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1. Introduction. The subject of Niven numbers has been fascinating to

some mathematicians working in number theory. Niven numbers were named in

honor of Ivan Niven who inspired these investigations in 1977 at the fifth annual

Miami University Conference on Number Theory. The definition of a Niven number

involves the use of the digital sum of a number. For a positive integer n, we will

denote the digital sum of n by s(n). For example, the digital sum of 4 is 4 while the

digital sum of 111 is 3 since 1+1+1=3. We define a Niven number to be an integer

divisible by its digital sum.

Definition 1.1. A positive integer n is a Niven number if s(n)
∣

∣ n.

Examples of Niven numbers are 4, 12, and 111, since they are divisible by the

sum of their digits 4, 3, and 3 respectively. The following are some theorems and

open questions concerning Niven numbers.

Theorem 1.1. Let N(x) denote the number of Niven numbers not exceeding x.

Then, the natural density of the Niven numbers is zero, that is,

lim
x→∞

N(x)

x
= 0 .

This means that there are not many Niven numbers when compared to the set of

positive integers. The proof of Theorem 1.1 can be found in [1].

The first non–Niven factorial was shown to be 432! in [2]. In [3], the following

necessary condition for a factorial to be Niven was given.

Theorem 1.2. If s(n!) is less than or equal to 18n and s(n!) is even, then n! is

Niven.

No necessary and sufficient condition in order that n! be Niven has been dis-

covered.

1



A more difficult question is which powers of 2 are Niven. A power of 2 is Niven

if and only if its digital sum is a power of 2. The first few powers of 2 that are

Niven, as found in [4], are

21, 22, 23, 29, 236, 285, 2176, 2194, 2200, 2375, 21517 ,

21573, 23042, 25953, 26043, 26109, 212068, 212104, . . . .

The powers of 2 that are Niven have not been characterized. It is not even known

whether or not there are infinitely many of them.

2. Super Niven Numbers. To extend the concept of Niven number, we

define the following.

Definition 2.1. A subdigital sum of a positive integer n is a sum of some of the

nonzero digits of n. We denote the set of all subdigital sums of n by Sn.

For example,

S102 = {1, 2, 1 + 2 = 3} .

Also,

S3902 = {3, 9, 2, 3 + 9 = 12, 3 + 2 = 5, 9 + 2 = 11, 3 + 9 + 2 = 14} .

Next, we define the idea of a “Super Niven” number.

Definition 2.2. A positive integer n is a Super Niven number if n is divisible by

every member of Sn.

The integer 102 is Super Niven since 1, 2, and 3 divide 102. However, 3902 is not

Super Niven since 5 does not divide 3902. Also, there are Niven numbers which

are not Super Niven. An example of this is the integer 18. We can make two

observations. First of all, every integral power of 10 is Super Niven. Thus, there

are an infinite number of Super Niven numbers.

If n is Super Niven, then n is Niven. Thus, the set of Super Niven numbers is

contained in the set of Niven numbers. Hence, we have the following theorem.

Theorem 2.1. The natural density of the set of Super Niven numbers is 0.
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By examining a list of Super Niven numbers, we noticed the following charac-

teristic of Super Niven numbers given in Theorem 2.2.

Theorem 2.2. The only odd Super Niven numbers are 1, 3, 5, 7, and 9.

Proof. Suppose N is an odd Super Niven number consisting of n digits where

n ≥ 2. Thus

N =

n
∑

i=1

di10i−1 ,

where each di is a digit. In what follows, the notation

dndn−1 · · ·d1

will be used to represent
n

∑

i=1

di10i−1 .

Note that, by hypothesis, d1 is odd. We need only to investigate the following two

cases.

Case 1. dn is even.

Since by definition of Super Niven numbers,

dn

∣

∣ N ,

it follows that N is even.

Case 2. dn is odd.

Since by hypothesis d1 is odd, we have that

dn + d1

is even. Again, by definition,

dn + d1

∣

∣ N .

Hence, in either case, N must be even. Thus, the only odd Super Niven numbers

are 1, 3, 5, 7, and 9.

The following theorem is a useful tool for the investigation of Super Niven

numbers.
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Theorem 2.3. Let n be a Super Niven number with at least k nonzero digits.

Then n is divisible by k .

Proof. Suppose n has k nonzero digits,

d1, d2, d3, · · · , dk .

Consider the set

D = {d1, d1 + d2, d1 + d2 + d3, · · · , d1 + d2 + · · ·+ dk} .

Note that D ⊆ Sn. Let us divide every member of D by k and examine the

remainders.
d1 ≡ r1 (mod k) ,

d1 + d2 ≡ r2 (mod k) ,

...

d1 + d2 + · · ·+ dk ≡ rk (mod k) .

There are two cases.

Case 1. All the remainders are distinct.

There are k distinct remainders. Then, one of the remainders must be zero.

That is,

d1 + d2 + d3 + · · · + di ≡ 0 (mod k)

for some 1 ≤ i ≤ k. Thus,

k
∣

∣ d1 + d2 + · · ·+ di .

