1 + b2)xn−2 − b1b2xn−4.

Case 2: n ≥ 4 is odd. Then

xn = a1xn−1 + b2xn−2

= a1(a2xn−2 + b1xn−3) + b2xn−2

= (a1a2 + b2)xn−2 + b1(a1xn−3)

= (a1a2 + b2)xn−2 + b1(xn−2 − b2xn−4)

= (a1a2 + b1 + b2)xn−2 − b1b2xn−4.

This completes the proof. �

Next, we give the identity and proof for the period 3 second order linear
recurrence system.

Theorem 2.2. Let {xn} be the period 3 second order linear recurrence

system. Then for n ≥ 6,

xn = (a1a2a3 + a1b2 + a2b3 + a3b1)xn−3 + b1b2b3xn−6.

Proof. We will prove the first of three cases.
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Case 1: n ≥ 6 and n ≡ 0 (mod 3). Then

xn = a3xn−1 + b2xn−2 = a3(a2xn−2 + b1xn−3) + b2xn−2

= a2a3xn−2 + b2xn−2 + a3b1xn−3

= a2a3(a1xn−3 + b3xn−4) + b2(a1xn−3 + b3xn−4) + a3b1xn−3

= (a1a2a3 + a1b2 + a3b1)xn−3 + a2b3(a3xn−4) + b2b3xn−4

= (a1a2a3 + a1b2 + a3b1)xn−3 + a2b3(xn−3 − b2xn−5) + b2b3xn−4

= (a1a2a3 + a1b2 + a2b3 + a3b1)xn−3 − a2b2b3xn−5

+b2b3(a2xn−5 + b1xn−6)

= (a1a2a3 + a1b2 + a2b3 + a3b1)xn−3 + b1b2b3xn−6.

The proofs of the other two cases are similar. �

3. Description of the Period k Identity

Next we state the identities for periods 4, 5, and 6. We will write the
subscripts of the terms in descending order. This will parallel how the proof
of the identity is derived.

Period 4, 5, and 6 Identities.

(1) Period 4.

xn = (a4a3a2a1 + a4a3b1 + a4b2a1 + b4a3a2 + b3a2a1 + b4b2

+b3b1)xn−4 − b1b2b3b4xn−8.

(2) Period 5.

xn = (a5a4a3a2a1 + a5a4a3b1 + a5a4b2a1 + a5b3a2a1 + b5a4a3a2

+b4a3a2a1 + a5b3b1 + b5a4b2 + b4a3b1 + b5b3a2 + b4b2a1)xn−5

+b1b2b3b4b5xn−10.

(3) Period 6.

xn = (a6a5a4a3a2a1 + a6a5a4a3b1 + a6a5a4b2a1 + a6a5b3a2a1

+a6b4a3a2a1 + b6a5a4a3a2 + b5a4a3a2a1 + a6a5b3b1 + a6b4a3b1

+b6a5a4b2 + b5a4a3b1 + a6b4b2a1 + b6a5b3a2 + b5a4b2a1

+b6b4a3a2 + b5b3a2a1 + b6b4b2 + b5b3b1)xn−6 − b1b2b3b4b5b6xn−12.

Bracelet Notation. To construct the identity for xn in terms of xn−k

and xn−2k in the period k case, we need the Lucas numbers. The Lucas
numbers, 2, 1, 3, 4, 7, 11, 18, 29, 47, . . ., are defined by L0 = 2, L1 = 1, and
Ln = Ln−1 + Ln−2 for n ≥ 2. It can be shown that for n ≥ 1, Ln counts
the number of ways to create a bracelet of length n using beads of length
one or two [1]. To write the different bracelets of length k, using beads of
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length one and two, we begin by numbering the bracelet positions from 1
to k. To specify the type of bead and its position in the bracelet, we let the
letter a denote a bead of length one and the letter b denote a bead of length
two. Furthermore, if a bead of length one occupies position i, the subscript
on the a will be i. If a bead of length two occupies positions i and i + 1,
the subscript on the b will be i. However, if a bead of length two occupies
positions k and 1, the subscript on the b will be k. To denote the beads and
their positions in a bracelet, we list the a’s and b’s with their subscripts
in the bracelet. The order of the beads is not important, although we will
write the subscripts in decreasing order. For example,

a6a5b3a2a1

denotes a bracelet of length 6 with beads of length one at positions 1, 2, 5,
and 6 and a bead of length two at positions 3 and 4. Also,

b7b5a4a3a2

denotes a bracelet of length 7 with beads of length one at positions 2, 3,
and 4 and beads of length two at positions 5 and 6 and positions 7 and 1.

Our identity for xn, where xn is a period k second order linear recur-
rence system, is a constant times xn−k plus a constant times xn−2k . The
constants (coefficients of xn−k and xn−2k) are given next.

Coefficient of xn−k .

