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1. Introduction. Let sb(i) denote the sum of the digits in the base b repre-

sentation of the nonnegative integer i. Bush [1] showed that

∑

n<x

sb(n) ∼
b − 1

2
x logb x.

Here, logb x denotes the base b logarithm of x. Mirsky [8], and later Cheo and Yien

[2], proved that
∑

n<x

sb(n) =
b − 1

2
x logb x + O(x).

Trollope [9] discovered the following result. Let g(x) be periodic of period one and

defined on [0, 1] by

g(x) =

{ 1

2
x, 0 ≤ x ≤ 1

2

1

2
(1 − x), 1

2
< x ≤ 1,

and let

f(x) =
∞
∑

i=0

1

2i
g(2ix).

Now, if n = 2m(1 + x), 0 ≤ x < 1, then

∑

i<n

s2(i) =
1

2
n log2 n − E2(n),

where

E2(n) = 2m−1

(

2f(x) + (1 + x)log2(1 + x) − 2x

)

.

Delange [4] and later Grabner, Kirschenhofer, Prodinger, and Tichy [5] proved an

extension of this result. That is,

∑

n<N

sb(n) =
b − 1

2
N logb N + Nδ(logb N),
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where δ(u) is a fractal function. Delange’s approach was based on a combinato-

rial decomposition of binary representations of integers, followed by a computation

of the Fourier coefficients of the fractal function. Grabner’s method used an ap-

plication of the Mellin transform. Here, we will use Trollope’s method to prove

a generalization of Trollope’s result. We will conclude the paper with some open

questions.

2. Notation and Basic Results. To make some of the results easier to state,

we will use the notation

S(n) =
∑

i<n

sb(i).

Our first result is a statement about the sum of the base b digital sums in the

sequence of positive integers up to a digit times a power of b. The proof of this

formula follows from a straightforward counting argument and will be omitted.

Lemma 1. Let d be a nonzero base b digit and m a nonnegative integer. Then

S(dbm) =
(b − 1)d

2
mbm +

(d − 1)d

2
bm.

Next, let n be a positive integer with base b representation

n =

m
∑

k=0

dkbk = dmbm + nm−1.

Now, we make the important observation that

S(dmbm + nm−1) = S(dmbm) + dmnm−1 + S(nm−1).

Hence, using mathematical induction on the number of digits in n, the above equa-

tion, and Lemma 1, we have the following more general result.

Lemma 2. Let n be a positive integer with base b representation

n =

m
∑

k=0

dkbk

and define

ni =
i

∑

k=0

dkbk, for 0 ≤ i ≤ m − 1; n−1 = 0.
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Then

S(n) =
b − 1

2

m
∑

k=0

dkkbk +
1

2

m
∑

k=0

(dk − 1)dkbk +
m

∑

k=0

dknk−1.

3. The Remainder Term. The next step in analyzing S(n) is to study it

from a different perspective. We need the following definition.

Definition. Let n be a positive integer with base b representation

n =
m

∑

k=0

dkbk

and again define

ni =

i
∑

k=0

dkbk, for 0 ≤ i ≤ m − 1; n−1 = 0.

Let

R(n) =
b − 1

2
mn −

b − 1

2

m
∑

k=0

dkkbk −
1

2

m−1
∑

k=0

(dk − 1)dkbk −

m−1
∑

k=0

dknk−1.

The next lemma will state some properties of R, which will be extremely useful

throughout the rest of the paper.

Lemma 3.

(a) For any positive integer n, R(bn) = bR(n).

(b) Let n be a positive integer with base b representation

n =

m
∑

k=0

dkbk.

Then

R(n + 1) − R(n) =
b − 1

2
m + dm − sb(n).

(c) Let m be a nonnegative integer, d a digit, and p an integer such that 0 ≤ p <

bm+1 − bm. Then

R(bm+1 + bp + d) − dR(bm + p + 1) − (b − d)R(bm + p) =
(b − d)d

2
.
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Proof. The proof of (a) involves a fairly easy, but tedious, derivation using the

definition of R(n). In passing, we note that using Lemma 3(a) and the fact that

S(n) =
b − 1

2
mn +

(dm − 1)dm

2
bm + dmnm−1 − R(n),

it is immediate that

S(bn) = bS(n) +
(b − 1)b

2
n

for all n ≥ 1.

The proof of (b) follows from scrutinizing three cases. The first case is when n

and n + 1 have a different number of digits. Thus, n = bm+1 − 1. The second case

is when n and n + 1 have the same number of digits but have a different first digit.

Thus n = dbm − 1 for d = 2, 3, . . . , b − 1. The third case is the rest of the story,

i.e., when n and n + 1 have the same number of digits and the same first digit. In

every case, we have that

R(n + 1) − R(n) =
b − 1

2
m + dm − sb(n).

The proof of (c) is a little more involved. Using Lemma 3(b) twice, Lemma

3(a) once, and the assumption that the base b representation of bm + p is

bm + p =

m
∑

k=0

dkbk,
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we have the following sequence of equalities.