But by the definition of Super Niven numbers,

d1 + d2 · · ·+ di

∣

∣ n .

Therefore,

k
∣

∣ n .

Case 2. At least two remainders are the same.

Suppose two of the remainders are equal. That is,

(1) d1 + d2 + · · · + di ≡ r (mod k)
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and

(2) d1 + d2 + · · ·+ dj ≡ r (mod k) ,

where i > j. Subtracting (2) from (1),

(d1 + d2 + · · · + di) − (d1 + d2 + · · · + dj) ≡ r − r (mod k) .

Thus,

dj+1 + dj+2 + · · ·+ di ≡ 0 (mod k) .

Therefore,

k
∣

∣ dj+1 + dj+2 + · · ·+ di .

But again, by the definition of Super Niven numbers,

dj+1 + dj+2 + · · ·+ di

∣

∣ n .

Hence,

k
∣

∣ n .

Next, we investigate some consequences of Theorem 2.3.

Corollary 2.1. Let n ≥ 104 be a Super Niven number. Then n has a zero digit.

Proof. By contradiction. Suppose n ≥ 104 is Super Niven and n has all nonzero

digits. Then n has at least 5 nonzero digits. (Also, n has at least 2 nonzero digits.)

By Theorem 2.3, n is divisible by 5 (and 2). Thus n is divisible by 10 so the units

digit of n is 0. This is a contradiction.

As a direct result of Corollary 2.1 we have the following corollary.

Corollary 2.2. The only Super Niven numbers with all nonzero digits are 1, 2,

3, 4, 5, 6, 7, 8, 9, 12, 24, 36, and 48.

Proof. By Corollary 2.1, we know that if n is Super Niven and n ≥ 104, then

n has a zero digit. Thus no Super Niven number greater than or equal to 104 can

have all nonzero digits. It is straightforward to computer–generate the list of all
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one hundred forty–two Super Niven numbers from 1 to 10000 and to note that all

except for the thirteen listed above have at least one zero digit.

The following corollaries are direct consequences of Theorem 2.3 and are given

without proof.

Corollary 2.3. No Super Niven number has a digital sum of 11.

Corollary 2.4. The only possible Super Niven numbers with a digital sum of

13 have exactly 2 nonzero digits, 8 and 5.

Corollary 2.5. Let n be a Super Niven number and s(n) ≥ 19. Then s(n) is

divisible by 3.

3. When is 2n Super Niven? A discussion of when 2n is Super Niven will

use a preliminary result by Schinzel [5].

Lemma 3.1. If g is an even positive integer not divisible by 10, then the sum

of the decimal digits of gn increases to infinity with n.

The method he used to prove this result will be used as a model for the proof

of Theorem 3.1 below. For completeness, we include Schinzel’s proof of the above

lemma.

Proof. Let us define an infinite sequence of integers ai (i = 0, 1, 2, · · ·) as

follows: put a0 = 0, and for k = 0, 1, 2, · · · let ak+1 denote the smallest positive

integer such that 2ak+1 ≥ 10ak (thus, we shall have a1 = 1, a2 = 4, a3 = 14, and so

forth). Clearly, a1 < a2 < a3 < · · ·.

We shall prove that if for some positive integer k we have n ≥ ak, then the sum

of digits of gn is greater than or equal to k.

Let cj denote the digit of the decimal expansion of gn standing at 10j. Since

g is even, we have 2n
∣

∣ gn, and since n ≥ ak, we have, for i = 1, 2, · · · , k − 1, the

relation 2ai

∣

∣ gn. Moreover, since 2ai

∣

∣10ai , we have

2ai

∣

∣ cai−110ai−1 + · · · + c0 .
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If for ai−1 ≤ j < ai all digits cj were equal zero, we would have

2ai

∣

∣ cai−1−110ai−1−1 + · · ·+ c0 ,

and, in view of c0 6= 0, also

2ai ≤ cai−1−110ai−1−1 + · · ·+ c0 < 10ai−1 .

This implies 2ai < 10ai−1, contrary to the definition of ai. Thus, at least one of

the digits cj , where ai−1 ≤ j < ai, is different from zero. Since this is true for

i = 1, 2, · · · , k, at least k digits of gn are different from zero. For sufficiently large n

(for n ≥ ak), the sum of decimal digits of gn is not smaller than an arbitrarily given

number k. This shows that the sum of decimal digits of gn increases to infinity

together with n, which was to be proved.

Using Lemma 3.1, we give a theorem which will lead to a corollary concerning

the possibility that 2n is Super Niven.

Theorem 3.1. Let n be a positive integer. Then

s(2n) ≥ log4 n − 1 .