(1) Write all possible terms of a’s and b’s where the number of a’s plus
twice the number of b’s is k.

(2) If a term begins with an a, label the a subscript with a k. Reduce
the subscript of the next bead by 1 if the next symbol is an a,
otherwise reduce the subscript by 2.

(3) If a term begins with a b, label the b subscript with either a k or
k−1. Reduce the subscript of the next bead by 1 if the next symbol
is an a, otherwise reduce the subscript by 2.

(4) Continue labeling the subscripts of the a’s and b’s, reducing the
subscript of the next bead by 1 if the next symbol is an a, otherwise
reducing the subscript by 2.

(5) The coefficient of xn−k is the sum of all these terms.
(6) Since this labelling completely enumerates the number of ways to

create a bracelet of length k, the number of terms with an xn−k is
Lk, the kth Lucas number.

Coefficient of xn−2k . The coefficient is (−1)k−1b1b2 · · · bk.

Identity for Period 7. We will construct the identity for the period 7
second order linear recurrence system. The term xn will be equal to some
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coefficient times xn−7 plus some coefficient times xn−14. To obtain the
coefficient of xn−7 list the configurations of a’s and b’s where the number
of a’s plus twice the number of b’s is 7 is

aaaaaaa,

aaaaab, aaaaba, aaabaa, aabaaa, abaaaa, baaaaa,

aaabb, aabab, abaab, baaab, aabba, ababa, baaba, abbaa, babaa, bbaaa,

abbb, babb, bbab, bbba.

Next, label each configurations according to the rules for xn−7.

a7a6a5a4a3a2a1,

a7a6a5a4a3b1, a7a6a5a4b2a1, a7a6a5b3a2a1, a7a6b4a3a2a1,

a7b5a4a3a2a1, b7a6a5a4a3a2, b6a5a4a3a2a1,

a7a6a5b3b1, a7a6b4a3b1, a7b5a4a3b1, b7a6a5a4b2, b6a5a4a3b1,

a7a6b4b2a1, a7b5a4b2a1, b7a6a5b3a2, b6a5a4b2a1, a7b5b3a2a1,

b7a6b4a3a2, b6a5b3a2a1, b7b5a4a3a2, b6b4a3a2a1,

a7b5b3b1, b7a6b4b2, b6a5b3b1, b7b5a4b2, b6b4a3b1, b7b5b3a2, b6b4b2a1.

The sum of these L7 = 29 terms is the coefficient of xn−7. And, the
coefficient of xn−14 is b1b2b3b4b5b6b7.

4. Proof of the Period k Identity

Proof. Let k ≥ 2 be a positive integer. The proofs we gave for the k = 2
and k = 3 identities involved 2 and 3 cases, respectively. Our proof for
the period k case will consist of k cases. The first case will be where the
subscript of xn is a multiple of k. Thus, we will prove the identity for xkn

in terms of xkn−k and xkn−2k . We will then explain why the other k − 1
cases produce similar identities. This will complete our proof.

Write xkn in terms of xkn−1 and xkn−2 using the defining recurrence
relation

xkn = akxkn−1 + bk−1xkn−2. (1)

We can write this equality as a tree [3, pp. 64–65]. The root of the tree is
xkn. The left child of the root is xkn−1 and the right child of the root is
xkn−2. The edge from the root to the left child is labeled ak and the edge
from the root to the right child is labelled bk−1. This tree is displayed in
Figure 1.
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xkn−1 xkn−2

ak bk−1

xkn

Figure 1.
We can view the tree in Figure 1 as equation (1) in the following way. The
root of this tree is the left-hand side of the equation. Each leaf in the tree
corresponds to a term in the sum on the right-hand side of the equation.
Each term consists of a leaf of the tree times the product of all the labelled
branches leading from the leaf to the root of the tree.

Now, consider all the leaves in the tree in Figure 1 labelled xkn−1. We
wish to substitute the value of xkn−1 given by the recurrence relation in
equation (2)

xkn−1 = ak−1xkn−2 + bk−2xkn−3. (2)

into equation (1). Equation (2) can be represented by the tree in Figure 2.

xkn−2 xkn−3

ak−1 bk−2

xkn−1

Figure 2.
We now replace all leaves labeled xkn−1 in Figure 1 by the tree in Figure

2. The result is the tree given in Figure 3. Again, the root of this tree
is equal to the sum of each leaf times the product of the labels of all the
branches on the path from the leaf to the root.

xkn−2 xkn−3

ak−1 bk−2

xkn−1 xkn−2

ak bk−1

xkn

Figure 3.
Next, we consider all leaves in the tree in Figure 3 labeled xkn−2. Replace
all leaves xkn−2 in this tree by the tree corresponding to the recurrence
relation

xkn−2 = ak−2xkn−3 + bk−3xkn−4.

