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Abstract

Let Fn and Ln denote the Fibonacci and Lucas sequences, respectively. We

will study when a prime p ≡ 1 (mod 4) divides L(p−1)/4 or F(p−1)/4.

1. Introduction and Main Result

We begin our discussion with the definition of Lucas sequences.

Definition 1. Let P and Q be relatively prime integers. The Lucas sequences

are defined by U0 = 0, U1 = 1, V0 = 2, V1 = P and

Un = PUn−1 − QUn−2 and Vn = PVn−1 − QVn−2,

where n ≥ 2. Also, let ∆ = P 2 − 4Q.

The Fibonacci and Lucas numbers, Fn and Ln, are special cases of the U and V

sequences when P = 1 and Q = −1. The following theorem was partially known to

Lucas in 1878 and completely known to Lehmer in 1930. The proof of this theorem

can be found in [2, p. 85].

Theorem 2. Let p be an odd prime and assume p is relatively prime to Q and

∆. Let ε = (∆/p), where (∆/p) denotes the Jacobi symbol. Then

p|V(p−ε)/2, if (Q/p) = −1

and

p|U(p−ε)/2, if (Q/p) = 1.
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Our main result follows. The statement of the theorem and its proof are similar

in nature to a problem and solution in The Fibonacci Quarterly [1].

Theorem 3. Let p be an odd prime and i =
√
−1.

(a) If p ≡ 1 (mod 40) or p ≡ 9 (mod 40), then

p|L(p−1)/4 if and only if (1+2i)(p−1)/2(2−i)+(1−2i)(p−1)/2(2+i) ≡ −4 (mod p)

and

p|F(p−1)/4 if and only if (1+2i)(p−1)/2(2−i)+(1−2i)(p−1)/2(2+i) 6≡ −4 (mod p).

(b) If p ≡ 21 (mod 40) or p ≡ 29 (mod 40), then

p|L(p−1)/4 if and only if (1+2i)(p−1)/2(2−i)+(1−2i)(p−1)/2(2+i) ≡ 4 (mod p)

and

p|F(p−1)/4 if and only if (1+2i)(p−1)/2(2−i)+(1−2i)(p−1)/2(2+i) 6≡ 4 (mod p).

2. Proof of the Main Result

Before we can prove our main result we need the following lemma.

Lemma 4. Let θ = tan−1 2 and

cos jθ =
cj

5|j|/2
.

Then for n ≥ 0,

22n−1Ln =

n
∑

k=0

(

2n

2k

)

5(n−|n−2k|)/2cn−2k.

Proof. Consider the Lucas polynomials defined by L0(x) = 2, L1(x) = x, and

Ln+2(x) = xLn+1(x) + Ln(x) for n ≥ 0. It is well-known that

Ln(x) =

(

x +
√

x2 + 4

2

)n

+

(

x −
√

x2 + 4

2

)n

, n ≥ 0.
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Note that Ln = Ln(1), for n ≥ 0. Next, we define

sin jθ =
sj

5|j|/2
.

If t 6= 1 is any complex number, then

Ln

(

2i
1 + t

1 − t

)

=
in

(1 − t)n

(

(1 +
√

t)2n + (1 −
√

t)2n
)

.

Applying the binomial theorem we obtain

Ln

(

2i
1 + t

1 − t

)

=
2in

(1 − t)n

n
∑

k=0

(

2n

2k

)

tk.

Now we take t = (−3 − 4i)/5. Then,

2i
1 + (−3 − 4i)/5

1 − (−3 − 4i)/5
= 1 and 1 − (−3 − 4i)/5 =

8 + 4i

5
.

Therefore by some algebra, we have

Ln = Ln(1) =
2in

(

8+4i
5

)n

n
∑

k=0

(

2n

2k

)(−3 − 4i

5

)k

= 21−2n
n

∑

k=0

(

2n

2k

)

(1 + 2i)n

(−3 − 4i

5

)k

= 21−2n
n

∑

k=0

(

2n

2k

)

(1 + 2i)n

(−3 − 4i

5

)k
(1 + 2i)k

(1 + 2i)k

= 21−2n
n

∑

k=0

(

2n

2k

)

(1 + 2i)n−k

(

5 − 10i

5

)k

= 21−2n
n

∑

k=0

(

2n

2k

)

(1 + 2i)n−k(1 − 2i)k.

