# ON PRIMES IN THE FIBONACCI AND LUCAS SEQUENCES 

Curtis Cooper and Manjit Parihar<br>Department of Mathematics and Computer Science<br>Central Missouri State University<br>Warrensburg, MO 64093-5045<br>email: cnc8851@cmsu2.cmsu.edu


#### Abstract

Let $F_{n}$ and $L_{n}$ denote the Fibonacci and Lucas sequences, respectively. We will study when a prime $p \equiv 1(\bmod 4)$ divides $L_{(p-1) / 4}$ or $F_{(p-1) / 4}$.


## 1. Introduction and Main Result

We begin our discussion with the definition of Lucas sequences.
Definition 1. Let $P$ and $Q$ be relatively prime integers. The Lucas sequences are defined by $U_{0}=0, U_{1}=1, V_{0}=2, V_{1}=P$ and

$$
U_{n}=P U_{n-1}-Q U_{n-2} \quad \text { and } \quad V_{n}=P V_{n-1}-Q V_{n-2}
$$

where $n \geq 2$. Also, let $\Delta=P^{2}-4 Q$.
The Fibonacci and Lucas numbers, $F_{n}$ and $L_{n}$, are special cases of the $U$ and $V$ sequences when $P=1$ and $Q=-1$. The following theorem was partially known to Lucas in 1878 and completely known to Lehmer in 1930. The proof of this theorem can be found in [2, p. 85].

Theorem 2. Let $p$ be an odd prime and assume $p$ is relatively prime to $Q$ and $\Delta$. Let $\epsilon=(\Delta / p)$, where $(\Delta / p)$ denotes the Jacobi symbol. Then

$$
p \mid V_{(p-\epsilon) / 2}, \quad \text { if } \quad(Q / p)=-1
$$

and

$$
p \mid U_{(p-\epsilon) / 2}, \quad \text { if } \quad(Q / p)=1
$$

Our main result follows. The statement of the theorem and its proof are similar in nature to a problem and solution in The Fibonacci Quarterly [1].

Theorem 3. Let $p$ be an odd prime and $i=\sqrt{-1}$.
(a) If $p \equiv 1(\bmod 40)$ or $p \equiv 9(\bmod 40)$, then
$p \mid L_{(p-1) / 4}$ if and only if $(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i) \equiv-4 \quad(\bmod p)$
and
$p \mid F_{(p-1) / 4}$ if and only if $(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i) \not \equiv-4 \quad(\bmod p)$.
(b) If $p \equiv 21(\bmod 40)$ or $p \equiv 29(\bmod 40)$, then

$$
p \mid L_{(p-1) / 4} \text { if and only if }(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i) \equiv 4 \quad(\bmod p)
$$

and
$p \mid F_{(p-1) / 4}$ if and only if $(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i) \not \equiv 4 \quad(\bmod p)$.

## 2. Proof of the Main Result

Before we can prove our main result we need the following lemma.
Lemma 4. Let $\theta=\tan ^{-1} 2$ and

$$
\cos j \theta=\frac{c_{j}}{5|j| / 2}
$$

Then for $n \geq 0$,

$$
2^{2 n-1} L_{n}=\sum_{k=0}^{n}\binom{2 n}{2 k} 5^{(n-|n-2 k|) / 2} c_{n-2 k} .
$$

Proof. Consider the Lucas polynomials defined by $L_{0}(x)=2, L_{1}(x)=x$, and $L_{n+2}(x)=x L_{n+1}(x)+L_{n}(x)$ for $n \geq 0$. It is well-known that

$$
L_{n}(x)=\left(\frac{x+\sqrt{x^{2}+4}}{2}\right)^{n}+\left(\frac{x-\sqrt{x^{2}+4}}{2}\right)^{n}, \quad n \geq 0 .
$$