The result is the tree in Figure 4.
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xkn−3 xkn−4

ak−2 bk−3

xkn−2 xkn−3

ak−1 bk−2

xkn−1

xkn−3 xkn−4

ak−2 bk−3

xkn−2

ak bk−1

xkn

Figure 4.
Continue this process until we have the tree with leaves consisting of xkn−k

and xkn−k−1. At this point, the equation associated with the tree has terms
containing a’s and b’s. Each term contains an ak or bk−1 and the a’s or b’s
in each product decrease by 1 or 2 depending on whether or not the next
factor in the term is an a or b, respectively. For example, the tree resulting
from this process for the case k = 5 is given in Figure 5.

x5n−5 x5n−6

a1 b5

x5n−4
x5n−5

a2 b1

x5n−3

x5n−5 x5n−6

a1 b5

x5n−4

a3 b2

x5n−2

x5n−5 x5n−6

a1 b5

x5n−4
x5n−5

a2 b1

x5n−3

a4 b3

x5n−1

x5n−5 x5n−6

a1 b5

x5n−4
x5n−5

a2 b1

x5n−3

x5n−5 x5n−6

a1 b5

x5n−4

a3 b2

x5n−2

a5 b4

x5n

Figure 5.

Next, replace every leaf labeled xkn−k−1 in the left subtree of the tree (these
terms in our equation would contain both a factor of ak and bk) by the tree
corresponding to the equation

xkn−k−1 =
1

ak

xkn−k −
bk−1

ak

xkn−k−2.

For the case k = 5, this results in the tree given in Figure 6.

Note that the branches 1

ak

and −
bk−1

ak

involve the removal of the factor
ak from the leaf’s term. This can be done regardless of whether or not
ak = 0. Now, the current identity for xkn is in terms of xkn−k , xkn−k−1,
and xkn−k−2. The coefficients of xkn−k have terms containing a’s and
b’s, starting with ak, bk, or bk−1, where the sequences decrease by 1 or
2 depending on whether or not the next factor in the term is an a or b,
respectively. In addition, the number of terms of xkn−k is Lk since these
would correspond to exactly the valid bracelets of size k. Therefore, we have
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reduced xkn to the sum of terms we described involving xkn−k and terms
involving xkn−k−1 and xkn−k−2. Now, we need to simplify the remaining
terms so that we can construct the final term xkn−2k and cancel the other
terms. To do this we continue replacing leaves labeled xkn−k−1, xkn−k−2,
etc. by trees representing the recurrence relations

xkn−k−1 = ak−1xkn−k−2 + bk−2xkn−k−3,

xkn−k−2 = ak−2xkn−k−3 + bk−3xkn−k−4,

... =
...

We stop the replacement the instant that a factor of a and b with the same
subscript appears in the path from a leaf to the root or until we reach
xkn−2k . We give the example of this situation when k = 5 in Figure 7.

We first show that there is one term of the form (−1)k−1b1b2b3 · · · bkxkn−2k .
If k is even, this term comes from the left subtree where we first take a left
branch and follow this with k right branches. The factor of ak is removed

by the right branch labelled − bk−1

ak

. The term will be negative and contain

every b. And if k is odd, the xkn−2k term comes from the right subtree
where we take k right branches. The k right branches result in all the b

factors. The term will be positive.
Now, all the other terms cancel. To see this, consider a term of xkn−k−i ,

1 ≤ i < k, from the left subtree which has a repeated subscript of a and b

in the path from its leaf to the root. The coefficient will have a negative
sign. It will also have a bk and a bk−1 term in it. Starting with the root
and writing the factors in order as we go down to the leaf we have

ak = ci1 · ci2 · · · · · cin
· · · cir

· bk(−
bk−1

ak

) = cj1 · · · · · cjs
.

Here, in = js. We will describe the corresponding term of xkn−k−i with
the same coefficient and opposite sign from the right subtree using the left
subtree’s factors above. Begin with the bk−1 factor, mimic the path from

the − bk−1

ak

branch to the leaf, continue after the occurrence of the repeated

subscript factor’s term to the bk factor, and finally continue from the second
branch after the root to the repeated term. This coefficient will be positive.
This will be denoted by

bk−1cj2 · · · cjs
cin+1

· · · cir
bkci2 · · · cin

.

And we could give a similar description starting with a term of the form
xkn−k−i, 1 ≤ i < k from the right subtree and match exactly one term
from the left subtree. Therefore, the left subtree term will cancel the right
subtree term.
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For example, consider the term x5n−9 in the left and right subtree of
Figure 7. The term from the left subtree is

a5b3a2b5(−
b4

a5

)b2

and the corresponding term from the right subtree is

b4b2b5b3a2.

This completes the proof of the first case of the identity. But, the other
k − 1 identities, i.e., xkn+1, xkn+2, . . ., xkn+k−1 will be proved in the same
way as the proof of the identity for xkn and would result in the same
identity.

This completes the proof. �
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