LUCAS $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ SEQUENCES AND PSEUDOPRIMES

CURTIS COOPER AND LAWRENCE SOMER

Abstract. Bisht defined a generalized Lucas integral sequence of order $k \geq 1$ for nonnegative integers n as

$$
G_{n}=x_{1}^{n}+x_{2}^{n}+\cdots+x_{k}^{n},
$$

where $x_{1}, x_{2}, \ldots, x_{k}$ are the roots of the equation

$$
x^{k}=a_{1} x^{k-1}+a_{2} x^{k-2}+\cdots+a_{k}
$$

with integral coefficients and $a_{k} \neq 0$. He proved that these sequences satisfy the congruence

$$
G_{p} \equiv G_{1} \quad(\bmod p)
$$

when p is prime. Imposing the condition $a_{k}=1$, we extend these generalized Lucas integral sequences to negative indices and define these sequences as Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ sequences. We then prove that

$$
G_{-p} \equiv G_{-1} \quad(\bmod p)
$$

when p is prime. Finally, we define the concept of Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ pseudoprime and study some particular examples and prove some theorems.

1. Definitions and Closed Form

Bisht [6] defined a generalized Lucas integral sequence of order $k \geq 1$ as follows:
Definition 1.1. Let n be a nonnegative integer and

$$
G_{n}=x_{1}^{n}+x_{2}^{n}+\cdots+x_{k}^{n},
$$

where $x_{1}, x_{2}, \ldots, x_{k}$ are the roots of the equation

$$
x^{k}=a_{1} x^{k-1}+a_{2} x^{k-2}+\cdots+a_{k}
$$

with integral coefficients and $a_{k} \neq 0$.
A generalized Lucas integral sequence of order 1 is just $G_{n}=a_{1}^{n}$ for nonnegative integers n. The generalized Lucas integral sequence of order 2 with equation $x^{2}=$ $x+1$ is just $G_{n}=L_{n}$, where L_{n} is the nth Lucas number. Perrin's sequence (Sloane [21] - A001608) is the generalized Lucas integral sequence of order 3 with $a_{1}=0$, $a_{2}=1$, and $a_{3}=1$. Alternately, Perrin's sequence can be defined as $G_{0}=3, G_{1}=0$, $G_{2}=2$, and

$$
G_{n}=G_{n-2}+G_{n-3} \text { for } n \geq 3
$$

Bisht [6], using Newton's formulas [24], proved the following alternate definition of a generalized Lucas integral sequence of order $k \geq 1$.

Definition 1.2. Let a_{1}, \ldots, a_{k} be integers and $a_{k} \neq 0$. Let

$$
\begin{array}{rlr}
G_{0} & =k, & \\
G_{n} & =\sum_{j=1}^{n-1} a_{j} G_{n-j}+n a_{n}, & \text { if } n=1,2, \ldots, k-1, \\
G_{n} & =\sum_{j=1}^{k} a_{j} G_{n-j}, & \\
\text { if } n \geq k .
\end{array}
$$

The generalized Lucas integral sequences of order $k \geq 1$ have a closed form related to the Girard-Waring formula. A discussion of the Girard-Waring formula can be found in [9].

Theorem 1.1 (Girard-Waring Formula). Let k be a positive integer and let x_{1}, x_{2}, \ldots, x_{k} be the roots of the polynomial

$$
x^{k}+b_{1} x^{k-1}+b_{2} x^{k-2}+\cdots+b_{k}
$$

For $j \geq 0$ an integer, define

$$
s_{j}=\sum_{i=1}^{k} x_{i}^{j}
$$

Then for every positive integer n,

$$
s_{n}=n \cdot \sum_{\substack{i_{1}+2 i_{2}+\cdots+k i_{k}=n \\ i_{1}, i_{2}, \ldots, i_{k} \geq 0}}(-1)^{i_{1}+i_{2}+\cdots+i_{k}} \frac{\left(i_{1}+i_{2}+\cdots+i_{k}-1\right)!}{i_{1}!i_{2}!\cdots i_{k}!} b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots b_{k}^{i_{k}}
$$

Thus, we have the following corollary.
Corollary 1.2 (Closed Form). Let $\left\{G_{n}\right\}$ be a generalized Lucas integral sequence of order $k \geq 1$ and n be a positive integer. Then

$$
G_{n}=n \cdot \sum_{\substack{i_{1}+2 i_{2}+\cdots+k i_{k}=n \\ i_{1}, i_{2}, \ldots, i_{k} \geq 0}} \frac{\left(i_{1}+i_{2}+\cdots+i_{k}-1\right)!}{i_{1}!i_{2}!\cdots i_{k}!} a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{k}^{i_{k}}
$$

Proof. Let $\left\{G_{n}\right\}$ be a generalized Lucas integral sequence of order $k \geq 1$ and assume that $x_{1}, x_{2}, \ldots, x_{k}$ are the roots of the equation

$$
\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{k}\right)=x^{k}-a_{1} x^{k-1}-a_{2} x^{k-2}-\cdots-a_{k-1} x-a_{k}
$$

Then applying the Girard-Waring formula and simplifying, we obtain the result.

2. Divisibility

Bisht [6] proved the following theorem.
Theorem 2.1. Let $\left\{G_{n}\right\}$ be a generalized Lucas integral sequence of order $k \geq 1$ and p be a prime number. Then for positive integers m and r,

$$
G_{m p^{r}} \equiv G_{m p^{r-1}} \quad\left(\bmod p^{r}\right)
$$

Historically, we need to mention the following results. For any generalized Lucas integral sequence of order 1 , the congruence $G_{p^{r}} \equiv G_{p^{r-1}}\left(\bmod p^{r}\right)$, which is a special case of Theorem 2.1, is just Fermat's Little Theorem. Hoggatt and Bicknell [13] proved that if p is prime, then $L_{p} \equiv L_{1}(\bmod p)$. Lucas [16] studied Perrin's sequence and proved that if p is prime, then $G_{p} \equiv G_{1}(\bmod p)$.

3. Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ Sequences

During their study of Perrin's sequence, Adams and Shanks [1] extended Perrin's sequence to negative indices and proved that $G_{-p} \equiv G_{-1}(\bmod p)$ when p is prime. We wish to extend the definition of a generalized Lucas integral sequence of order $k \geq 1$ to negative indices so that

$$
G_{n}=x_{1}^{n}+x_{2}^{n}+\cdots+x_{k}^{n}
$$

is true for negative integers n. In the meantime, we want these G_{n} 's to be integers. One way to do this is to let $a_{k}=1$. Therefore, we define G for negative indices as follows:

Definition 3.1. Let $\left\{G_{n}\right\}$ be a generalized Lucas integral sequence of order $k \geq 1$ with $a_{k}=1$. Let

$$
\begin{aligned}
& G_{0}=k, \\
& G_{-n}=-\sum_{j=1}^{n-1} a_{k-j} G_{-n+j}-n a_{k-n}, \quad \text { if } n=1,2, \ldots, k-1 \text {, } \\
& G_{-n}=-\sum_{j=1}^{k-1} a_{k-j} G_{-n+j}+G_{-n+k}, \quad \text { if } n \geq k \text {. }
\end{aligned}
$$

We note that a similar definition to Definition 3.1 can be given for the Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=-1\right)$ sequence.

At this point, it is helpful to compute several examples of Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=\right.$ 1) sequences.

Example 3.1 (Lucas $(1,1)$ Sequence).

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
G_{n}	2	1	3	4	7	11	18	29	47	76	123	199	322	521
G_{-n}	2	-1	3	-4	7	-11	18	-29	47	-76	123	-199	322	-521

This is the Lucas sequence.
Example 3.2 (Lucas $(2,1)$ Sequence).

n	0	1	2	3	4	5	6	7	8	9	10	11
G_{n}	2	2	6	14	34	82	198	478	1154	2786	6726	16238
G_{-n}	2	-2	6	-14	34	-82	198	-478	1154	-2786	6726	-16238

This is the Pell-Lucas sequence.

Example 3.3 (Lucas $(0,1,1)$ Sequence).

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
G_{n}	3	0	2	3	2	5	5	7	10	12	17	22	29	39	51	68	90	119
G_{-n}	3	-1	1	2	-3	4	-2	-1	5	-7	6	-1	-6	12	-13	7	5	-18

This is Perrin's sequence.
Example 3.4 (Lucas $(0,2,1)$ Sequence).

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
G_{n}	3	0	4	3	8	10	19	28	48	75	124	198	323	520	844
G_{-n}	3	-2	4	-5	8	-12	19	-30	48	-77	124	-200	323	-522	844

In this example, $G_{2 n+1}(0,2,1)=G_{2 n+1}(1,1)-1$ and $G_{2 n}(0,2,1)=G_{2 n}(1,1)+1$ for n an integer.

Example 3.5 (Lucas $(1,0,1,1)$ Sequence).

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
G_{n}	4	1	1	4	9	11	16	29	49	76	121	199	324	521	841
G_{-n}	4	-1	1	-4	9	-11	16	-29	49	-76	121	-199	324	-521	841

In this example, $G_{2 n+1}(1,0,1,1)=G_{2 n+1}(1,1), G_{4 n}(1,0,1,1)=G_{4 n}(1,1)+2$, and $G_{4 n+2}(1,0,1,1)=G_{4 n+2}(1,1)-2$ for n an integer.

Example 3.6 (Lucas $(0,2,0,1)$ Sequence).

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
G_{n}	4	0	4	0	12	0	28	0	68	0	164	0	396	0	956	0
G_{-n}	4	0	-4	0	12	0	-28	0	68	0	-164	0	396	0	-956	0

Example 3.7 (Lucas $(0,4,0,1)$ Sequence).

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
G_{n}	4	0	8	0	36	0	152	0	644	0	2728	0	6100	0	14928
G_{-n}	4	0	-8	0	36	0	-152	0	644	0	-2728	0	6100	0	-14928

Example 3.8 (Lucas ($1,3,1$) Sequence).

n	0	1	2	3	4	5	6	7	8	9	10	11	12
G_{n}	3	1	7	13	35	81	199	477	1155	2785	6727	16237	39203
G_{-n}	3	-3	7	-15	35	-83	199	-479	1155	-2787	6727	-16239	39203

In this example, $G_{2 n+1}(1,3,1)=G_{2 n+1}(2,1)-1$ and $G_{2 n}(1,3,1)=G_{2 n}(2,1)+1$ for n an integer.

Example 3.9 (Lucas $(2,0,2,1)$ Sequence).

n	0	1	2	3	4	5	6	7	8	9	10	11	12
G_{n}	4	2	4	14	36	82	196	478	1156	2786	6724	16238	39204
G_{-n}	4	-2	4	-14	36	-82	196	-478	1156	-2786	6724	-16238	39204

In this example, $G_{2 n+1}(2,0,2,1)=G_{2 n+1}(2,1), G_{4 n}(2,0,2,1)=G_{4 n}(2,1)+2$, and $G_{4 n+2}(2,0,2,1)=G_{4 n+2}(2,1)-2$ for n an integer.

4. Results

Theorem 4.1. Let $\left\{G_{n}\right\}$ be a Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ sequence and let p be a prime. Then for positive integers m and r,

$$
G_{-m p^{r}} \equiv G_{-m p^{r-1}} \quad\left(\bmod p^{r}\right)
$$

Proof. Let $\left\{G_{n}\right\}$ be a Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ sequence. Define the generalized Lucas integral sequence of order $k \geq 1\left\{H_{n}\right\}$ as

$$
H_{n}=y_{1}^{n}+y_{2}^{n}+\cdots+y_{k}^{n}
$$

where $y_{1}, y_{2}, \ldots, y_{k}$ are the roots of the equation

$$
y^{k}=-a_{k-1} y^{k-1}-\cdots-a_{1} y+1
$$

But the y_{i} 's are just the reciprocals of the x_{i} 's, the roots of the equation

$$
x^{k}=a_{1} x^{k-1}+a_{2} x^{k-2}+\cdots+a_{k-1} x+1
$$

Thus, $H_{n}=G_{-n}$ for all nonnegative integers n. Using the same argument as Bisht [6], for positive integers m and r and for p a prime

$$
H_{m p^{r}} \equiv H_{m p^{r-1}} \quad\left(\bmod p^{r}\right)
$$

Therefore,

$$
G_{-m p^{r}} \equiv G_{-m p^{r-1}} \quad\left(\bmod p^{r}\right)
$$

and the proof is complete.
We note that a similar theorem to Theorem 4.1 can be proved for the Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=-1\right)$ sequence.