Now, since θ = tan−1 2 we have

1 ± 2i =
√

5e±iθ.
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Continuing to simplify the above expression, we have

Ln = 21−2n
n

∑

k=0

(

2n

2k

)

(
√

5)n−kei(n−k)θ(
√

5)ke−ikθ

= 21−2n
n

∑

k=0

(

2n

2k

)

5n/2ei(n−2k)θ.

Using the fact that the values of Ln are integers we have that

22n−1Ln =

n
∑

k=0

(

2n

2k

)

5n/2ei(n−2k)θ

=

n
∑

k=0

(

2n

2k

)

5n/25−(|n−2k|)/2cn−2k

=
n

∑

k=0

(

2n

2k

)

5(n−|n−2k|)/2cn−2k.

This completes the proof of Lemma 4.

Now we need another lemma.

Lemma 5. Let p be a prime such that p ≡ 1 (mod 4). Then,

2p−2L p−1
2

≡ 1

4

(

(1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i)

)

(mod p).

Proof. Let θ = tan−1 2 and

cos jθ =
cj

5|j|/2
and sin jθ =

sj

5|j|/2
.

Using Lemma 4 with n = (p − 1)/2 and the fact that if p is an odd prime, then

(

p − 1

k

)

≡ (−1)k (mod p), for k = 1, 2, . . . , k − 1

we have that

2p−2L p−1
2

=

(p−1)/2
∑

k=0

(

p − 1

2k

)

5

p−1
2

−

∣

∣ p−1
2

−2k

∣

∣

2 c p−1
2 −2k

≡
(p−1)/2

∑

k=0

5

p−1
2

−

∣

∣ p−1
2

−2k

∣

∣

2 c p−1
2 −2k (mod p).
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Simplifying the above expression using properties of the sin, cos, and exp func-

tions, the sum of a geometric series, the definition of cj and sj , and complex arith-

metic we have

(p−1)/2
∑

k=0

5

p−1
2

−

∣

∣ p−1
2

−2k

∣

∣

2 c p−1
2 −2k

=

(p−1)/2
∑

k=0

5

p−1
2

−

∣

∣ p−1
2

−2k

∣

∣

2 c p−1
2 −2k + i

(p−1)/2
∑

k=0

5

p−1
2

−

∣

∣ p−1
2

−2k

∣

∣

2 s p−1
2 −2k

= 5(p−1)/4

(p−1)/2
∑

k=0

e(((p−1)/2)−2k)iθ

= 5(p−1)/4e((p−1)/2)iθ

(p−1)/2
∑

k=0

(e−2iθ)k

= 5(p−1)/4e((p−1)/2)iθ e−(p−1)iθ − 1

e−2iθ − 1

= 5(p−1)/4 e−((p+3)/2)iθ − e((p−1)/2)iθ

e−2iθ − 1

= 5(p−1)/4 e−((p+3)/2)iθ − e((p−1)/2)iθ

e−2iθ − 1
· e2iθ − 1

e2iθ − 1

= 5(p−1)/4−e−((p+3)/2)iθ + e((p−1)/2)iθ + e−((p−1)/2)iθ − e((p+3)/2)iθ

1 − e−2iθ − e2iθ + 1

= 5(p−1)/4−e−((p+3)/2)iθ + e((p−1)/2)iθ + e−((p−1)/2)iθ − e((p+3)/2)iθ

16
5

=
5

p+3
4

(2c(p−1)/2

5(p−1)/4 − 2c(p+3)/2

5(p+3)/4

)

16

=
5c(p−1)/2 − c(p+3)/2

8
.

The recurrence relations defining the cj ’s and sj ’s can found by the trigonometric

identities cos(0 · θ) = 1, sin(0 · θ) = 0, and for j ≥ 0

cos((j + 1)θ) = cos(jθ + θ) = cos(jθ) cos θ − sin(jθ) sin θ

sin((j + 1)θ) = sin(jθ + θ) = sin(jθ) cos θ + cos(jθ) sin θ.

Therefore, c0 = 1, s0 = 0, and for j ≥ 0

cj+1 = cj − 2sj and sj+1 = 2cj + sj .
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The first few values of cj and sj are displayed in the following table.

j cj sj

0 1 0

1 1 2

2 −3 4

3 −11 −2

4 −7 −24

5 41 −38

6 117 44

7 29 278

8 −527 336

9 −1199 −718

10 237 −3116

11 6469 −2642

12 11753 10296

By solving the recurrence relation for cj and sj, we have that

cn =
1

2
(1 + 2i)n +

1

2
(1 − 2i)n.

