
LUCAS (a1, a2, . . . , ak = 1) SEQUENCES AND PSEUDOPRIMES

CURTIS COOPER AND LAWRENCE SOMER

Abstract. Bisht defined a generalized Lucas integral sequence of order k ≥ 1
for nonnegative integers n as

Gn = x
n
1 + x

n
2 + · · · + x

n
k ,

where x1, x2, . . ., xk are the roots of the equation

x
k = a1x

k−1 + a2x
k−2 + · · · + ak

with integral coefficients and ak 6= 0. He proved that these sequences satisfy the
congruence

Gp ≡ G1 (mod p)

when p is prime. Imposing the condition ak = 1, we extend these generalized
Lucas integral sequences to negative indices and define these sequences as Lucas
(a1, a2, . . . , ak = 1) sequences. We then prove that

G−p ≡ G−1 (mod p)

when p is prime. Finally, we define the concept of Lucas (a1, a2, . . . , ak = 1)
pseudoprime and study some particular examples and prove some theorems.

1. Definitions and Closed Form

Bisht [6] defined a generalized Lucas integral sequence of order k ≥ 1 as follows:

Definition 1.1. Let n be a nonnegative integer and

Gn = xn
1 + xn

2 + · · · + xn
k ,

where x1, x2, . . ., xk are the roots of the equation

xk = a1x
k−1 + a2x

k−2 + · · · + ak

with integral coefficients and ak 6= 0.

A generalized Lucas integral sequence of order 1 is just Gn = an
1 for nonnegative

integers n. The generalized Lucas integral sequence of order 2 with equation x2 =
x+1 is just Gn = Ln, where Ln is the nth Lucas number. Perrin’s sequence (Sloane
[21] - A001608) is the generalized Lucas integral sequence of order 3 with a1 = 0,
a2 = 1, and a3 = 1. Alternately, Perrin’s sequence can be defined as G0 = 3, G1 = 0,
G2 = 2, and

Gn = Gn−2 + Gn−3 for n ≥ 3.

Bisht [6], using Newton’s formulas [24], proved the following alternate definition
of a generalized Lucas integral sequence of order k ≥ 1.
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Definition 1.2. Let a1, . . . , ak be integers and ak 6= 0. Let

G0 = k,

Gn =
∑n−1

j=1 ajGn−j + nan, if n = 1, 2, . . . , k − 1,

Gn =
∑k

j=1 ajGn−j , if n ≥ k.

The generalized Lucas integral sequences of order k ≥ 1 have a closed form related
to the Girard-Waring formula. A discussion of the Girard-Waring formula can be
found in [9].

Theorem 1.1 (Girard-Waring Formula). Let k be a positive integer and let x1, x2,
. . ., xk be the roots of the polynomial

xk + b1x
k−1 + b2x

k−2 + · · · + bk.

For j ≥ 0 an integer, define

sj =
k∑

i=1

xj
i .

Then for every positive integer n,

sn = n ·
∑

i1+2i2+···+kik=n

i1,i2,...,ik≥0

(−1)i1+i2+···+ik
(i1 + i2 + · · · + ik − 1)!

i1!i2! · · · ik!
bi1
1 bi2

2 · · · bik
k .

Thus, we have the following corollary.

Corollary 1.2 (Closed Form). Let {Gn} be a generalized Lucas integral sequence
of order k ≥ 1 and n be a positive integer. Then

Gn = n ·
∑

i1+2i2+···+kik=n

i1,i2,...,ik≥0

(i1 + i2 + · · · + ik − 1)!

i1!i2! · · · ik!
ai1

1 ai2
2 · · · aik

k .

Proof. Let {Gn} be a generalized Lucas integral sequence of order k ≥ 1 and assume
that x1, x2, . . ., xk are the roots of the equation

(x − x1)(x − x2) · · · (x − xk) = xk − a1x
k−1 − a2x

k−2 − · · · − ak−1x − ak.

Then applying the Girard-Waring formula and simplifying, we obtain the result. �

2. Divisibility

Bisht [6] proved the following theorem.

Theorem 2.1. Let {Gn} be a generalized Lucas integral sequence of order k ≥ 1
and p be a prime number. Then for positive integers m and r,

Gmpr ≡ Gmpr−1 (mod pr).

Historically, we need to mention the following results. For any generalized Lucas
integral sequence of order 1, the congruence Gpr ≡ Gpr−1 (mod pr), which is a
special case of Theorem 2.1, is just Fermat’s Little Theorem. Hoggatt and Bicknell
[13] proved that if p is prime, then Lp ≡ L1 (mod p). Lucas [16] studied Perrin’s
sequence and proved that if p is prime, then Gp ≡ G1 (mod p).
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3. Lucas (a1, a2, . . . , ak = 1) Sequences

During their study of Perrin’s sequence, Adams and Shanks [1] extended Perrin’s
sequence to negative indices and proved that G

−p ≡ G
−1 (mod p) when p is prime.