Proof. In the proof of Lemma 3.1, Schinzel defines the sequence a0 = 0 and

ak+1 denotes the smallest positive integer such that

2ak+1 > 10ak ,

where k ≥ 0. Thus

ak+1 > log2 10ak = ak · log2 10 =
ak

log 2
,

where log denotes the base 10 logarithm. Therefore, a1 = 1 and

ak+1 =
⌈ ak

log 2

⌉

,

for k ≥ 1. Here, d·e denotes the ceiling function. But

ak+1 =
⌈ ak

log 2

⌉

≤ 4ak ,
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so

ak+1 ≤ 4ak ≤ · · · ≤ 4ka1 = 4k < 4k+1 .

Next, in the proof of Lemma 3.1, Schinzel proves that if n ≥ ak, then s(2n) ≥ k.

Therefore, if n ≥ 4k, then s(2n) ≥ k. But

n = 4log4 n ≥ 4blog4 nc ,

where b·c denotes the floor function. Thus,

s(2n) ≥ blog4 nc ≥ log4 n − 1 .

Corollary 3.1. If n ≥ 240, then 2n is not Super Niven.

Proof. By contradiction. Suppose n ≥ 240 and 2n is Super Niven. Since

n ≥ 240,

log4 n − 1 ≥ 19 .

By Theorem 3.1, s(2n) ≥ 19. Thus 2n has at least 3 nonzero digits. Since 2n is

Super Niven, by Theorem 2.3, 2n is divisible by 3, a contradiction.

4. Conclusion. Finally, we present the following conjectures, open questions,

and topics for further research. Based on a large list of numerical evidence, we

believe that

Conjecture 4.1. If n ≥ 9 is an integer, then n! is not Super Niven.

We can, however, give the following heuristic argument that this conjecture is

indeed true. By [6], the number of digits in n! is

n log n + O(n) .

(A good discussion of the “Big–Oh” notation can be found in [7].) In [8] it is shown

that the number of terminating zeros of n! is precisely

∑

i≥1

[

n

5i

]

= O(n) .
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Therefore, the number of possible nonzero digits in n! is

n log n + O(n) .

Assuming that these digits are uniformly and randomly distributed among the digits

0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, it seems plausible to assume that the number of each

digit in n! is
1

10
n logn + O(n) .

Furthermore, from all these nonzero digits, we should be able to construct every

subdigital sum of n! from 1 to 9
2
n logn. But from a generalization of Bertrand’s

Postulate, there is a prime p between n and 3
2
n for n ≥ 9. This would mean that

n! would not be Super Niven.

By stating the contrapositive to Theorem 2.3, we have a way to tell if a number

is not Super Niven.

Theorem 4.1. Suppose n has at least k nonzero digits and n is not divisible by

k. Then n is not Super Niven.

For example, 142 is not Super Niven since 142 has at least 3 nonzero digits and

3 does not divide 142.

Theorem 4.1 gives a subject for further investigation , the idea of a pseudo–

Super Niven number.

Definition 4.1. A positive integer n is pseudo–Super Niven if n is not Super

Niven and k
∣

∣ n for all k less than or equal to the number of nonzero digits in n.

For example, 114 is a pseudo–Super Niven number since 1, 2, and 3 divide 114

and 114 is not Super Niven (since 1+4=5 does not divide 114). A larger example of

a pseudo–Super Niven number is 163380. Note that 1, 2, 3, 4, and 5 divide 163380

but 163380 is not Super Niven since 3+8=11 does not divide 163380.

It would be interesting to know “how many” pseudo–Super Niven numbers

exist. We conclude with the following open questions.

Question 4.1. Are there an infinite number of pseudo–Super Niven numbers?
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We showed that eventually, the powers of 2 are not Super Niven. We would

like to find all powers of 2 which are Super Niven. This study may require a

supercomputer.

Question 4.2. What powers of 2 are Super Niven?

Finally, we should mention that the definitions and results given here can be

extended to other bases. This investigation is left for future study.

References

1. R. E. Kennedy and C. Cooper, “On the Natural Density of the Niven Numbers,”
College Mathematics Journal, 15 (1984), 309–312.

2. R. E. Kennedy, T. A. Goodman, and C. Best, “Mathematical Discovery and
Niven numbers,” MATYC Journal, 14 (1980), 21–25.

3. L. C. Liu, Niven Numbers and Products and Multiples of Primes, Masters thesis,
(1983), Central Missouri State University, 6–8.

4. C. Cooper and R. E. Kennedy, “Niven Numbers, Smith Numbers, and Digital
Sums,” Mathematics in College, (Fall–Winter 1989), 17–23.

5. W. Sierpinski, 250 Problems in Elementary Number Theory, American Elsevier
Publishing Co., (1970), New York, 103–104.

6. T. Apostol, Introduction to Analytic Number Theory, Springer–Verlag, New
York, 1984.

7. D. E. Knuth, The Art of Computer Programming, Volume 1. Fundamental Al-

gorithms, (2nd ed.), Addison–Wesley Pub. Co., Reading, Massachusetts, 1975.

8. H. Griffin, Elementary Theory of Numbers, McGraw–Hill Book Co., New York,
1954.

10