Note that $L_{n}=L_{n}(1)$, for $n \geq 0$. Next, we define

$$
\sin j \theta=\frac{s_{j}}{5^{|j| / 2}}
$$

If $t \neq 1$ is any complex number, then

$$
L_{n}\left(2 i \frac{1+t}{1-t}\right)=\frac{i^{n}}{(1-t)^{n}}\left((1+\sqrt{t})^{2 n}+(1-\sqrt{t})^{2 n}\right)
$$

Applying the binomial theorem we obtain

$$
L_{n}\left(2 i \frac{1+t}{1-t}\right)=\frac{2 i^{n}}{(1-t)^{n}} \sum_{k=0}^{n}\binom{2 n}{2 k} t^{k}
$$

Now we take $t=(-3-4 i) / 5$. Then,

$$
2 i \frac{1+(-3-4 i) / 5}{1-(-3-4 i) / 5}=1 \quad \text { and } \quad 1-(-3-4 i) / 5=\frac{8+4 i}{5}
$$

Therefore by some algebra, we have

$$
\begin{aligned}
L_{n} & =L_{n}(1)=\frac{2 i^{n}}{\left(\frac{8+4 i}{5}\right)^{n}} \sum_{k=0}^{n}\binom{2 n}{2 k}\left(\frac{-3-4 i}{5}\right)^{k} \\
& =2^{1-2 n} \sum_{k=0}^{n}\binom{2 n}{2 k}(1+2 i)^{n}\left(\frac{-3-4 i}{5}\right)^{k} \\
& =2^{1-2 n} \sum_{k=0}^{n}\binom{2 n}{2 k}(1+2 i)^{n}\left(\frac{-3-4 i}{5}\right)^{k} \frac{(1+2 i)^{k}}{(1+2 i)^{k}} \\
& =2^{1-2 n} \sum_{k=0}^{n}\binom{2 n}{2 k}(1+2 i)^{n-k}\left(\frac{5-10 i}{5}\right)^{k} \\
& =2^{1-2 n} \sum_{k=0}^{n}\binom{2 n}{2 k}(1+2 i)^{n-k}(1-2 i)^{k}
\end{aligned}
$$

Now, since $\theta=\tan ^{-1} 2$ we have

$$
1 \pm 2 i=\sqrt{5} e^{ \pm i \theta}
$$

Continuing to simplify the above expression, we have

$$
\begin{aligned}
L_{n} & =2^{1-2 n} \sum_{k=0}^{n}\binom{2 n}{2 k}(\sqrt{5})^{n-k} e^{i(n-k) \theta}(\sqrt{5})^{k} e^{-i k \theta} \\
& =2^{1-2 n} \sum_{k=0}^{n}\binom{2 n}{2 k} 5^{n / 2} e^{i(n-2 k) \theta} .
\end{aligned}
$$

Using the fact that the values of $L_{n}$ are integers we have that

$$
\begin{aligned}
2^{2 n-1} L_{n} & =\sum_{k=0}^{n}\binom{2 n}{2 k} 5^{n / 2} e^{i(n-2 k) \theta} \\
& =\sum_{k=0}^{n}\binom{2 n}{2 k} 5^{n / 2} 5^{-(|n-2 k|) / 2} c_{n-2 k} \\
& =\sum_{k=0}^{n}\binom{2 n}{2 k} 5^{(n-|n-2 k|) / 2} c_{n-2 k} .
\end{aligned}
$$

This completes the proof of Lemma 4.
Now we need another lemma.
$\underline{\text { Lemma } 5 .}$ Let $p$ be a prime such that $p \equiv 1(\bmod 4)$. Then,

$$
2^{p-2} L_{\frac{p-1}{2}} \equiv \frac{1}{4}\left((1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i)\right) \quad(\bmod p)
$$



$$
\cos j \theta=\frac{c_{j}}{5^{|j| / 2}} \quad \text { and } \quad \sin j \theta=\frac{s_{j}}{5^{|j| / 2}} .
$$