R(bm+1 + bp + d) − dR(bm + p + 1) − (b − d)R(bm + p)

= R(bm+1 + bp + d) − d
(

R(bm + p + 1) − R(bm + p)
)

− bR(bm + p)

= R(bm+1 + bp + d) − R(bm+1 + bp) − d

(

b − 1

2
m + dm − sb(b

m + p)

)

=

d−1
∑

k=0

(

R(bm+1 + bp + k + 1) − R(bm+1 + bp + k)
)

−
d(b − 1)

2
m

− dmd + dsb(b
m + p)

=
d−1
∑

k=0

(

b − 1

2
(m + 1) + dm − sb(b

m+1 + bp + k)

)

−
d(b − 1)

2
m

− dmd + dsb(b
m + p)

=
d(b − 1)

2
m +

d(b − 1)

2
+ ddm −

d−1
∑

k=0

sb(b
m+1 + bp + k) −

d(b − 1)

2
m

− dmd + dsb(b
m + p)

=
(b − d)d

2
.

This completes the proof of (c) and the proof of Lemma 3.

4. Some Functions. Let m be a nonnegative integer and p be an integer

such that 0 ≤ p < bm+1 − bm. Define the function φ(x) by

φ

(

p

bm+1 − bm

)

=
R(bm + p)

bm
.

Note that by Lemma 3(a), φ(x) is uniquely defined. To see this, suppose x has any

other representation, i.e.
p′

bm′+1 − bm′
.

Then

p′ = bm
′
−mp.

Now assume, without loss of generality, that m′ > m. Then m′ − m is a positive

integer. Therefore,
R(bm

′

+ p′)

bm′
=

R(bm + p)

bm
.
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The function φ(x) is defined only on a subset of [0, 1]. We now consider the

problem of extending this function continuously to [0, 1]. Here, we solve this problem

by considering the limit of a sequence of “polygonal” functions which identify with

φ(x) on the rationals of the form

p

bm+1 − bm
.

These polygonal functions are defined in the following way. Let m be a nonnegative

integer. fm(x) is defined on [0, 1] to be the function whose graph is the polygon

joining the points

{

(0, 0),

(

1

bm+1 − bm
, φ

(

1

bm+1 − bm

))

,

· · · ,

(

p

bm+1 − bm
, φ

(

p

bm+1 − bm

))

, · · · , (1, 0)

}

.

Then, the definition of {fm(x)} is extended to the reals by fm(x ± 1) = fm(x).

From the definition, f0 = 0. In addition, f1(x) is periodic of period 1/(b − 1)

and on [0, 1/(b− 1)] is equal to the piecewise linear function connecting the points

(

d

b2 − b
,
(b − d)d

2b

)

,

where d is a nonnegative integer and 0 ≤ d ≤ b. For ease of notation, let g(x) =

f1(x). Using the definition of the f ’s and a special case of Lemma 3(c), it follows

that for any nonnegative integer m and all real x,

fm+1(x) − fm(x) =
1

bm
g(bmx).

Repeated iterations of this equation yields

fm+1(x) =
m

∑

i=0

1

bi
g(bix).

Since g(x) is bounded, the sequence {fm(x)} converges uniformly for all x. Hence,

the limiting function

f(x) =
∞
∑

i=0

1

bi
g(bix)

is a continuous extension of φ(x).
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5. The Main Result.

Theorem. Let g(x) be periodic of period 1/(b−1) and on [0, 1/(b−1)] be equal

to the piecewise linear function connecting the points

(

d

b2 − b
,
(b − d)d

2b

)

,

where d is a nonnegative integer and 0 ≤ d ≤ b. Let

f(x) =
∞
∑

i=0

1

bi
g(bix).

Next, let n be a positive integer with base b representation and let

n =

m
∑

k=0

dkbk = dmbm + nm−1 = bm + p = bm(1 + (b − 1)x).

Then
∑

i<n

sb(i) =
b − 1

2
n logb n − Eb(n),

where

Eb(n) = bm

(

f(x) +
b − 1

2
(1 + (b − 1)x) logb(1 + (b − 1)x)

− dm(1 − dm + (b − 1)x) −
(dm − 1)dm

2

)

.

Proof. Using Lemma 2 and the definition of R(n), it follows that

S(n) =
b − 1

2
mn +

(dm − 1)dm

2
bm + dmnm−1 − R(n)

=
b − 1

2
mn +

(dm − 1)dm

2
bm + dmnm−1 − bmf(x).

Next, since

n = bm(1 + (b − 1)x),

m = logb n − logb(1 + (b − 1)x).

Also,

nm−1 = bm(1 − dm + (b − 1)x).
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Substituting for m and nm−1 and simplifying, we have

S(n) =
b − 1

2
n logb n −

b − 1

2
n logb(1 + (b − 1)x) − bmf(x)

+ dmbm(1 − dm + (b − 1)x) +
(dm − 1)dm

2
bm.

Finally, substituting for n in the second term the result follows.

6. Questions. Some open questions remain. One problem is to study the func-

tion f in the Theorem. For b = 2, the function f/2 was studied in [7]. Translating

those results over to f , when b = 2 we have that the maximum value of f is 1/3.

Furthermore, this maximum is attained precisely on the set E consisting of all num-

bers that can be represented as the infinite quaternary fraction 0.α1α2 . . . αn . . . ,

where every αi is either one or two. What can be said about our function f for the

general base b? What are the maximum values of f? Where does f attain these

maximum values?

Delange’s method has been used by Coquet [3] and Kirschenhofer [6] and ex-

tended by others to obtain the formula

∑

n<N

sb(n)2 =

(

b − 1

2

)2

N log2

b N + N logb Nη1(logb N) + Nη2(logb N),

where η1 and η2 are continuous nowhere differentiable functions of period 1. Can

Trollope’s method be used to obtain a similar formula? Also, what can be said

about higher moments using Trollope’s method?
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