We wish to extend the definition of a generalized Lucas integral sequence of order
k ≥ 1 to negative indices so that

Gn = xn
1 + xn

2 + · · · + xn
k

is true for negative integers n. In the meantime, we want these Gn’s to be integers.
One way to do this is to let ak = 1. Therefore, we define G for negative indices as
follows:

Definition 3.1. Let {Gn} be a generalized Lucas integral sequence of order k ≥ 1
with ak = 1. Let

G0 = k,

G
−n = −

∑n−1
j=1 ak−jG−n+j − nak−n, if n = 1, 2, . . . , k − 1,

G
−n = −

∑k−1
j=1 ak−jG−n+j + G

−n+k, if n ≥ k.

We note that a similar definition to Definition 3.1 can be given for the Lucas
(a1, a2, . . . , ak = −1) sequence.

At this point, it is helpful to compute several examples of Lucas (a1, a2, . . . , ak =
1) sequences.

Example 3.1 (Lucas (1, 1) Sequence).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Gn 2 1 3 4 7 11 18 29 47 76 123 199 322 521

G
−n 2 -1 3 -4 7 -11 18 -29 47 -76 123 -199 322 -521

This is the Lucas sequence.

Example 3.2 (Lucas (2, 1) Sequence).

n 0 1 2 3 4 5 6 7 8 9 10 11

Gn 2 2 6 14 34 82 198 478 1154 2786 6726 16238

G
−n 2 -2 6 -14 34 -82 198 -478 1154 -2786 6726 -16238

This is the Pell-Lucas sequence.
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Example 3.3 (Lucas (0, 1, 1) Sequence).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Gn 3 0 2 3 2 5 5 7 10 12 17 22 29 39 51 68 90 119

G
−n 3 -1 1 2 -3 4 -2 -1 5 -7 6 -1 -6 12 -13 7 5 -18

This is Perrin’s sequence.

Example 3.4 (Lucas (0, 2, 1) Sequence).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Gn 3 0 4 3 8 10 19 28 48 75 124 198 323 520 844

G
−n 3 -2 4 -5 8 -12 19 -30 48 -77 124 -200 323 -522 844

In this example, G2n+1(0, 2, 1) = G2n+1(1, 1) − 1 and G2n(0, 2, 1) = G2n(1, 1) + 1
for n an integer.

Example 3.5 (Lucas (1, 0, 1, 1) Sequence).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Gn 4 1 1 4 9 11 16 29 49 76 121 199 324 521 841

G
−n 4 -1 1 -4 9 -11 16 -29 49 -76 121 -199 324 -521 841

In this example, G2n+1(1, 0, 1, 1) = G2n+1(1, 1), G4n(1, 0, 1, 1) = G4n(1, 1) + 2,
and G4n+2(1, 0, 1, 1) = G4n+2(1, 1) − 2 for n an integer.

Example 3.6 (Lucas (0, 2, 0, 1) Sequence).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gn 4 0 4 0 12 0 28 0 68 0 164 0 396 0 956 0

G
−n 4 0 -4 0 12 0 -28 0 68 0 -164 0 396 0 -956 0

Example 3.7 (Lucas (0, 4, 0, 1) Sequence).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Gn 4 0 8 0 36 0 152 0 644 0 2728 0 6100 0 14928

G
−n 4 0 -8 0 36 0 -152 0 644 0 -2728 0 6100 0 -14928

Example 3.8 (Lucas (1, 3, 1) Sequence).

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Gn 3 1 7 13 35 81 199 477 1155 2785 6727 16237 39203

G
−n 3 -3 7 -15 35 -83 199 -479 1155 -2787 6727 -16239 39203

In this example, G2n+1(1, 3, 1) = G2n+1(2, 1) − 1 and G2n(1, 3, 1) = G2n(2, 1) + 1
for n an integer.
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Example 3.9 (Lucas (2, 0, 2, 1) Sequence).

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Gn 4 2 4 14 36 82 196 478 1156 2786 6724 16238 39204

G
−n 4 -2 4 -14 36 -82 196 -478 1156 -2786 6724 -16238 39204

In this example, G2n+1(2, 0, 2, 1) = G2n+1(2, 1), G4n(2, 0, 2, 1) = G4n(2, 1) + 2,
and G4n+2(2, 0, 2, 1) = G4n+2(2, 1) − 2 for n an integer.

4. Results

Theorem 4.1. Let {Gn} be a Lucas (a1, a2, . . . , ak = 1) sequence and let p be a
prime. Then for positive integers m and r,

G
−mpr ≡ G

−mpr−1 (mod pr).

Proof. Let {Gn} be a Lucas (a1, a2, . . . , ak = 1) sequence. Define the generalized
Lucas integral sequence of order k ≥ 1 {Hn} as

Hn = yn
1 + yn

2 + · · · + yn
k ,

where y1, y2, . . ., yk are the roots of the equation

yk = −ak−1y
k−1 − · · · − a1y + 1.

But the yi’s are just the reciprocals of the xi’s, the roots of the equation

xk = a1x
k−1 + a2x

k−2 + · · · + ak−1x + 1.

Thus, Hn = G
−n for all nonnegative integers n. Using the same argument as Bisht

[6], for positive integers m and r and for p a prime

Hmpr ≡ Hmpr−1 (mod pr).

Therefore,

G
−mpr ≡ G

−mpr−1 (mod pr)

and the proof is complete. �

We note that a similar theorem to Theorem 4.1 can be proved for the Lucas
(a1, a2, . . . , ak = −1) sequence.