We also note that for every Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ sequence $\left\{G_{n}\right\}, G_{1}=a_{1}$ and $G_{-1}=-a_{k-1}$.

Next, we give some more general examples of Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ sequences.
Example 4.1. Let $\left\{G_{n}\right\}$ be a Lucas $\left(0, a_{2}, \ldots, a_{k-2}, 0, a_{k}=1\right)$ sequence. Then by Theorem 2.1 and Theorem 4.1, the sequence $\left\{G_{n}\right\}$ satisfies the congruences

$$
G_{p} \equiv 0 \quad(\bmod p) \quad \text { and } \quad G_{-p} \equiv 0 \quad(\bmod p)
$$

where p is prime.

Example 4.2. Let $\left\{G_{n}\right\}$ be a Lucas $\left(0,1, \ldots, 1, a_{k}=1\right)$ sequence. When $k=3$ this is Perrin's sequence. The initial conditions for these sequences are:

n	0	1	2	3	4	5	6	\cdots	$k-1$
G_{n}	k	0	2	3	6	10	17	\cdots	$L_{k-1}-1$
G_{-n}	k	-1	-1	-1	-1	-1	-1	\cdots	$k-2$

Example 4.3. Let $\left\{G_{n}\right\}$ be a Lucas $\left(1,1, \ldots, 1, a_{k}=1\right)$ sequence. This is a Fibonacci-like sequence. When $k=2$ this sequence is the Lucas sequence. When $k=3$ this is the sequence (Sloane [21] - A001644). The initial conditions for these sequences are:

n	0	1	2	3	4	5	6	\cdots	$k-1$
G_{n}	k	1	3	7	15	31	63	\cdots	$2^{k-1}-1$
G_{-n}	k	-1	-1	-1	-1	-1	-1	\cdots	-1

5. Pseudoprimes

The concept of a pseudoprime with respect to a polynomial has been studied in the mathematical literature by Gurak [12], Szekeres [23], Atkin [4], and Grantham [10]. We note that the Frobenius pseudoprimes of Grantham [10] generalize the higherorder pseudoprimes of both Gurak and Szekeres. The higher-order pseudoprime test of Atkin [4] shows some similarities to the Frobenius pseudoprime test of Grantham. Motivated by the results above, we make the following definition.

Definition 5.1. Let $\left\{G_{n}\right\}$ be a Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ sequence. A composite n such that $G_{n} \equiv G_{1}(\bmod n)$ and $G_{-n} \equiv G_{-1}(\bmod n)$ is called a Lucas ($a_{1}, a_{2}, \ldots, a_{k}=1$) pseudoprime.

Again, we note that a similar definition to Definition 5.1 can be given for the Lucas ($a_{1}, a_{2}, \ldots, a_{k}=-1$) sequence.

Traditional Lucas $\left(a_{1}, 1\right)$ pseudoprimes are essentially Lucas $\left(a_{1}, 1\right)$ pseudoprimes. However, a traditional Lucas $\left(a_{1}, 1\right)$ pseudoprime only requires that n is composite and $G_{n} \equiv G_{1}(\bmod n)$. Therefore, every Lucas $\left(a_{1}, 1\right)$ pseudoprime is a traditional Lucas $\left(a_{1}, 1\right)$ pseudoprime. But these pseudoprimes are different. For example, 8 is a traditional Lucas $(2,1)$ pseudoprime since $G_{8}=1154, G_{1}=2$, and $1154 \equiv 2$ $(\bmod 8)$. However, 8 is not a Lucas $(2,1)$ pseudoprime with the above definition since $G_{-8}=1154, G_{-1}=-2$, and $1154 \not \equiv-2(\bmod 8)$. A similar argument can be made for any 2^{k}, where $k \geq 3$. It should be noted that Beeger [5] proved there are an infinite number of even m such that $2^{m} \equiv 2(\bmod m)$.

The following theorem gives some results about traditional Lucas $\left(a_{1}, 1\right)$ pseudoprimes and Lucas ($a_{1}, 1$) pseudoprimes. The proof of the theorem will appear in a separate paper.

Theorem 5.1. Every odd traditional Lucas $\left(a_{1}, 1\right)$ pseudoprime is a Lucas $\left(a_{1}, 1\right)$ pseudoprime. If $a_{1} \equiv 2(\bmod 4)$, then 4 is a Lucas $\left(a_{1}, 1\right)$ pseudoprime. There are only a finite number of even Lucas $\left(a_{1}, 1\right)$ pseudoprimes.

We also note that traditional Lucas $\left(a_{1},-1\right)$ pseudoprimes are Lucas $\left(a_{1},-1\right)$ pseudoprimes.

In the case of Perrin's sequence (Lucas $(0,1,1)$ sequence), Perrin [18] searched for a composite n such that $n \mid G_{n}$. Adams and Shanks [1] extensively studied Perrin's sequence and its properties. They found that the smallest composite n such that $n \mid G_{n}$ is 271441 . Every Lucas $(0,1,1)$ pseudoprime is a Perrin pseudoprime. However, 271441 is not a Lucas $(0,1,1)$ pseudoprime.

We wrote a program to find examples of Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}= \pm 1\right)$ pseudoprimes. Here are some of our findings. The program can be found in the Appendix.

k	$\left(a_{1}, a_{2}, \ldots, a_{k}\right)$	pseudoprimes $\leq N$
2	$(0,1)$	$9,15,21,25,27,33,35,39,45,49,51,55,57,63,65 \leq 67$
2	$(1,1)$	$705,2465,2737,3745,4181,5777,6721,10877,13201 \leq 15000$
2	$(2,1)$	$4,169,385,961,1105,1121,3827,4901,6265,6441,6601,7107 \leq 7500$
2	$(3,1)$	$33,65,119,273,377,385,533,561,649,1105,1189,1441 \leq 1500$
2	$(4,1)$	$9,85,161,341,705,897,901,1105,1281,1853,2465 \leq 2500$
2	$(5,1)$	$9,27,65,121,145,377,385,533,1035,1189,1305,1885 \leq 2000$
2	$(6,1)$	$4,57,185,385,481,629,721,779,1121,1441,1729 \leq 2000$
2	$(0,-1)$	$9,15,21,25,27,33,35,39,45,49,51,55,57,63,65 \leq 67$
2	$(1,-1)$	$25,35,49,55,65,77,85,91,95,115,119,121,125 \leq 130$
2	$(2,-1)$	$4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28 \leq 29$
2	$(3,-1)$	$4,15,44,105,195,231,323,377,435,665,705,836,1364 \leq 1400$
2	$(4,-1)$	$10,209,230,231,399,430,455,530,901,903,923,9891295 \leq 1500$
2	$(5,-1)$	$15,21,35,105,161,195,255,345,385,399,465,527,551 \leq 600$
2	$(6,-1)$	$4,14,28,35,119,164,169,385,434,574,741,779,899 \leq 900$
3	$(0,0,1)$	$4,8,10,14,16,20,22,25,26,28,32,34,35,38,40 \leq 42$
3	$(1,0,1)$	≤ 1000000
3	$(0,1,1)$	≤ 10000000
3	$(2,0,1)$	≤ 1000000
3	$(1,1,1)$	≤ 1000000
3	$(0,2,1)$	$705,2465,2737,3745,4181,5777,6721,10877,13201 \leq 15000$

