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Abstract
Let F,, and L,, denote the Fibonacci and Lucas sequences, respectively. We

will study when a prime p =1 (mod 4) divides Lp—1y/s or Fip_1y/4-
1. Introduction and Main Result

We begin our discussion with the definition of Lucas sequences.
Definition 1. Let P and @ be relatively prime integers. The Lucas sequences
are defined by Uy =0, U; =1, Vj =2, V; = P and

Un = PUn_l — QUn_Q and Vn = PVn—l - QVn—27

where n > 2. Also, let A = P? — 4Q).

The Fibonacci and Lucas numbers, F,, and L,,, are special cases of the U and V'
sequences when P =1 and Q = —1. The following theorem was partially known to
Lucas in 1878 and completely known to Lehmer in 1930. The proof of this theorem
can be found in [2, p. 85].

Theorem 2. Let p be an odd prime and assume p is relatively prime to ) and

A. Let € = (A/p), where (A/p) denotes the Jacobi symbol. Then

p|‘/(p—€)/27 if (Q/p) =-1

and

p|U(p—e)/2a if (Q/p) =1.



Our main result follows. The statement of the theorem and its proof are similar

in nature to a problem and solution in The Fibonacci Quarterly [1].

Theorem 3. Let p be an odd prime and i = v/—1.
(a) If p=1 (mod 40) or p =9 (mod 40), then

pILp—1)/a if and only if (1427)P~D/2(2—i)+(1-2i)P~1/2(24i) = —4  (mod p)
and

plFp_1y/a if and only if (1+2¢)P~D/2(2—i)+(1-2i)P~1/2(244) # —4  (mod p).

(b) If p=21 (mod 40) or p =29 (mod 40), then
plL(p_1y/4 if and only if (14+24)P~D/2(2—i)+(1-2)P~D/2(24i) =4 (mod p)
and

plFp_1ys if and only if (142i)P~1D/2(2—i)+(1-20)P~D/2(24i) Z4  (mod p).

2. Proof of the Main Result

Before we can prove our main result we need the following lemma.

Lemma 4. Let # = tan—! 2 and

¢
5lil/2”

cos j0 =

Then for n > 0,

" [2n
22n_1Ln — 2 (n—|n—2k|)/2 ok
k=0 (Qk) ’ e

Proof. Consider the Lucas polynomials defined by Lo(x) = 2, Li(x) = z, and
Lyio(x) =xLpy1(x) + Ly(z) for n > 0. It is well-known that

Lo(z) = (@)n v (%\/m)n n>0.
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Note that L,, = L, (1), for n > 0. Next, we define

Sj

Sinj@ = W

If t # 1 is any complex number, then

Ly, (2& f i) =1 int)n (L4+ V)" + (1 — Vt)*).

Applying the binomial theorem we obtain

1+t 2i" = 20 4
Lo (2 - tk.
(21—75) (1—t)”z(2k:)

k=0

Now we take t = (—3 — 44¢)/5. Then,

1+ (=3 —4i)/5

8 + 4i
. _
1— (-3 4i)/5

2 =1 and 1-(-3-4i)/5= "=

Therefore by some algebra, we have

Ln=Ln(1) = (8_;74) 3 @Z) (—35_42-)k

k=0

o = (21 o —3—4i ¥
=212 Z(zk)(1+2@) ( - )
k=0
n N\ k Nk
1—9n 2n o —3—4i\" (14 29)
2 kzzo (zk 20" —5—) G2
n N\ k
2n 5 — 107
=2y ( )(1 + 2@)”"“( )
£\ 2k 5
g1-2n " @Z) (14 20)"F (1 — 2)*
k=0

Now, since § = tan~! 2 we have

14 2i = be*?,



Continuing to simplify the above expression, we have

L2y (51 ) (v retomn Gyt

2k
k=0
2n
— 21—2n n/2 z(n 2k:)0
> (i)

Using the fact that the values of L,, are integers we have that

g2n—1p _ Z (22) 5n/2 gi(n—2k)0
2

k=0

" /2n (In—
= E (2k)5n/25 (In—2kD/2.
2n
_E ( )5(n In=2kD/2¢ .

This completes the proof of Lemma 4.
Now we need another lemma.

Lemma 5. Let p be a prime such that p =1 (mod 4). Then,

1
2P 2Ly = 1 ((1 +2i)P=1/2(2 —g) 4 (1 — 20) P /22 i)) (mod p).

Proof. Let § = tan—1 2 and

55
5|J|/2

cos j0 = and sinjf =

¢j
5lil/2
Using Lemma 4 with n = (p — 1)/2 and the fact that if p is an odd prime, then

(pgl)z(—l)k (mod p), for k=1,2,...,k—1

we have that

Tz 2k
k=0
(p—1)/2 Bl pT—l_%}
= 5 2 Cp-1_,, (mod p)
k=0



Simplifying the above expression using properties of the sin, cos, and exp func-
tions, the sum of a geometric series, the definition of ¢; and s;, and complex arith-
metic we have

(P—1)/2 p— _‘p—l —2k‘

2 2
E , 5 ? Ce_1_op
k=0

(P1)/2 poi o1y (/2 b |1y
k=0 k=0
(p—1)/2
= 5(P=1D/4 Z o(((p—1)/2)—2k)if
k=0
(p—1)/2
—_ 5=1)/4,((p—1)/2)i0 Z (6—219>k
k=0
—(p—1)0
= 5(1’—1)/46((17—1)/2)1‘9&
_ 5(p—1)/4 e_((p+3)/2)i9 - e((p—l)/Q)iG
e—2i9 -1
_ 51/ e—((p+3)/2)i0 _ ((p—1)/2)i0 . 0210 _ 1
- e"20 —1 220 _ 1
= 5(P~1)/4 —e(P+3)/2)i0 4 o((p=1)/2)i0 4 o=((P=1)/2)i0 _ ¢((p+3)/2)i0
1 — e—2i0 _ 2i0 4
= 5p—1)/4 —e((PH3)/2)i6 4 o((pP=1)/2)10 4 =((P=1)/2)i6 _ ¢((p+3)/2)i0
- 16
5
243 (2¢p 1 2¢(p
_ 5T (S8R - seA)
16
_ OCp-1)/2 ~ C(p+3) /2
8 .