We also note that for every Lucas (a1, a2, . . . , ak = 1) sequence {Gn}, G1 = a1

and G
−1 = −ak−1.

Next, we give some more general examples of Lucas (a1, a2, . . . , ak = 1) sequences.

Example 4.1. Let {Gn} be a Lucas (0, a2, . . . , ak−2, 0, ak = 1) sequence. Then by
Theorem 2.1 and Theorem 4.1, the sequence {Gn} satisfies the congruences

Gp ≡ 0 (mod p) and G
−p ≡ 0 (mod p),

where p is prime.

Example 4.2. Let {Gn} be a Lucas (0, 1, . . . , 1, ak = 1) sequence. When k = 3 this
is Perrin’s sequence. The initial conditions for these sequences are:
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n 0 1 2 3 4 5 6 · · · k − 1

Gn k 0 2 3 6 10 17 · · · Lk−1 − 1

G
−n k -1 -1 -1 -1 -1 -1 · · · k − 2

Example 4.3. Let {Gn} be a Lucas (1, 1, . . . , 1, ak = 1) sequence. This is a
Fibonacci-like sequence. When k = 2 this sequence is the Lucas sequence. When
k = 3 this is the sequence (Sloane [21] - A001644). The initial conditions for these
sequences are:

n 0 1 2 3 4 5 6 · · · k − 1

Gn k 1 3 7 15 31 63 · · · 2k−1 − 1

G
−n k -1 -1 -1 -1 -1 -1 · · · -1

5. Pseudoprimes

The concept of a pseudoprime with respect to a polynomial has been studied in the
mathematical literature by Gurak [12], Szekeres [23], Atkin [4], and Grantham [10].
We note that the Frobenius pseudoprimes of Grantham [10] generalize the higher-
order pseudoprimes of both Gurak and Szekeres. The higher-order pseudoprime test
of Atkin [4] shows some similarities to the Frobenius pseudoprime test of Grantham.
Motivated by the results above, we make the following definition.

Definition 5.1. Let {Gn} be a Lucas (a1, a2, . . . , ak = 1) sequence. A compos-
ite n such that Gn ≡ G1 (mod n) and G

−n ≡ G
−1 (mod n) is called a Lucas

(a1, a2, . . . , ak = 1) pseudoprime.

Again, we note that a similar definition to Definition 5.1 can be given for the
Lucas (a1, a2, . . . , ak = −1) sequence.

Traditional Lucas (a1, 1) pseudoprimes are essentially Lucas (a1, 1) pseudoprimes.
However, a traditional Lucas (a1, 1) pseudoprime only requires that n is composite
and Gn ≡ G1 (mod n). Therefore, every Lucas (a1, 1) pseudoprime is a traditional
Lucas (a1, 1) pseudoprime. But these pseudoprimes are different. For example, 8
is a traditional Lucas (2, 1) pseudoprime since G8 = 1154, G1 = 2, and 1154 ≡ 2
(mod 8). However, 8 is not a Lucas (2, 1) pseudoprime with the above definition
since G

−8 = 1154, G
−1 = −2, and 1154 6≡ −2 (mod 8). A similar argument can be

made for any 2k, where k ≥ 3. It should be noted that Beeger [5] proved there are
an infinite number of even m such that 2m ≡ 2 (mod m).

The following theorem gives some results about traditional Lucas (a1, 1) pseudo-
primes and Lucas (a1, 1) pseudoprimes. The proof of the theorem will appear in a
separate paper.

Theorem 5.1. Every odd traditional Lucas (a1, 1) pseudoprime is a Lucas (a1, 1)
pseudoprime. If a1 ≡ 2 (mod 4), then 4 is a Lucas (a1, 1) pseudoprime. There are
only a finite number of even Lucas (a1, 1) pseudoprimes.

We also note that traditional Lucas (a1,−1) pseudoprimes are Lucas (a1,−1)
pseudoprimes.
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In the case of Perrin’s sequence (Lucas (0, 1, 1) sequence), Perrin [18] searched
for a composite n such that n|Gn. Adams and Shanks [1] extensively studied Per-
rin’s sequence and its properties. They found that the smallest composite n such
that n|Gn is 271441. Every Lucas (0, 1, 1) pseudoprime is a Perrin pseudoprime.
However, 271441 is not a Lucas (0, 1, 1) pseudoprime.

We wrote a program to find examples of Lucas (a1, a2, . . . , ak = ±1) pseudo-
primes. Here are some of our findings. The program can be found in the Appendix.