k	$\left(a_{1}, a_{2}, \ldots, a_{k}\right)$	pseudoprimes $\leq N$
3	$(3,0,1)$	≤ 100000
3	$(2,1,1)$	≤ 100000
3	$(1,2,1)$	$4 \leq 100000$
3	$(0,3,1)$	≤ 100000
3	$(4,0,1)$	$4 \leq 100000$
3	$(3,1,1)$	$4,66,33153,79003 \leq 100000$
3	$(2,2,1)$	$79003 \leq 100000$
3	$(1,3,1)$	$169,385,961,1105,1121,3827,4901,6265,6441,6601 \leq 7000$
3	$(0,4,1)$	$4 \leq 100000$
3	$(5,0,1)$	$470,2465,10585,12801,15457,15841 \leq 100000$
3	$(4,1,1)$	$75361 \leq 100000$
3	$(3,2,1)$	≤ 100000
3	$(2,3,1)$	$4,8 \leq 100000$
3	$(1,4,1)$	≤ 100000
3	$(0,5,1)$	$946 \leq 100000$
3	$(6,0,1)$	≤ 100000
3	$(5,1,1)$	$289 \leq 100000$
3	$(4,2,1)$	≤ 100000
3	$(3,3,1)$	$6 \leq 100000$
3	$(2,4,1)$	$33,65,119,273,377,385,533,561,649,1105,1189,1441 \leq 2000$
3	$(1,5,1)$	≤ 100000
3	$(0,6,1)$	≤ 100000
3	$(0,0,-1)$	$4,8,10,14,16,20,22,25,26,28,32,34,35,58,40,44 \leq 45$
3	$(1,0,-1)$	≤ 100000
3	$(0,1,-1)$	≤ 100000
3	$(2,0,-1)$	$705,2465,2737,3745,4181,5777,6721,10877,13201,15251 \leq 20000$
3	$(1,1,-1)$	$9,15,21,25,27,33,35,39,45,49,51,55,57,63,65,69 \leq 70$
3	$(0,2,-1)$	$705,2465,2737,3745,4181,5777,6721,10877,13201,15251 \leq 20000$
3	$(3,0,-1)$	≤ 100000
3	$(2,1,-1)$	$4 \leq 100000$
3	$(1,2,-1)$	$4 \leq 100000$
3	$(0,3,-1)$	≤ 100000

k	$\left(a_{1}, a_{2}, \ldots, a_{k}\right)$	pseudoprimes $\leq N$
3	$(4,0,-1)$	$4 \leq 100000$
3	$(3,1-1)$	≤ 100000
3	$(2,2,-1)$	$15,105,195,231,323,377,435,665,705,1443,1551,1891,2465 \leq 2500$
3	$(1,3,-1)$	≤ 100000
3	$(0,4,-1)$	$4 \leq 100000$
3	$(5,0,-1)$	≤ 100000
3	$(4,1,-1)$	$25 \leq 100000$
3	$(3,2,-1)$	≤ 100000
3	$(2,3,-1)$	≤ 100000
3	$(1,4,-1)$	$25 \leq 100000$
3	$(0,5,-1)$	≤ 100000
3	$(6,0,-1)$	≤ 100000
3	$(5,1,-1)$	≤ 100000
3	$(4,2,-1)$	$9,27 \leq 100000$
3	$(3,3,-1)$	$4,6,8,12,16,18,24,30,32,36,48,54,56,60,64,72 \leq 85$
3	$(2,4,-1)$	$9,27 \leq 100000$
3	$(1,5,-1)$	≤ 100000
3	$(0,6,-1)$	≤ 100000

k	$\left(a_{1}, a_{2}, \ldots, a_{k}\right)$	pseudoprimes $\leq N$
4	$(0,0,0,1)$	$4,6,9,10,14,15,18,21,22,25,26,27,30,33,34,35 \leq 37$
4	$(1,0,0,1)$	$4,34,38,46,62,94,106,122,158,166,214,218,226 \leq 273$
4	$(0,1,0,1)$	$9,12,15,21,25,27,33,35,36,39,45,49,51,55,57 \leq 60$
4	$(0,0,1,1)$	≤ 100000
4	$(2,0,0,1)$	≤ 100000
4	$(0,2,0,1)$	$4,9,12,15,21,25,27,33,35,36,39,45,49,51,55,57 \leq 60$
4	$(0,0,2,1)$	$6 \leq 100000$
4	$(1,1,0,1)$	≤ 100000
4	$(1,0,1,1)$	$705,2465,2737,3745,4181,5777,6721,10877,13201 \leq 15000$
4	$(0,1,1,1)$	≤ 100000
4	$(3,0,0,1)$	≤ 100000
4	$(0,3,0,1)$	$6,9,15,18,21,25,27,33,35,39,45,49,51,54,55,57 \leq 60$
4	$(0,0,3,1)$	$4 \leq 100000$
4	$(2,1,0,1)$	≤ 100000
4	$(2,0,1,1)$	≤ 100000
4	$(1,2,0,1)$	$4 \leq 100000$
4	$(1,0,2,1)$	≤ 100000
4	$(0,2,1,1)$	≤ 100000
4	$(0,1,2,1)$	$2465,2737,3745,4181,5777,6721,10877,13201,15251 \leq 25000$
4	$(1,1,1,1)$	$49 \leq 100000$
4	$(4,0,0,1)$	$4,6 \leq 100000$
4	$(0,4,0,1)$	$4,9,12,15,21,25,27,33,35,36,39,45,49,51,55,57 \leq 60$
4	$(0,0,4,1)$	$4,10, \leq 100000$
4	$(3,1,0,1)$	≤ 100000
4	$(3,0,1,1)$	$9 \leq 100000$
4	$(1,3,0,1)$	≤ 100000
4	$(1,0,3,1)$	$4,9 \leq 100000$
4	$(0,3,1,1)$	≤ 100000
4	$(0,1,3,1)$	≤ 100000
4	$(2,2,0,1)$	≤ 100000
4	$(2,0,2,1)$	$169,385,961,1105,1121,3827,4901,6265,6441,6601,7107 \leq 7500$
4	$(0,2,2,1)$	≤ 100000

