# The Discovery of the 44th Mersenne Prime

44 Mersenne Primes

Curtis Cooper and Steven Boone University of Central Missouri

January 8, 2007





- - Before Computers
  - Mainframe and Supercomputer Era

- GIMPS
- GIMPS People
- GIMPS Links
- **Top 10**



### **Prime Numbers**

Mersenne Primes

 A prime number is an integer, greater than 1, which has exactly two factors, itself and one.

- A prime number is an integer, greater than 1, which has exactly two factors, itself and one.
- Prime Numbers Less Than 100:



### **Mersenne Numbers**

Mersenne Primes

• A Mersenne number is a number of the form  $2^p - 1$ , where p is a prime number.



# **Mersenne Numbers**

- A Mersenne number is a number of the form  $2^p 1$ , where p is a prime number.
- Examples of Mersenne numbers are:

$$3 = 2^{2} - 1$$

$$7 = 2^{3} - 1$$

$$31 = 2^{5} - 1$$

$$127 = 2^{7} - 1$$

$$2047 = 2^{11} - 1$$



• A Mersenne prime is a Mersenne number that is prime.



- A **Mersenne prime** is a Mersenne number that is prime.
- Examples of Mersenne primes are:

$$3 = 2^2 - 1$$

$$7 = 2^3 - 1$$

$$31 = 2^5 - 1$$

$$127 = 2^7 - 1$$

$$8191 = 2^{13} - 1$$



- A **Mersenne prime** is a Mersenne number that is prime.
- Examples of Mersenne primes are:

$$3 = 2^{2} - 1$$

$$7 = 2^{3} - 1$$

$$31 = 2^{5} - 1$$

$$127 = 2^{7} - 1$$

$$8191 = 2^{13} - 1$$

$$2047 = 2^{11} - 1 = 23 \times 89.$$



### **Marin Mersenne**

Mersenne Primes

 Mersenne primes are named after a 17th-century French monk and mathematician



Marin Mersenne (1588-1648)





- **Lucas-Lehmer Test**
- - Before Computers
  - Mainframe and Supercomputer Era

- GIMPS
- GIMPS People
- GIMPS Links
- **Top 10**



 The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

 The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

### **Definition**

Let  $S_1 = 4$  and

$$S_{n+1} = S_n^2 - 2 \text{ for } n \ge 1.$$



 The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

#### **Definition**

Mersenne Primes

Let  $S_1 = 4$  and

$$S_{n+1} = S_n^2 - 2 \text{ for } n \ge 1.$$

- The first few terms of the S sequence are:
  - 4, 14, 194, 37634, 1416317954, 2005956546822746114, 4023861667741036022825635656102100994....



### **Lucas-Lehmer Test**

Mersenne Primes

Let p be a prime number. Then

$$M_p = 2^p - 1$$
 is prime  
if and only if  
 $S_{p-1} \mod M_p = 0$ .



$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.



$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

### **Proof**

S<sub>i</sub> mod 2047



**Mersenne Primes** 

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

### **Proof**

S<sub>i</sub> mod 2047



**Mersenne Primes** 

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

### **Proof**

i 
$$S_i \mod 2047$$
  
1 4  
2  $(4^2 - 2) = 14 \mod 2047 = 14$ 



Mersenne Primes

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

#### **Proof**

i 
$$S_i \mod 2047$$
  
1 4  
2  $(4^2 - 2) = 14 \mod 2047 = 14$   
3  $(14^2 - 2) = 194 \mod 2047 = 194$ 



Mersenne Primes

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

### **Proof**

i 
$$S_i \mod 2047$$
  
1 4  
2  $(4^2 - 2) = 14 \mod 2047 = 14$   
3  $(14^2 - 2) = 194 \mod 2047 = 194$   
4  $(194^2 - 2) = 37634 \mod 2047 = 788$ 



$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

#### **Proof**

i 
$$S_i \mod 2047$$
  
1 4  
2  $(4^2 - 2) = 14 \mod 2047 = 14$   
3  $(14^2 - 2) = 194 \mod 2047 = 194$   
4  $(194^2 - 2) = 37634 \mod 2047 = 788$   
5  $(788^2 - 2) = 620942 \mod 2047 = 701$ 



# Proof cont.

 $S_i \mod 2047$ 

### Proof cont.

*i* 
$$S_i \mod 2047$$
  
6  $(701^2 - 2) = 491399 \mod 2047 = 119$ 



# $2^{11} - 1$ is not prime

### Proof cont.

i 
$$S_i \mod 2047$$
  
6  $(701^2 - 2) = 491399 \mod 2047 = 119$   
7  $(119^2 - 2) = 14159 \mod 2047 = 1877$ 