k (a1, a2, . . . , ak) pseudoprimes ≤ N

2 (0, 1) 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65 ≤ 67

2 (1, 1) 705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201 ≤ 15000

2 (2, 1) 4, 169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107 ≤ 7500

2 (3, 1) 33, 65, 119, 273, 377, 385, 533, 561, 649, 1105, 1189, 1441 ≤ 1500

2 (4, 1) 9, 85, 161, 341, 705, 897, 901, 1105, 1281, 1853, 2465 ≤ 2500

2 (5, 1) 9, 27, 65, 121, 145, 377, 385, 533, 1035, 1189, 1305, 1885 ≤ 2000

2 (6, 1) 4, 57, 185, 385, 481, 629, 721, 779, 1121, 1441, 1729 ≤ 2000

2 (0,−1) 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65 ≤ 67

2 (1,−1) 25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125 ≤ 130

2 (2,−1) 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28 ≤ 29

2 (3,−1) 4, 15, 44, 105, 195, 231, 323, 377, 435, 665, 705, 836, 1364 ≤ 1400

2 (4,−1) 10, 209, 230, 231, 399, 430, 455, 530, 901, 903, 923, 9891295 ≤ 1500

2 (5,−1) 15, 21, 35, 105, 161, 195, 255, 345, 385, 399, 465, 527, 551 ≤ 600

2 (6,−1) 4, 14, 28, 35, 119, 164, 169, 385, 434, 574, 741, 779, 899 ≤ 900

3 (0, 0, 1) 4, 8, 10, 14, 16, 20, 22, 25, 26, 28, 32, 34, 35, 38, 40 ≤ 42

3 (1, 0, 1) ≤ 1000000

3 (0, 1, 1) ≤ 10000000

3 (2, 0, 1) ≤ 1000000

3 (1, 1, 1) ≤ 1000000

3 (0, 2, 1) 705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201 ≤ 15000
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k (a1, a2, . . . , ak) pseudoprimes ≤ N

3 (3, 0, 1) ≤ 100000

3 (2, 1, 1) ≤ 100000

3 (1, 2, 1) 4 ≤ 100000

3 (0, 3, 1) ≤ 100000

3 (4, 0, 1) 4 ≤ 100000

3 (3, 1, 1) 4, 66, 33153, 79003 ≤ 100000

3 (2, 2, 1) 79003 ≤ 100000

3 (1, 3, 1) 169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601 ≤ 7000

3 (0, 4, 1) 4 ≤ 100000

3 (5, 0, 1) 470, 2465, 10585, 12801, 15457, 15841 ≤ 100000

3 (4, 1, 1) 75361 ≤ 100000

3 (3, 2, 1) ≤ 100000

3 (2, 3, 1) 4, 8 ≤ 100000

3 (1, 4, 1) ≤ 100000

3 (0, 5, 1) 946 ≤ 100000

3 (6, 0, 1) ≤ 100000

3 (5, 1, 1) 289 ≤ 100000

3 (4, 2, 1) ≤ 100000

3 (3, 3, 1) 6 ≤ 100000

3 (2, 4, 1) 33, 65, 119, 273, 377, 385, 533, 561, 649, 1105, 1189, 1441 ≤ 2000

3 (1, 5, 1) ≤ 100000

3 (0, 6, 1) ≤ 100000

3 (0, 0,−1) 4, 8, 10, 14, 16, 20, 22, 25, 26, 28, 32, 34, 35, 58, 40, 44 ≤ 45

3 (1, 0,−1) ≤ 100000

3 (0, 1,−1) ≤ 100000

3 (2, 0,−1) 705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251 ≤ 20000

3 (1, 1,−1) 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69 ≤ 70

3 (0, 2,−1) 705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251 ≤ 20000

3 (3, 0,−1) ≤ 100000

3 (2, 1,−1) 4 ≤ 100000

3 (1, 2,−1) 4 ≤ 100000

3 (0, 3,−1) ≤ 100000
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k (a1, a2, . . . , ak) pseudoprimes ≤ N

3 (4, 0,−1) 4 ≤ 100000

3 (3, 1 − 1) ≤ 100000

3 (2, 2,−1) 15, 105, 195, 231, 323, 377, 435, 665, 705, 1443, 1551, 1891, 2465 ≤ 2500

3 (1, 3,−1) ≤ 100000

3 (0, 4,−1) 4 ≤ 100000

3 (5, 0,−1) ≤ 100000

3 (4, 1,−1) 25 ≤ 100000

3 (3, 2,−1) ≤ 100000

3 (2, 3,−1) ≤ 100000

3 (1, 4,−1) 25 ≤ 100000

3 (0, 5,−1) ≤ 100000

3 (6, 0,−1) ≤ 100000

3 (5, 1,−1) ≤ 100000

3 (4, 2,−1) 9, 27 ≤ 100000

3 (3, 3,−1) 4, 6, 8, 12, 16, 18, 24, 30, 32, 36, 48, 54, 56, 60, 64, 72 ≤ 85

3 (2, 4,−1) 9, 27 ≤ 100000

3 (1, 5,−1) ≤ 100000

3 (0, 6,−1) ≤ 100000
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k (a1, a2, . . . , ak) pseudoprimes ≤ N

4 (0, 0, 0, 1) 4, 6, 9, 10, 14, 15, 18, 21, 22, 25, 26, 27, 30, 33, 34, 35 ≤ 37

4 (1, 0, 0, 1) 4, 34, 38, 46, 62, 94, 106, 122, 158, 166, 214, 218, 226 ≤ 273

4 (0, 1, 0, 1) 9, 12, 15, 21, 25, 27, 33, 35, 36, 39, 45, 49, 51, 55, 57 ≤ 60

4 (0, 0, 1, 1) ≤ 100000

4 (2, 0, 0, 1) ≤ 100000

4 (0, 2, 0, 1) 4, 9, 12, 15, 21, 25, 27, 33, 35, 36, 39, 45, 49, 51, 55, 57 ≤ 60

4 (0, 0, 2, 1) 6 ≤ 100000

4 (1, 1, 0, 1) ≤ 100000

4 (1, 0, 1, 1) 705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201 ≤ 15000