k	$\left(a_{1}, a_{2}, \ldots, a_{k}\right)$	pseudoprimes $\leq N$
4	$(2,1,1,1)$	$4 \leq 100000$
4	$(1,2,1,1)$	≤ 100000
4	$(1,1,2,1)$	≤ 100000
4	$(0,0,0,-1)$	$4,6,9,10,14,15,18,21,22,25,26,27,30,33,34,35 \leq 37$
4	$(1,0,0,-1)$	$4,34,38,46,62,94,106,122,158,166,214,218,226,274 \leq 277$
4	$(0,1,0,-1)$	$9,15,21,25,27,33,35,39,45,49,51,55,57,63,65,69 \leq 74$
4	$(0,0,1,-1)$	$4,34,38,46,62,94,106,122,158,166,214,218,226,274 \leq 277$
4	$(2,0,0,-1)$	≤ 100000
4	$(0,2,0,-1)$	$4,9,15,21,25,27,33,35,39,45,49,51,55,57,63,65 \leq 68$
4	$(0,0,2,-1)$	≤ 100000
4	$(1,1,0,-1)$	≤ 100000
4	$(1,0,1,-1)$	$4,8,10,14,16,20,22,25,26,28,32,34,35,38,40,44 \leq 45$
4	$(0,1,1,-1)$	≤ 100000
4	$(3,0,0,-1)$	$25 \leq 100000$
4	$(0,3,0,-1)$	$6,9,15,18,21,25,27,33,35,39,45,49,51,54,55,57 \leq 62$
4	$(0,0,3,-1)$	$25 \leq 100000$
4	$(2,1,0,-1)$	$49 \leq 100000$
4	$(2,0,1,-1)$	≤ 100000
4	$(1,2,0,-1)$	$4 \leq 100000$
4	$(1,0,2,-1)$	≤ 100000
4	$(0,2,1,-1)$	$4 \leq 100000$
4	$(0,1,2,-1)$	$49 \leq 100000$
4	$(1,1,1,-1)$	$195,897,6213,11285,27889,30745,38503,39601 \leq 100000$
4	$(4,0,0,-1)$	$4,6,25 \leq 100000$
4	$(0,4,0,-1)$	$4,9,15,21,25,27,28,33,35,39,45,49,51,55,57 \leq 62$
4	$(0,0,4,-1)$	$4,6,25 \leq 100000$
4	$(3,1,0,-1)$	≤ 100000
4	$(3,0,1,-1)$	$9,27 \leq 100000$
4	$(1,3,0,-1)$	≤ 100000
4	$(1,0,3,-1)$	$9,27 \leq 100000$
4	$(0,3,1,-1)$	≤ 100000
4	$(0,1,3,-1)$	≤ 100000
4		

k	$\left(a_{1}, a_{2}, \ldots, a_{k}\right)$	pseudoprimes $\leq N$
4	$(2,2,0,-1)$	≤ 100000
4	$(2,0,2,-1)$	$285,781,1295,1815,5291,23127,23871,59565 \leq 100000$
4	$(0,2,2,-1)$	≤ 100000
4	$(2,1,1,-1)$	≤ 100000
4	$(1,2,1,-1)$	$4,8,9,16,27,32,64,81,88,128,224,243,256,351 \leq 500$
4	$(1,1,2,-1)$	≤ 100000

6. Questions

The entries in the table pose many questions.
Question 6.1. Is the set of Lucas $(0,2,1)$ pseudoprimes equal to the set of Lucas $(1,0,1,1)$ pseudoprimes?

The pseudoprimes appearing in the Lucas $(0,2,1),(1,0,1,1)$, and $(0,1,2,1)$ sequences are essentially the pseudoprimes appearing in the Lucas $(1,1)$ pseudoprimes. Similarly, the pseudoprimes appearing in the Lucas $(1,3,1)$ and $(2,0,2,1)$ sequences are essentially the pseudoprimes appearing in the Lucas $(2,1)$ sequence.

The key to looking at Question 6.1 is the characteristic polynomials of these sequences.

Note that the characteristic polynomial of the $\operatorname{Lucas}(1,1)$ sequence is $x^{2}-x-1$. The characteristic polynomial of the Lucas $(0,2,1)$ sequence is

$$
\begin{equation*}
x^{3}-2 x-1=\left(x^{2}-x-1\right)(x+1) \tag{6.1}
\end{equation*}
$$

The characteristic polynomial of the Lucas $(1,0,1,1)$ sequence is

$$
\begin{equation*}
x^{4}-x^{3}-x-1=\left(x^{2}-x-1\right)\left(x^{2}+1\right) \tag{6.2}
\end{equation*}
$$

And, the characteristic polynomial of the Lucas $(0,1,2,1)$ sequence is

$$
\begin{equation*}
x^{4}-x^{2}-2 x-1=\left(x^{2}-x-1\right)\left(x^{2}+x+1\right) \tag{6.3}
\end{equation*}
$$

Observe that in each case, the characteristic polynomial of the Lucas $(0,2,1)$, $(1,0,1,1)$, or $(0,1,2,1)$ sequence is equal to the characteristic polynomial of the Lucas $(1,1)$ sequence multiplied by a cyclotomic polynomial [17].

Similarly, the characteristic polynomial of the Lucas $(2,1)$ sequence is $x^{2}-2 x-1$. The characteristic polynomial of the Lucas $(1,3,1)$ is

$$
\begin{equation*}
x^{3}-x^{2}-3 x-1=\left(x^{2}-2 x-1\right)(x+1) \tag{6.4}
\end{equation*}
$$

And, the characteristic polynomial of the Lucas $(2,0,2,1)$ sequence is

$$
\begin{equation*}
x^{4}-2 x^{3}-2 x-1=\left(x^{2}-2 x-1\right)\left(x^{2}+1\right) \tag{6.5}
\end{equation*}
$$

Observe again that in each case, the characteristic polynomial of the Lucas $(1,3,1)$ or $(2,0,2,1)$ sequence is equal to the characteristic polynomial of the Lucas $(2,1)$ sequence multiplied by a cyclotomic polynomial.