Using Lemma 4 with $n=(p-1) / 2$ and the fact that if $p$ is an odd prime, then

$$
\binom{p-1}{k} \equiv(-1)^{k} \quad(\bmod p), \quad \text { for } \quad k=1,2, \ldots, k-1
$$

we have that

$$
\begin{aligned}
& 2^{p-2} L_{\frac{p-1}{2}}=\sum_{k=0}^{(p-1) / 2}\binom{p-1}{2 k} 5^{\frac{p-1}{2}-\left|\frac{p-1}{2}-2 k\right|} \\
& c_{\frac{p-1}{2}-2 k} \\
& \equiv \sum_{k=0}^{(p-1) / 2} 5^{\frac{p-1}{2}-\left|\frac{p-1}{2}-2 k\right|} \\
& c_{\frac{p-1}{2}-2 k}(\bmod p) .
\end{aligned}
$$

Simplifying the above expression using properties of the sin, cos, and exp functions, the sum of a geometric series, the definition of $c_{j}$ and $s_{j}$, and complex arithmetic we have

$$
\begin{aligned}
& \sum_{k=0}^{(p-1) / 2} 5^{\frac{p-1}{2}-\left|\frac{p-1}{2}-2 k\right|} c_{\frac{p-1}{2}-2 k} \\
& =\sum_{k=0}^{(p-1) / 2} 5^{\frac{p-1}{2}-\left|\frac{p-1}{2}-2 k\right|} c_{\frac{p-1}{2}-2 k}^{2}+i \sum_{k=0}^{(p-1) / 2} 5^{\frac{\frac{p-1}{2}-\left|\frac{p-1}{2}-2 k\right|}{2}} s_{\frac{p-1}{2}-2 k} \\
& =5^{(p-1) / 4} \sum_{k=0}^{(p-1) / 2} e^{(((p-1) / 2)-2 k) i \theta} \\
& =5^{(p-1) / 4} e^{((p-1) / 2) i \theta} \sum_{k=0}^{(p-1) / 2}\left(e^{-2 i \theta}\right)^{k} \\
& =5^{(p-1) / 4} e^{((p-1) / 2) i \theta} \frac{e^{-(p-1) i \theta}-1}{e^{-2 i \theta}-1} \\
& =5^{(p-1) / 4} \frac{e^{-((p+3) / 2) i \theta}-e^{((p-1) / 2) i \theta}}{e^{-2 i \theta}-1} \\
& =5^{(p-1) / 4} \frac{e^{-((p+3) / 2) i \theta}-e^{((p-1) / 2) i \theta}}{e^{-2 i \theta}-1} \cdot \frac{e^{2 i \theta}-1}{e^{2 i \theta}-1} \\
& =5^{(p-1) / 4} \frac{e^{-((p+3) / 2) i \theta}+e^{((p-1) / 2) i \theta}+e^{-((p-1) / 2) i \theta}-e^{((p+3) / 2) i \theta}}{1-e^{-2 i \theta}-e^{2 i \theta}+1} \\
& =5^{(p-1) / 4} \frac{-e^{-((p+3) / 2) i \theta}+e^{((p-1) / 2) i \theta}+e^{-((p-1) / 2) i \theta}-e^{((p+3) / 2) i \theta}}{\frac{16}{5}} \\
& =\frac{5^{\frac{p+3}{4}\left(\frac{\left.2 c_{(p-1) / 2}^{5(p-1) / 4}-\frac{2 c_{(p+3) / 2}}{5(p+3) / 4}\right)}{16}\right.}}{=\frac{5 c_{(p-1) / 2}-c_{(p+3) / 2}}{8}}
\end{aligned}
$$