4 (0, 1, 1, 1) ≤ 100000

4 (3, 0, 0, 1) ≤ 100000

4 (0, 3, 0, 1) 6, 9, 15, 18, 21, 25, 27, 33, 35, 39, 45, 49, 51, 54, 55, 57 ≤ 60

4 (0, 0, 3, 1) 4 ≤ 100000

4 (2, 1, 0, 1) ≤ 100000

4 (2, 0, 1, 1) ≤ 100000

4 (1, 2, 0, 1) 4 ≤ 100000

4 (1, 0, 2, 1) ≤ 100000

4 (0, 2, 1, 1) ≤ 100000

4 (0, 1, 2, 1) 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251 ≤ 25000

4 (1, 1, 1, 1) 49 ≤ 100000

4 (4, 0, 0, 1) 4, 6 ≤ 100000

4 (0, 4, 0, 1) 4, 9, 12, 15, 21, 25, 27, 33, 35, 36, 39, 45, 49, 51, 55, 57 ≤ 60

4 (0, 0, 4, 1) 4, 10,≤ 100000

4 (3, 1, 0, 1) ≤ 100000

4 (3, 0, 1, 1) 9 ≤ 100000

4 (1, 3, 0, 1) ≤ 100000

4 (1, 0, 3, 1) 4, 9 ≤ 100000

4 (0, 3, 1, 1) ≤ 100000

4 (0, 1, 3, 1) ≤ 100000

4 (2, 2, 0, 1) ≤ 100000

4 (2, 0, 2, 1) 169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107 ≤ 7500

4 (0, 2, 2, 1) ≤ 100000
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k (a1, a2, . . . , ak) pseudoprimes ≤ N

4 (2, 1, 1, 1) 4 ≤ 100000

4 (1, 2, 1, 1) ≤ 100000

4 (1, 1, 2, 1) ≤ 100000

4 (0, 0, 0,−1) 4, 6, 9, 10, 14, 15, 18, 21, 22, 25, 26, 27, 30, 33, 34, 35 ≤ 37

4 (1, 0, 0,−1) 4, 34, 38, 46, 62, 94, 106, 122, 158, 166, 214, 218, 226, 274 ≤ 277

4 (0, 1, 0,−1) 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69 ≤ 74

4 (0, 0, 1,−1) 4, 34, 38, 46, 62, 94, 106, 122, 158, 166, 214, 218, 226, 274 ≤ 277

4 (2, 0, 0,−1) ≤ 100000

4 (0, 2, 0,−1) 4, 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65 ≤ 68

4 (0, 0, 2,−1) ≤ 100000

4 (1, 1, 0,−1) ≤ 100000

4 (1, 0, 1,−1) 4, 8, 10, 14, 16, 20, 22, 25, 26, 28, 32, 34, 35, 38, 40, 44 ≤ 45

4 (0, 1, 1,−1) ≤ 100000

4 (3, 0, 0,−1) 25 ≤ 100000

4 (0, 3, 0,−1) 6, 9, 15, 18, 21, 25, 27, 33, 35, 39, 45, 49, 51, 54, 55, 57 ≤ 62

4 (0, 0, 3,−1) 25 ≤ 100000

4 (2, 1, 0,−1) 49 ≤ 100000

4 (2, 0, 1,−1) ≤ 100000

4 (1, 2, 0,−1) 4 ≤ 100000

4 (1, 0, 2,−1) ≤ 100000

4 (0, 2, 1,−1) 4 ≤ 100000

4 (0, 1, 2,−1) 49 ≤ 100000

4 (1, 1, 1,−1) 195, 897, 6213, 11285, 27889, 30745, 38503, 39601 ≤ 100000

4 (4, 0, 0,−1) 4, 6, 25 ≤ 100000

4 (0, 4, 0,−1) 4, 9, 15, 21, 25, 27, 28, 33, 35, 39, 45, 49, 51, 55, 57 ≤ 62

4 (0, 0, 4,−1) 4, 6, 25 ≤ 100000

4 (3, 1, 0,−1) ≤ 100000

4 (3, 0, 1,−1) 9, 27 ≤ 100000

4 (1, 3, 0,−1) ≤ 100000

4 (1, 0, 3,−1) 9, 27 ≤ 100000

4 (0, 3, 1,−1) ≤ 100000

4 (0, 1, 3,−1) ≤ 100000
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k (a1, a2, . . . , ak) pseudoprimes ≤ N

4 (2, 2, 0,−1) ≤ 100000

4 (2, 0, 2,−1) 285, 781, 1295, 1815, 5291, 23127, 23871, 59565 ≤ 100000

4 (0, 2, 2,−1) ≤ 100000

4 (2, 1, 1,−1) ≤ 100000

4 (1, 2, 1,−1) 4, 8, 9, 16, 27, 32, 64, 81, 88, 128, 224, 243, 256, 351 ≤ 500

4 (1, 1, 2,−1) ≤ 100000

6. Questions

The entries in the table pose many questions.