Here is the theorem describing the situation above. The proof of the theorem will appear in a separate paper.

Theorem 6.1. Suppose that the characteristic polynomial of a Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=\right.$ 1) sequence is equal to the characteristic polynomial of a Lucas $\left(b_{1}, b_{2}, \ldots, b_{r}=1\right) s e-$ quence multiplied by j polynomials, not necessarily distinct, each of which is a cyclotomic polynomial of order $m_{1}, m_{2}, \ldots, m_{j}$, respectively. Let $m=l c m\left(m_{1}, m_{2}, \ldots, m_{j}\right)$. Then the set of Lucas $\left(b_{1}, b_{2}, \ldots, b_{r}=1\right)$ pseudoprimes relatively prime to m is equal to the set of Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ pseudoprimes relatively prime to m.

It was proved by Richard André-Jeannin [3] that the Lucas $\left(a_{1}, 1\right)$ sequence has an even Lucas $\left(a_{1}, 1\right)$ pseudoprime if and only if $a_{1} \neq 1$. Richard André-Jeannin did not prove that the Lucas $(1,1)$ sequence has no even Lucas $(1,1)$ pseudoprime, but used results proving this which appeared in: D. J. White, J. N. Hunt, and L. A. G. Dresel [25], A. Di Porto [8], and P. S. Bruckman [7]. Since $x^{2}+x+1$ is a cyclotomic polynomial of order 3 , it follows from (6.6) and Theorem 6.1 that the set of Lucas $(1,1)$ pseudoprimes not divisible by 3 is equal to the set of Lucas $(0,1,2,1)$ pseudoprimes not divisible by 3 . In particular, 705,24465 , and 54705 are Lucas $(1,1)$ pseudoprimes, but not Lucas $(0,1,2,1)$ pseudoprimes. On page 129 of the book [19], Ribenboim notes that David Singmaster in 1983 found all Lucas $(1,1)$ pseudoprimes $<10^{5}$, and Ribenboim lists all 25 of these numbers on page 129. Since $x+1$ and $x^{2}+1$ are cyclotomic polynomials of orders 2 and 4 , respectively, it follows from (6.1), (6.2), Theorem 6.1, and Richard André-Jeannin's result that the set of odd Lucas $(0,2,1)$ pseudoprimes and odd Lucas ($1,0,1,1$) pseudoprimes are both equal to the set of all Lucas $(1,1)$ pseudoprimes, since there are no even Lucas $(1,1)$ pseudoprimes. This goes a long way towards answering Question 6.1 of whether the set of Lucas $(0,2,1)$ pseudoprimes is equal to the set of Lucas $(1,0,1,1)$ pseudoprimes.

In fact, we can prove a stronger result regarding the Lucas $(0,2,1)$ and Lucas $(1,0,1,1)$ pseudoprimes. Using the identities following the example sequences $G_{n}(0,2,1)$ and $G_{n}(1,0,1,1)$, we can prove that the set of Lucas $(0,2,1)$ pseudoprimes is equal to the set of Lucas $(1,0,1,1)$ pseudoprimes.

Similarly, it follows from (6.7), (6.8), Theorem 6.1, and André-Jeannin's result that the set of odd Lucas $(2,1)$ pseudoprimes, odd Lucas $(1,3,1)$ pseudoprimes, and odd Lucas ($2,0,2,1$) pseudoprimes are all equal. Note that it follows from Proposition 2 in André-Jeannin's paper [3] that 2^{k} is a traditional Lucas $(2,1)$ pseudoprime for all $k \geq 2$. However, 2^{k} is not a Lucas $(2,1)$ pseudoprime for $k \geq 3$ by an argument similar to that given after Definition 5.1.

Another question is suggested by the table.

Question 6.2. Is the set of Lucas $(0,2,0,1)$ pseudoprimes equal to the set of Lucas $(0,4,0,1)$ pseudoprimes?

The following describes the situation for the Lucas $\left(0, a_{2}, 0,1\right)$ pseudoprimes.

Theorem 6.2. The Lucas $\left(0, a_{2}, 0,1\right)$ pseudoprimes are precisely the odd composite natural numbers and the even integers $2 m \geq 4$ for which $m \mid G_{m}\left(a_{2}, 1\right)$.

Proof. It follows from the Newton formulas, the recursion relation defining the Lucas $\left(0, a_{2}, 0,1\right)$ sequence, and by induction that

$$
\begin{align*}
G_{n} & =G_{-n}=0 & \text { if } n \geq 0 \text { and } n \not \equiv 0 & (\bmod 2), \tag{6.6}\\
G_{0} & =4, & & \tag{6.7}\\
G_{2} & =2 a_{2}, & & \text { for } i \geq 0, \tag{6.8}\\
G_{2(i+2)} & =a_{2} G_{2(i+1)}+G_{2 i} & & \tag{6.9}\\
& \text { and } & & \text { for } i \geq 0 .
\end{align*}
$$

In particular, we see by (6.6) that $G_{1}=G_{-1}=0$.
Consider the second-order Lucas sequence $\left\{G_{n}\left(a_{2}, 1\right)\right\}$. Then $G_{0}\left(a_{2}, 1\right)=2$ and $G_{1}\left(a_{2}, 1\right)=a_{2}$. Note that

$$
\begin{gathered}
G_{0}\left(0, a_{2}, 0,1\right)=2 G_{0}\left(a_{2}, 1\right) \text { and } \\
G_{2}\left(0, a_{2}, 0,1\right)=2 G_{1}\left(a_{2}, 1\right) .
\end{gathered}
$$

It now follows from (6.9) and the second-order recursion relation defining $\left\{G_{n}\left(a_{2}, 1\right)\right\}$ that

$$
G_{2 i}\left(0, a_{2}, 0,1\right)=2 \cdot G_{i}\left(a_{2}, 1\right)
$$

for $i \geq 0$. The assertions concerning the Lucas $\left(0, a_{2}, 0,1\right)$ pseudoprimes now follow from (6.6)-(6.10).