Therefore,

5c(p−1)/2 − c(p+3)/2

8

=
1

16

(

5(1 + 2i)(p−1)/2 + 5(1 − 2i)(p−1)/2 − (1 − 2i)(p+3)/2 − (1 − 2i)(p+3)/2

)

=
1

4

(

(1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i)

)

.

This completes the proof of Lemma 5.

Proof of Theorem 3.

6



If p ≡ 1 (mod 40), p ≡ 9 (mod 40), p ≡ 21 (mod 40), or p ≡ 29 (mod 40),

then p ≡ 1 (mod 4), (5/p) = 1 and (−1/p) = 1. Therefore, by Theorem 2

p|F(p−1)/2. But since F2n = LnFn and Ln and Fn have a gcd of either 1 or 2,

we have that p|L(p−1)/4 or p|F(p−1)/4 but not both. Using the well-known result,

L2n = L2
n − 2(−1)n

it follows that

L p−1
2

= L2
p−1
4

− 2(−1)
p−1
4 .

Now if p ≡ 1 (mod 40) or p ≡ 9 (mod 40) we have that

L p−1
2

= L2
p−1
4

− 2.

Using the above identity and then Lemmas 4 and 5 we have that

2p−2
(

L2
p−1
4

− 2
)

= 2p−2L p−1
2

=

(p−1)/2
∑

k=0

5
p−1
2

−|
p−1
2

−2k|

2 c p−1
2 −2k

≡ 1

4

(

(1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i)

)

(mod p).

Multiplying both sides of the congruence by 4 we have

2p

(

L2
p−1
4

− 2

)

≡ (1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i) (mod p).

Using Fermat’s Little Theorem and simplifying we have

2L2
p−1
4

− 4 ≡ (1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i) (mod p),

2L2
p−1
4

≡ (1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i) + 4 (mod p).

and L p−1
4

≡ (1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i) + 4 (mod p).

This completes the proof of part (a). The proof of part (b) follows by continuing

with the well-known identity that

L2n = L2
n − 2(−1)n.
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Thus,

L p−1
2

= L2
p−1
4

− 2(−1)
p−1
4 .

Now if p ≡ 21 (mod 40) or p ≡ 29 (mod 40) we have that

L p−1
2

= L2
p−1
4

+ 2.

Using the above identity and then Lemmas 4 and 5 we have that

2p−2
(

L2
p−1
4

+ 2
)

= 2p−2L p−1
2

=

(p−1)/2
∑

k=0

5
p−1
2

−|
p−1
2

−2k|

2 c p−1
2 −2k

≡ 1

4

(

(1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i)

)

(mod p).

Multiplying both sides of the congruence by 4 we have

2p

(

L2
p−1
4

+ 2

)

≡ (1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i) (mod p).

Using Fermat’s Little Theorem and simplifying we have

2L2
p−1
4

+ 4 ≡ (1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i) (mod p),

2L2
p−1
4

≡ (1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i) − 4 (mod p),

and L p−1
4

≡ (1 + 2i)(p−1)/2(2 − i) + (1 − 2i)(p−1)/2(2 + i) − 4 (mod p).

The theorem follows.

3. Examples and Questions

Theorem 3 is useful in determining primes in the Lucas and Fibonacci sequence.

For example, by Theorem 3 we have that 29|L7, 41|L10, 61|F15, 89|F22, 101|L25,

109|F27, 149|F37, 181|L45, 229|L57, 241|L60, 269|F67, and 281|L70.

There are several questions that remain unanswered.

8



1. Let n be a nonnegative integer. Can the expression

(1 + 2i)n(2 − i) + (1 − 2i)n(2 + i)

be simplified?

2. Let p be a prime such that p ≡ 1, 9, 21, or 29 (mod 40). Prove or disprove that

(1 + 2i)
p−1
2 (2 − i) + (1 − 2i)

p−1
2 (2 + i) ≡ ±4 (mod p).

3. Can Theorem 3 be extended? That is, can we state a theorem for Lucas

sequences U and V .

4. Can we find a theorem similar to Theorem 3 for (p ± 1)/8?

5. What can be said about divisibility properties for third order linear recurrence

relations.

We leave all these as open questions.
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