Question 6.1. Is the set of Lucas (0, 2, 1) pseudoprimes equal to the set of Lucas
(1, 0, 1, 1) pseudoprimes?

The pseudoprimes appearing in the Lucas (0, 2, 1), (1, 0, 1, 1), and (0, 1, 2, 1) se-
quences are essentially the pseudoprimes appearing in the Lucas (1, 1) pseudoprimes.
Similarly, the pseudoprimes appearing in the Lucas (1, 3, 1) and (2, 0, 2, 1) sequences
are essentially the pseudoprimes appearing in the Lucas (2, 1) sequence.

The key to looking at Question 6.1 is the characteristic polynomials of these
sequences.

Note that the characteristic polynomial of the Lucas (1, 1) sequence is x2 −x− 1.
The characteristic polynomial of the Lucas (0, 2, 1) sequence is

x3 − 2x − 1 = (x2 − x − 1)(x + 1). (6.1)

The characteristic polynomial of the Lucas (1, 0, 1, 1) sequence is

x4 − x3 − x − 1 = (x2 − x − 1)(x2 + 1). (6.2)

And, the characteristic polynomial of the Lucas (0, 1, 2, 1) sequence is

x4 − x2 − 2x − 1 = (x2 − x − 1)(x2 + x + 1). (6.3)

Observe that in each case, the characteristic polynomial of the Lucas (0, 2, 1),
(1, 0, 1, 1), or (0, 1, 2, 1) sequence is equal to the characteristic polynomial of the
Lucas (1, 1) sequence multiplied by a cyclotomic polynomial [17].

Similarly, the characteristic polynomial of the Lucas (2, 1) sequence is x2−2x−1.
The characteristic polynomial of the Lucas (1, 3, 1) is

x3 − x2 − 3x − 1 = (x2 − 2x − 1)(x + 1). (6.4)

And, the characteristic polynomial of the Lucas (2, 0, 2, 1) sequence is

x4 − 2x3 − 2x − 1 = (x2 − 2x − 1)(x2 + 1). (6.5)

Observe again that in each case, the characteristic polynomial of the Lucas (1, 3, 1)
or (2, 0, 2, 1) sequence is equal to the characteristic polynomial of the Lucas (2, 1)
sequence multiplied by a cyclotomic polynomial.

Here is the theorem describing the situation above. The proof of the theorem will
appear in a separate paper.
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Theorem 6.1. Suppose that the characteristic polynomial of a Lucas (a1, a2, . . . , ak =
1) sequence is equal to the characteristic polynomial of a Lucas (b1, b2, . . . , br = 1) se-
quence multiplied by j polynomials, not necessarily distinct, each of which is a cyclo-
tomic polynomial of order m1, m2, . . ., mj, respectively. Let m = lcm(m1,m2, . . . ,mj).
Then the set of Lucas (b1, b2, . . . , br = 1) pseudoprimes relatively prime to m is equal
to the set of Lucas (a1, a2, . . . , ak = 1) pseudoprimes relatively prime to m.

It was proved by Richard André-Jeannin [3] that the Lucas (a1, 1) sequence has
an even Lucas (a1, 1) pseudoprime if and only if a1 6= 1. Richard André-Jeannin
did not prove that the Lucas (1, 1) sequence has no even Lucas (1, 1) pseudoprime,
but used results proving this which appeared in: D. J. White, J. N. Hunt, and
L. A. G. Dresel [25], A. Di Porto [8], and P. S. Bruckman [7]. Since x2 + x + 1
is a cyclotomic polynomial of order 3, it follows from (6.6) and Theorem 6.1 that
the set of Lucas (1, 1) pseudoprimes not divisible by 3 is equal to the set of Lucas
(0, 1, 2, 1) pseudoprimes not divisible by 3. In particular, 705, 24465, and 54705 are
Lucas (1, 1) pseudoprimes, but not Lucas (0, 1, 2, 1) pseudoprimes. On page 129
of the book [19], Ribenboim notes that David Singmaster in 1983 found all Lucas
(1, 1) pseudoprimes < 105, and Ribenboim lists all 25 of these numbers on page 129.
Since x + 1 and x2 + 1 are cyclotomic polynomials of orders 2 and 4, respectively,
it follows from (6.1), (6.2), Theorem 6.1, and Richard André-Jeannin’s result that
the set of odd Lucas (0, 2, 1) pseudoprimes and odd Lucas (1, 0, 1, 1) pseudoprimes
are both equal to the set of all Lucas (1, 1) pseudoprimes, since there are no even
Lucas (1, 1) pseudoprimes. This goes a long way towards answering Question 6.1 of
whether the set of Lucas (0, 2, 1) pseudoprimes is equal to the set of Lucas (1, 0, 1, 1)
pseudoprimes.

In fact, we can prove a stronger result regarding the Lucas (0, 2, 1) and Lu-
cas (1, 0, 1, 1) pseudoprimes. Using the identities following the example sequences
Gn(0, 2, 1) and Gn(1, 0, 1, 1), we can prove that the set of Lucas (0, 2, 1) pseudo-
primes is equal to the set of Lucas (1, 0, 1, 1) pseudoprimes.