The paper by Somer [22] gives comprehensive criteria for determining when $n \mid G_{n}\left(a_{1}, 1\right)$, which relates to Theorem 6.2.

The answer to Question 6.2 is no.
First of all, it is well-known that if $m \mid n$ and n / m is odd, then

$$
G_{m}\left(a_{1}, 1\right) \mid G_{n}\left(a_{1}, 1\right)
$$

Thus, if $6 \mid G_{2}\left(a_{1}, 1\right)$, then $6 \mid G_{6}\left(a_{1}, 1\right)$. It is also proven in Theorem $5(\mathrm{v})$ of the reference by Somer [22] that if n is even and $n \mid G_{n}\left(a_{1}, 1\right)$, then $m \mid G_{m}\left(a_{1}, 1\right)$, when $m=G_{n}\left(a_{1}, 1\right)$.

Now consider the Lucas $(2,1)$ sequence. Note that $6 \mid G_{2}(2,1)=6$. Thus, by our above discussion, $6 \mid G_{6}(2,1)=198$. Since 6 is even, it follows that

$$
G_{6}(2,1)=198 \mid G_{198}(2,1)
$$

Hence, by Theorem $6.2,2 \times 198=396$ is a Lucas $(0,2,0,1)$ pseudoprime. By computation, 396 is not a Lucas $(0,4,0,1)$ pseudoprime.

Next consider the Lucas $(4,1)$ sequence. Note that $6 \mid G_{2}(4,1)=18$. Thus, it again follows by the arguments above that $6 \mid G_{6}(4,1)=5778$. Since 6 is even, it follows that

$$
G_{6}(4,1)=5778 \mid G_{5778}(4,1) .
$$

Hence, by Theorem $6.2,2 \times 5778=11556$ is a Lucas $(0,4,0,1)$ pseudoprime. But unfortunately, by computation, 11556 is also a Lucas $(0,2,0,1)$ pseudoprime.

To find an example of a Lucas $(0,4,0,1)$ pseudoprime that is not a Lucas $(0,2,0,1)$ pseudoprime, we searched using the program in the Appendix. It turned out that the first composite even integers which are Lucas $(0,2,0,1)$ pseudoprimes and not Lucas $(0,4,0,1)$ pseudoprimes are 132,396 , and 1188 . And the first composite
even integer which is a Lucas $(0,4,0,1)$ pseudoprime and not a Lucas $(0,2,0,1)$ pseudoprime is 1284 .

Another question is the following:
Question 6.3. For every $k \geq 2$, is there a k-tuple $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ such that there are an infinite number of Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ pseudoprimes?

The answer is yes. The reasoning goes as follows. In Theorem 2 of Rotkiewicz [20], it is proven that there are infinitely many Lucas $\left(a_{1}, 1\right)$ pseudoprimes. It now follows from Theorem 6.2 that for every $k \geq 2$, there is a k-tuple $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ such that there are an infinite number of Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ pseudoprimes.

There is a computational question we can ask.
Question 6.4. Is there a Lucas $(0,1,1)$ pseudoprime?
The answer is yes. In [14], Kurtz, Shanks, and Williams have found 55 Lucas $(0,1,1)$ pseudoprimes less than $50 \cdot 10^{9}$, the smallest of which is 27664033 . Adams and Shanks [1] had previously found 14 of these pseudoprimes including the smallest one. It is of interest that 4 out of these 55 Lucas $(0,1,1)$ pseudoprimes are also Carmichael numbers. Grantham [11] has proved that there are infinitely many Lucas $(0,1,1)$ pseudoprimes. His method uses similar techniques as those employed in [2] to show that there are infinitely many Carmichael numbers, along with zero-density estimates for Hecke L-functions. In the paper [11], Grantham also proves that there are infinitely many Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}=1\right)$ psuedoprimes when the corresponding characteristic polynomial is square-free. This gives another affirmative answer to Question 6.3.

```
                                    7. Appendix - C Program
// This C program finds generalized Lucas pseudoprimes.
// It uses the GNU MP library to handle the large integers.
// Input: Command Line
// Output: Screen
// gcc -o genlucaspsp genlucaspsp.c -lgmp
// genlucaspsp k max a_1 a_2 ... a_(k-1) a_k=+/-1
// k <= 1000
// The program outputs composite n between k and max satisfying
// g_n = a_1 mod n and h_n = -a_( (k-1) mod n
// where g_0 = k, g_1 = a_1, g_2 = a_1 g_1 + 2a_2 , ...,
// and for n >= k, g_n = a_1 g_( n-1) + a_2 g_(n-2) + ... + + a_k g_(n-k)
// and h_0 = k, h_1 = -a_(k-1)/a_k, h_2 = (-a_(k-1) h_1 -2a_(k-2))/a_k , ...
// and for n >= k, h_n = (-a_(k-1) h_(n-1) - a_(k-2) h_(n-2) - ...
// + h_(n-k))/a_k
#include <stdio.h>
#include <math.h>
#include <gmp.h>
```

```
main (int argc, char *argv[]) {
    mpz_t g[1001], h[1001], t, s, rg, rh;
    signed long int composite, n, i, j, k, max, a[1001];
    k = atoi (argv[1]);
    max = atoi (argv[2]);
    for (i=1; i<=k; i++) a[i] = atoi (argv[i+2]);
    for (i=0; i<=1000; i++)
    {
        mpz_init (g[i]);
        mpz_init (h[i]);
    }
    mpz_init (t);
    mpz_init (s);
    mpz_init (rg);
    mpz_init (rh);
    mpz_set_si (g[0],k);
    mpz_set_si (g[1],a[1]);
    i=2;
    while (i<k)
    {
        mpz_set_si (t,i);
        mpz_mul_si (t,t,a[i]);
        for (j=1; j<i; j++)
        {
            mpz_set_si (s,a[j]);
            mpz_mul (s,s,g[i-j]);
            mpz_add (t,t,s);
        }
        mpz_set (g[i],t);
        i++;
    }
    mpz_set_si (h[0],k);
    mpz_set_si (t,-a[k-1]);
    mpz_mul_si (t,t,a[k]);
    mpz_set (h[1],t);
    i=2;
    while (i<k)
    {
        mpz_set_si (t,-i);
        mpz_mul_si (t,t,a[k-i]);
        for (j=1; j<i; j++)
```

```
    {
        mpz_set_si (s,-a[k-j]);
        mpz_mul (s,s,h[i-j]);
        mpz_add (t,t,s);
    }
    mpz_mul_si (t,t,a[k]);
    mpz_set (h[i],t);
    i++;
}
n=k;
while ( n <= max )
{
    mpz_set_si (t,0);
    for (i=1; i<=k; i++)
    {
        mpz_set_si (s,a[i]);
        mpz_mul (s,s,g[k-i]);
        mpz_add (t,t,s);
    }
    mpz_set (g[k],t);
    mpz_set_si (t,0);
    for (i=1; i<k; i++)
    {
        mpz_set_si (s,-a[k-i]);
        mpz_mul (s,s,h[k-i]);
        mpz_add (t,t,s);
    }
    mpz_set (s,h[0]);
    mpz_add (t,t,s);
    mpz_mul_si (t,t,a[k]);
    mpz_set (h[k],t);
    mpz_sub_ui (t,g[k],a[1]);
    if (mpz_sgn(t)<0)
        mpz_mul_si (t,t,-1);
    mpz_mod_ui (rg,t,n);
    mpz_set_si (s,a[k-1]);
    mpz_mul_si (s,s,a[k]);
    mpz_add (t,h[k],s);
    if (mpz_sgn(t)<0)
        mpz_mul_si (t,t,-1);
    mpz_mod_ui (rh,t,n);
```

```
    if ((mpz_sgn( rg ) ==0) && (mpz_sgn( rh ) ==0))
    {
        composite = 0;
        if ((n!=2) && (n!=3))
        {
            if ((n%%)==0) composite = 1;
            if ((n%3)==0) composite = 1;
        }
        i=5;
        while (((i*i)<=n) && (composite==0))
        {
            if ((n%i)==0) composite = 1;
            i=i+2;
            if ((n%i)==0) composite = 1;
            i=i+4;
        }
        if (composite==1)
            printf("%d\n",n);
        }
        for (i=1; i<=k; i++) mpz_set (g[i-1],g[i]);
        for (i=1; i<=k; i++) mpz_set (h[i-1],h[i]);
        n++;
    }
    for (i=0; i<=1000; i++)
    {
        mpz_clear (g[i]);
        mpz_clear (h[i]);
    }
    mpz_clear (rg);
    mpz_clear (rh);
    mpz_clear (t);
    mpz_clear (s);
    exit(0);
}
```