The recurrence relations defining the $c_{j}$ 's and $s_{j}$ 's can found by the trigonometric identities $\cos (0 \cdot \theta)=1, \sin (0 \cdot \theta)=0$, and for $j \geq 0$

$$
\begin{aligned}
& \cos ((j+1) \theta)=\cos (j \theta+\theta)=\cos (j \theta) \cos \theta-\sin (j \theta) \sin \theta \\
& \sin ((j+1) \theta)=\sin (j \theta+\theta)=\sin (j \theta) \cos \theta+\cos (j \theta) \sin \theta .
\end{aligned}
$$

Therefore, $c_{0}=1, s_{0}=0$, and for $j \geq 0$

$$
c_{j+1}=c_{j}-2 s_{j} \quad \text { and } \quad s_{j+1}=2 c_{j}+s_{j}
$$

The first few values of $c_{j}$ and $s_{j}$ are displayed in the following table.

| $j$ | $c_{j}$ | $s_{j}$ |
| :---: | :---: | :---: |
| 0 | 1 | 0 |
| 1 | 1 | 2 |
| 2 | -3 | 4 |
| 3 | -11 | -2 |
| 4 | -7 | -24 |
| 5 | 41 | -38 |
| 6 | 117 | 44 |
| 7 | 29 | 278 |
| 8 | -527 | 336 |
| 9 | -1199 | -718 |
| 10 | 237 | -3116 |
| 11 | 6469 | -2642 |
| 12 | 11753 | 10296 |

By solving the recurrence relation for $c_{j}$ and $s_{j}$, we have that

$$
c_{n}=\frac{1}{2}(1+2 i)^{n}+\frac{1}{2}(1-2 i)^{n} .
$$

Therefore,

$$
\begin{aligned}
& \frac{5 c_{(p-1) / 2}-c_{(p+3) / 2}}{8} \\
& =\frac{1}{16}\left(5(1+2 i)^{(p-1) / 2}+5(1-2 i)^{(p-1) / 2}-(1-2 i)^{(p+3) / 2}-(1-2 i)^{(p+3) / 2}\right) \\
& =\frac{1}{4}\left((1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i)\right) .
\end{aligned}
$$

This completes the proof of Lemma 5.
Proof of Theorem 3.

If $p \equiv 1(\bmod 40), p \equiv 9(\bmod 40), p \equiv 21(\bmod 40)$, or $p \equiv 29(\bmod 40)$, then $p \equiv 1(\bmod 4),(5 / p)=1$ and $(-1 / p)=1$. Therefore, by Theorem 2 $p \mid F_{(p-1) / 2}$. But since $F_{2 n}=L_{n} F_{n}$ and $L_{n}$ and $F_{n}$ have a gcd of either 1 or 2, we have that $p \mid L_{(p-1) / 4}$ or $p \mid F_{(p-1) / 4}$ but not both. Using the well-known result,

$$
L_{2 n}=L_{n}^{2}-2(-1)^{n}
$$

it follows that

$$
L_{\frac{p-1}{2}}=L_{\frac{p-1}{4}}^{2}-2(-1)^{\frac{p-1}{4}} .
$$

Now if $p \equiv 1(\bmod 40)$ or $p \equiv 9(\bmod 40)$ we have that

$$
L_{\frac{p-1}{2}}=L_{\frac{p-1}{4}}^{2}-2 .
$$

Using the above identity and then Lemmas 4 and 5 we have that

$$
\begin{aligned}
2^{p-2}\left(L_{\frac{p-1}{4}}^{2}-2\right) & =2^{p-2} L_{\frac{p-1}{2}} \\
& =\sum_{k=0}^{(p-1) / 2} 5^{\frac{p-1}{2}-\left|\frac{p-1}{2}-2 k\right|} c_{\frac{p-1}{2}-2 k} \\
& \equiv \frac{1}{4}\left((1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i)\right)(\bmod p) .
\end{aligned}
$$

Multiplying both sides of the congruence by 4 we have

$$
2^{p}\left(L_{\frac{p-1}{4}}^{2}-2\right) \equiv(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i) \quad(\bmod p)
$$