Similarly, it follows from (6.7), (6.8), Theorem 6.1, and André-Jeannin’s result
that the set of odd Lucas (2, 1) pseudoprimes, odd Lucas (1, 3, 1) pseudoprimes,
and odd Lucas (2, 0, 2, 1) pseudoprimes are all equal. Note that it follows from
Proposition 2 in André-Jeannin’s paper [3] that 2k is a traditional Lucas (2, 1)
pseudoprime for all k ≥ 2. However, 2k is not a Lucas (2, 1) pseudoprime for k ≥ 3
by an argument similar to that given after Definition 5.1.

Another question is suggested by the table.

Question 6.2. Is the set of Lucas (0, 2, 0, 1) pseudoprimes equal to the set of Lucas
(0, 4, 0, 1) pseudoprimes?

The following describes the situation for the Lucas (0, a2, 0, 1) pseudoprimes.

Theorem 6.2. The Lucas (0, a2, 0, 1) pseudoprimes are precisely the odd composite
natural numbers and the even integers 2m ≥ 4 for which m|Gm(a2, 1).
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Proof. It follows from the Newton formulas, the recursion relation defining the Lucas
(0, a2, 0, 1) sequence, and by induction that

Gn = G
−n = 0 if n ≥ 0 and n 6≡ 0 (mod 2), (6.6)

G0 = 4, (6.7)

G2 = 2a2, (6.8)

G2(i+2) = a2G2(i+1) + G2i for i ≥ 0, (6.9)

and

G
−2i = (−1)iG2i for i ≥ 0. (6.10)

In particular, we see by (6.6) that G1 = G
−1 = 0.

Consider the second-order Lucas sequence {Gn(a2, 1)}. Then G0(a2, 1) = 2 and
G1(a2, 1) = a2. Note that

G0(0, a2, 0, 1) = 2G0(a2, 1) and

G2(0, a2, 0, 1) = 2G1(a2, 1).

It now follows from (6.9) and the second-order recursion relation defining {Gn(a2, 1)}
that

G2i(0, a2, 0, 1) = 2 · Gi(a2, 1)

for i ≥ 0. The assertions concerning the Lucas (0, a2, 0, 1) pseudoprimes now follow
from (6.6)-(6.10). �

The paper by Somer [22] gives comprehensive criteria for determining when
n|Gn(a1, 1), which relates to Theorem 6.2.

The answer to Question 6.2 is no.
First of all, it is well-known that if m|n and n/m is odd, then

Gm(a1, 1)|Gn(a1, 1).

Thus, if 6|G2(a1, 1), then 6|G6(a1, 1). It is also proven in Theorem 5 (v) of the
reference by Somer [22] that if n is even and n|Gn(a1, 1), then m|Gm(a1, 1), when
m = Gn(a1, 1).

Now consider the Lucas (2, 1) sequence. Note that 6|G2(2, 1) = 6. Thus, by our
above discussion, 6|G6(2, 1) = 198. Since 6 is even, it follows that

G6(2, 1) = 198|G198(2, 1).

Hence, by Theorem 6.2, 2 × 198 = 396 is a Lucas (0, 2, 0, 1) pseudoprime. By
computation, 396 is not a Lucas (0, 4, 0, 1) pseudoprime.

Next consider the Lucas (4, 1) sequence. Note that 6|G2(4, 1) = 18. Thus, it
again follows by the arguments above that 6|G6(4, 1) = 5778. Since 6 is even, it
follows that

G6(4, 1) = 5778|G5778(4, 1).

Hence, by Theorem 6.2, 2 × 5778 = 11556 is a Lucas (0, 4, 0, 1) pseudoprime. But
unfortunately, by computation, 11556 is also a Lucas (0, 2, 0, 1) pseudoprime.

To find an example of a Lucas (0, 4, 0, 1) pseudoprime that is not a Lucas (0, 2, 0, 1)
pseudoprime, we searched using the program in the Appendix. It turned out that
the first composite even integers which are Lucas (0, 2, 0, 1) pseudoprimes and not
Lucas (0, 4, 0, 1) pseudoprimes are 132, 396, and 1188. And the first composite
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even integer which is a Lucas (0, 4, 0, 1) pseudoprime and not a Lucas (0, 2, 0, 1)
pseudoprime is 1284.

Another question is the following:

Question 6.3. For every k ≥ 2, is there a k-tuple (a1, a2, . . . , ak = 1) such that
there are an infinite number of Lucas (a1, a2, . . . , ak = 1) pseudoprimes?

The answer is yes. The reasoning goes as follows. In Theorem 2 of Rotkiewicz
[20], it is proven that there are infinitely many Lucas (a1, 1) pseudoprimes. It now
follows from Theorem 6.2 that for every k ≥ 2, there is a k-tuple (a1, a2, . . . , ak = 1)
such that there are an infinite number of Lucas (a1, a2, . . . , ak = 1) pseudoprimes.

There is a computational question we can ask.

Question 6.4. Is there a Lucas (0, 1, 1) pseudoprime?