The recurrence relations defining the c;’s and s;’s can found by the trigonometric

identities cos(0-0) =1, sin(0-6) = 0, and for 5 > 0
cos((j + 1)0) = cos(j0 + 0) = cos(j0) cos O — sin(j#) sin 6
sin((j + 1)0) = sin(j6 + 0) = sin(jé) cosf + cos(j#) sin 6.

Therefore, cg = 1, so = 0, and for 7 >0

Cji+1 = €5 — 2Sj and Sj+1 = 2Cj —+ Sj.



The first few values of ¢; and s; are displayed in the following table.

J cj 5;

0 1 0

1 1 2

2 -3 4

3 —11 -2
4 -7 —24
) 41 —-38
6 117 44

7 29 278
8 —d27 336
9 —1199 718
10 237 —3116

11 6469 —2642
12 11753 10296

By solving the recurrence relation for ¢; and s;, we have that
—1(1+2')"—|—1(1 20)"
Cn = 3 i 5 )"

Therefore,

5C(p—1)/2 = C(p+3)/2
8

(5(1 + Qi)(p—l)/Q +5(1 — 22‘)(1)—1)/2 —(1- Qi)(p-i-?»)/? —(1— Qi)(p+3)/2)

&=

| =

((1 +2i)P=1/2(2 ) 4 (1 — 20) P~ 1/2(2 i)).

This completes the proof of Lemma 5.

Proof of Theorem 3.




If p=1 (mod 40), p = 9 (mod 40), p = 21 (mod 40), or p = 29 (mod 40),
then p = 1 (mod 4), (5/p) = 1 and (—1/p) = 1. Therefore, by Theorem 2
p|Fip—1)/2- But since Fy, = L,F, and L, and F, have a gcd of either 1 or 2,
we have that p|L(,—1)/4 or p|F(,—1)/4 but not both. Using the well-known result,

it follows that

p—1

Ly =12, —2(-1)7T.
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Now if p =1 (mod 40) or p =9 (mod 40) we have that

Using the above identity and then Lemmas 4 and 5 we have that
2073 (L3-, —2) =2P"2Ly
= 3
(p—1)/2 Pl pol gy
= > 5T T ey

k=0

1
=7 <(1 +20)P=1/2(2 ) 4 (1 — 20) P~ 1/2(2 ¢ i)) (mod p).
Multiplying both sides of the congruence by 4 we have

2P (L%,;l - 2) =(142)P V22— +1-2)PD/2(244i) (mod p).

.
Using Fermat’s Little Theorem and simplifying we have
zLi%l —4=(1420)P V22— i)+ (1—2)PV/2(244) (mod p),
2L%%1 =(142)P V22 -0)+(1-2)PD/2(244i)+4 (mod p).
and Ly = (1+20)P7V2(2 =) + (1 - 2)P"V/2(2 + i) + 4 (mod p).

This completes the proof of part (a). The proof of part (b) follows by continuing
with the well-known identity that



Thus,

p—1

Ly =1L%, —2(-1)7.

2 1

Now if p =21 (mod 40) or p = 29 (mod 40) we have that

Using the above identity and then Lemmas 4 and 5 we have that

2772 (L1 +2) =2P2Lys
4 2
PD/2 b pa

2
= E: 5 2 Ce_t_op
k=0

= i <(1 +20)P=D/2(2 —4) 4 (1 — 20) P~ 1/2(2 4 i)) (mod p).

Multiplying both sides of the congruence by 4 we have
2P (Li_l + 2) =(142)P V22— +1-2)PD/224+4) (mod p).
4

Using Fermat’s Little Theorem and simplifying we have

2L%  +4=(1+20)P D22 —0) 4+ (1 —2)P"V/2(2 4+ 4) (mod p),
4

202, = (1+2)P7V/2(2 —4) + (1 — 2))P~V/2(2 4 4) — 4 (mod p),
4

and Ly = (142)P Y202 — i) + (1 —2i)P"Y/2(24+4) —4 (mod p).
4

The theorem follows.
3. Examples and Questions

Theorem 3 is useful in determining primes in the Lucas and Fibonacci sequence.
For example, by Theorem 3 we have that 29|L7, 41|L1g, 61|F}5, 89|F52, 101|Los,
109|F27, 149|F37, 181‘[145, 229‘[157, 241‘L607 269|F67, and 281|L70

There are several questions that remain unanswered.



. Let n be a nonnegative integer. Can the expression
(14+29)"(2—14) 4+ (1 —29)"(2+1)

be simplified?
. Let p be a prime such that p = 1,9,21, or 29 (mod 40). Prove or disprove that

p—1 p—1

(14207 (2—i)+(1—-2))7 (2+i) =44 (mod p).

. Can Theorem 3 be extended? That is, can we state a theorem for Lucas

sequences U and V.
. Can we find a theorem similar to Theorem 3 for (p +1)/87?

. What can be said about divisibility properties for third order linear recurrence

relations.

We leave all these as open questions.
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