Using Fermat's Little Theorem and simplifying we have

$$
\begin{array}{ll} 
& 2 L_{\frac{p-1}{4}}^{2}-4 \equiv(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i)(\bmod p), \\
& 2 L_{\frac{p-1}{4}}^{2} \equiv(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i)+4(\bmod p) . \\
\text { and } & L_{\frac{p-1}{4}} \equiv(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i)+4(\bmod p) .
\end{array}
$$

This completes the proof of part (a). The proof of part (b) follows by continuing with the well-known identity that

$$
L_{2 n}=L_{n}^{2}-2(-1)^{n} .
$$

Thus,

$$
L_{\frac{p-1}{2}}=L_{\frac{p-1}{4}}^{2}-2(-1)^{\frac{p-1}{4}} .
$$

Now if $p \equiv 21(\bmod 40)$ or $p \equiv 29(\bmod 40)$ we have that

$$
L_{\frac{p-1}{2}}=L_{\frac{p-1}{4}}^{2}+2
$$

Using the above identity and then Lemmas 4 and 5 we have that

$$
\begin{aligned}
2^{p-2}\left(L_{\frac{p-1}{4}}^{2}+2\right) & =2^{p-2} L_{\frac{p-1}{2}} \\
& =\sum_{k=0}^{(p-1) / 2} 5^{\frac{p-1}{2}-\left|\frac{p-1}{2}-2 k\right|} c_{\frac{p-1}{2}-2 k} \\
& \equiv \frac{1}{4}\left((1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i)\right)(\bmod p) .
\end{aligned}
$$

Multiplying both sides of the congruence by 4 we have

$$
2^{p}\left(L_{\frac{p-1}{4}}^{2}+2\right) \equiv(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i) \quad(\bmod p)
$$

Using Fermat's Little Theorem and simplifying we have

$$
\begin{aligned}
& 2 L_{\frac{p-1}{4}}^{2}+4 \equiv(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i)(\bmod p) \\
& 2 L_{\frac{p-1}{4}}^{2} \equiv(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i)-4(\bmod p)
\end{aligned}
$$

and $\quad L_{\frac{p-1}{4}} \equiv(1+2 i)^{(p-1) / 2}(2-i)+(1-2 i)^{(p-1) / 2}(2+i)-4(\bmod p)$.
The theorem follows.

## 3. Examples and Questions

Theorem 3 is useful in determining primes in the Lucas and Fibonacci sequence. For example, by Theorem 3 we have that $29\left|L_{7}, 41\right| L_{10}, 61\left|F_{15}, 89\right| F_{22}, 101 \mid L_{25}$, $109\left|F_{27}, 149\right| F_{37}, 181\left|L_{45}, 229\right| L_{57}, 241\left|L_{60}, 269\right| F_{67}$, and $281 \mid L_{70}$.

There are several questions that remain unanswered.

1. Let $n$ be a nonnegative integer. Can the expression

$$
(1+2 i)^{n}(2-i)+(1-2 i)^{n}(2+i)
$$

be simplified?
2. Let $p$ be a prime such that $p \equiv 1,9,21$, or $29(\bmod 40)$. Prove or disprove that

$$
(1+2 i)^{\frac{p-1}{2}}(2-i)+(1-2 i)^{\frac{p-1}{2}}(2+i) \equiv \pm 4 \quad(\bmod p) .
$$

3. Can Theorem 3 be extended? That is, can we state a theorem for Lucas sequences $U$ and $V$.
4. Can we find a theorem similar to Theorem 3 for $(p \pm 1) / 8$ ?
5. What can be said about divisibility properties for third order linear recurrence relations.

We leave all these as open questions.

## References

1. H.-J. Seiffert. Solution to Problem H-548 (proposed by H.-J. Seiffert). The Fibonacci Quarterly 38.2 (2000): 189-191.
2. H. C. Williams. Édouard Lucas and Primality Testing. New York: A WileyInterscience Publication, 1998.

AMS Classification Numbers: 11B39.