The answer is yes. In [14], Kurtz, Shanks, and Williams have found 55 Lucas
(0, 1, 1) pseudoprimes less than 50 · 109, the smallest of which is 27664033. Adams
and Shanks [1] had previously found 14 of these pseudoprimes including the smallest
one. It is of interest that 4 out of these 55 Lucas (0, 1, 1) pseudoprimes are also
Carmichael numbers. Grantham [11] has proved that there are infinitely many Lucas
(0, 1, 1) pseudoprimes. His method uses similar techniques as those employed in [2]
to show that there are infinitely many Carmichael numbers, along with zero-density
estimates for Hecke L-functions. In the paper [11], Grantham also proves that there
are infinitely many Lucas (a1, a2, . . . , ak = 1) psuedoprimes when the corresponding
characteristic polynomial is square-free. This gives another affirmative answer to
Question 6.3.

7. Appendix - C Program

// This C program finds generalized Lucas pseudoprimes.

// It uses the GNU MP library to handle the large integers.

// Input: Command Line

// Output: Screen

// gcc -o genlucaspsp genlucaspsp.c -lgmp

// genlucaspsp k max a_1 a_2 ... a_(k-1) a_k=+/-1

// k <= 1000

// The program outputs composite n between k and max satisfying

// g_n = a_1 mod n and h_n = -a_(k-1) mod n

// where g_0 = k, g_1 = a_1, g_2 = a_1 g_1 + 2a_2 , ...,

// and for n >= k, g_n = a_1 g_(n-1) + a_2 g_(n-2) + ... + a_k g_(n-k)

// and h_0 = k, h_1 = -a_(k-1)/a_k, h_2 = (-a_(k-1) h_1 -2a_(k-2))/a_k , ...

// and for n >= k, h_n = (-a_(k-1) h_(n-1) - a_(k-2) h_(n-2) - ...

// + h_(n-k))/a_k

#include <stdio.h>

#include <math.h>

#include <gmp.h>
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main (int argc, char *argv[]) {

mpz_t g[1001], h[1001], t, s, rg, rh;

signed long int composite, n, i, j, k, max, a[1001];

k = atoi (argv[1]);

max = atoi (argv[2]);

for (i=1; i<=k; i++) a[i] = atoi (argv[i+2]);

for (i=0; i<=1000; i++)

{

mpz_init (g[i]);

mpz_init (h[i]);

}

mpz_init (t);

mpz_init (s);

mpz_init (rg);

mpz_init (rh);

mpz_set_si (g[0],k);

mpz_set_si (g[1],a[1]);

i=2;

while (i<k)

{

mpz_set_si (t,i);

mpz_mul_si (t,t,a[i]);

for (j=1; j<i; j++)

{

mpz_set_si (s,a[j]);

mpz_mul (s,s,g[i-j]);

mpz_add (t,t,s);

}

mpz_set (g[i],t);

i++;

}

mpz_set_si (h[0],k);

mpz_set_si (t,-a[k-1]);

mpz_mul_si (t,t,a[k]);

mpz_set (h[1],t);

i=2;

while (i<k)

{

mpz_set_si (t,-i);

mpz_mul_si (t,t,a[k-i]);

for (j=1; j<i; j++)
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{

mpz_set_si (s,-a[k-j]);

mpz_mul (s,s,h[i-j]);

mpz_add (t,t,s);

}

mpz_mul_si (t,t,a[k]);

mpz_set (h[i],t);

i++;

}

n=k;

while ( n <= max )

{

mpz_set_si (t,0);

for (i=1; i<=k; i++)

{

mpz_set_si (s,a[i]);

mpz_mul (s,s,g[k-i]);

mpz_add (t,t,s);

}

mpz_set (g[k],t);

mpz_set_si (t,0);

for (i=1; i<k; i++)

{

mpz_set_si (s,-a[k-i]);

mpz_mul (s,s,h[k-i]);

mpz_add (t,t,s);

}

mpz_set (s,h[0]);

mpz_add (t,t,s);

mpz_mul_si (t,t,a[k]);

mpz_set (h[k],t);

mpz_sub_ui (t,g[k],a[1]);

if (mpz_sgn(t)<0)

mpz_mul_si (t,t,-1);

mpz_mod_ui (rg,t,n);

mpz_set_si (s,a[k-1]);

mpz_mul_si (s,s,a[k]);

mpz_add (t,h[k],s);

if (mpz_sgn(t)<0)

mpz_mul_si (t,t,-1);

mpz_mod_ui (rh,t,n);
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if ((mpz_sgn( rg ) ==0) && (mpz_sgn( rh ) ==0))

{

composite = 0;

if ((n!=2) && (n!=3))

{

if ((n%2)==0) composite = 1;

if ((n%3)==0) composite = 1;

}

i=5;

while (((i*i)<=n) && (composite==0))

{

if ((n%i)==0) composite = 1;

i=i+2;

if ((n%i)==0) composite = 1;

i=i+4;

}

if (composite==1)

printf("%d\n",n);

}

for (i=1; i<=k; i++) mpz_set (g[i-1],g[i]);

for (i=1; i<=k; i++) mpz_set (h[i-1],h[i]);

n++;

}

for (i=0; i<=1000; i++)

{

mpz_clear (g[i]);

mpz_clear (h[i]);

}

mpz_clear (rg);

mpz_clear (rh);

mpz_clear (t);

mpz_clear (s);

exit(0);

}
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