References

[1] W. W. Adams and D. Shanks, "Strong Primality Tests that are not Sufficient," Math. Comp., 39 (1982), 255-300.
[2] W. R. Alford, A. Granville, and C. Pomerance, "There are Infinitely Many Carmichael Numbers," Ann. of Math., (2) 139 (1994), 703-722.
[3] R. André-Jeannin, "On the Existence of Even Fibonacci Pseudoprimes with Parameters P and Q," The Fibonacci Quarterly, 34 (1996), 75-78.
[4] A. O. L. Atkin, "Intelligent Primality Test Offer," Computational Perspectives on Number Theory, (Eds. D. A. Buell and J. T. Teitelbaum) AMS/IP Stud. Adv. Math. 7, Amer. Math. Soc., Providence, 1998, 1-11.
[5] N. G. W. H. Beeger, "On Even Numbers m Dividing $2^{m}-2, "$ Amer. Math. Monthly, 58 (1951), 553-555.
[6] C. S. Bisht, "Some Congruence Properties of Generalized Lucas Integral Sequences," The Fibonacci Quarterly, 22 (1984), 290-295.
[7] P. S. Bruckman, "Lucas Pseudoprimes are Odd," The Fibonacci Quarterly, 32 (1994), 155-157.
[8] A. Di Porto, "Nonexistence of Even Fibonacci Pseudoprimes of the 1st Kind," The Fibonacci Quarterly, 31 (1993), 173-177.
[9] H. W. Gould, "The Girard-Waring Power Sum Formulas for Symmmetric Functions and Fibonacci Sequences," The Fibonacci Quarterly, 37 (1999), 135-140.
[10] J. Grantham, "Frobenius Pseudoprimes," Math. Comp., 70 (2001), 837-891.
[11] J. Grantham, "There are Infinitely Many Perrin Pseudoprimes," Preprint.
[12] S. Gurak, "Pseudoprimes for Higher-Order Linear Recurrence Sequences," Math. Comp., 55 (1980), 783-813.
[13] V. E. Hoggatt, Jr. and Marjorie Bicknell, "Some Congruences of the Fibonacci Numbers Modulo a Prime p," Mathematics Magazine, 47 (1974), 210-214.
[14] G. C. Kurtz, D. Shanks, and H. C. Williams, "Fast Primality Tests for Numbers Less Than $50 \cdot 10^{9}, "$ Math. Comp., 46 (1986), 691-701.
[15] D. E. Littlewood, A University Algebra, William Heinemann, Ltd., London, 1958, p. 86.
[16] E. Lucas, "Théorie des Fonctions Numériques Simplement Périodiques," Amer. J. of Math., 1 (1878), 197-240.
[17] T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1981.
[18] R. Perrin, "Query 1484," L'Intermédiaire des Mathématiciens, 6 (1899), 76.
[19] P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 2nd edition, New York, 1996.
[20] A. Rotkiewicz, "On the Pseudoprimes with Respect to the Lucas Sequence," Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 21 (1973), 793-797.
[21] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, World-Wide Web URL www.research.att.com/ ~njas/sequences/.
[22] L. Somer, "Divisibility of Terms in Lucas Sequences of the Second Kind by Their Subscripts," Applications of Fibonacci Numbers, Vol. 6 (Eds. G. E. Bergum et al.), Kluwer Academic Publishers, Dordrecht, 1996, pp. 473-486.
[23] G. Szekeres, "Higher Order Pseudoprimes in Primality Testing," Combinatorics, Paul Erdős is Eighty, Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math Soc., Budapest, 1996, 451-458.
[24] J. V. Uspensky, Theory of Equations, McGraw-Hill, New York, 1948.
[25] D. J. White, J. N. Hunt, and L. A. G. Dresel, "Uniform Huffman Sequences Do Not Exist," Bull. London Math. Soc., 9 (1977), 193-198.
AMS Classification Numbers: 11B83, 11B50
Department of Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO 64093

E-mail address: cooper@ucmo.edu
Department of Mathematics, The Catholic University of America, Washington, DC 20064

E-mail address: somer@cua.edu