# $2^{11} - 1$ is not prime

### **Proof cont.**

$$\begin{array}{ll} i & S_i \ \text{mod } 2047 \\ 6 & (701^2-2) = 491399 \ \text{mod } 2047 = 119 \\ 7 & (119^2-2) = 14159 \ \text{mod } 2047 = 1877 \\ 8 & (1877^2-2) = 3523127 \ \text{mod } 2047 = 240 \\ \end{array}$$

# $2^{11} - 1$ is not prime

### **Proof cont.**

i 
$$S_i \mod 2047$$
  
6  $(701^2 - 2) = 491399 \mod 2047 = 119$   
7  $(119^2 - 2) = 14159 \mod 2047 = 1877$   
8  $(1877^2 - 2) = 3523127 \mod 2047 = 240$   
9  $(240^2 - 2) = 57598 \mod 2047 = 282$ 

# $2^{11} - 1$ is not prime

### Proof cont.

i 
$$S_i \mod 2047$$
  
6  $(701^2 - 2) = 491399 \mod 2047 = 119$   
7  $(119^2 - 2) = 14159 \mod 2047 = 1877$   
8  $(1877^2 - 2) = 3523127 \mod 2047 = 240$   
9  $(240^2 - 2) = 57598 \mod 2047 = 282$   
10  $(282^2 - 2) = 79522 \mod 2047 = 1736$ 

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.



**Mersenne Primes** 

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

Proof.

$$S_i \mod 2^{31} - 1$$



$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

Proof.

$$i$$
  $S_i \mod 2^{31} - 1$  1 4



$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

### Proof.

$$S_i \mod 2^{31} - 1$$
1 4
2 14



$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

### Proof.

$$i$$
  $S_i \mod 2^{31} - 1$  1 4 2 14 3 194



$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

### Proof.

$$i$$
  $S_i \mod 2^{31} - 1$   
1 4  
2 14  
3 194  
4 37634



$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

### Proof.

$$i$$
  $S_i \mod 2^{31} - 1$ 
 $1$   $4$ 
 $2$   $14$ 
 $3$   $194$ 
 $4$   $37634$ 
 $5$   $1416317954$ 



$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

### Proof.

| i | $S_i \mod 2^{31} - 1$ |
|---|-----------------------|
| 1 | 4                     |
| 2 | 14                    |
| 3 | 194                   |
| 4 | 37634                 |
| 5 | 1416317954            |
| 6 | 669670838             |



#### **Theorem**

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

#### Proof.

| i | $S_i \mod 2^{31} - 1$ |
|---|-----------------------|
| 1 | 4                     |
| 2 | 14                    |
| 3 | 194                   |
| 4 | 37634                 |
| 5 | 1416317954            |
| 6 | 669670838             |
| 7 | 1937259419            |



#### **Theorem**

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

#### Proof.

| i | $S_i \mod 2^{31} - 1$ |
|---|-----------------------|
| 1 | 4                     |
| 2 | 14                    |
| 3 | 194                   |
| 4 | 37634                 |
| 5 | 1416317954            |
| 6 | 669670838             |
| 7 | 1937259419            |
| 8 | 425413602             |



# $2^{31} - 1$ is prime

| i  | $S_i \mod 2^{31} - 1$ |
|----|-----------------------|
| 9  | 842014276             |
| 10 | 12692426              |
| 11 | 2044502122            |
| 12 | 1119438707            |
| 13 | 1190075270            |
| 14 | 1450757861            |
| 15 | 877666528             |
| 16 | 630853853             |
| 17 | 940321271             |
| 18 | 512995887             |
| 19 | 692931217             |

| i  | $S_i \mod 2^{31} - 1$  |
|----|------------------------|
| 20 | 1883625615             |
| 21 | 1992425718             |
| 22 | 721929267              |
| 23 | 27220594               |
| 24 | 1570086542             |
| 25 | 1676390412             |
| 24 | 27220594<br>1570086542 |

# $2^{31} - 1$ is prime

| i  | $S_i \mod 2^{31} - 1$ |
|----|-----------------------|
| 20 | 1883625615            |
| 21 | 1992425718            |
| 22 | 721929267             |
| 23 | 27220594              |
| 24 | 1570086542            |
| 25 | 1676390412            |
| 26 | 1159251674            |



# $2^{31} - 1$ is prime

| i  | $S_i \mod 2^{31} - 1$ |
|----|-----------------------|
| 20 | 1883625615            |
| 21 | 1992425718            |
| 22 | 721929267             |
| 23 | 27220594              |
| 24 | 1570086542            |
| 25 | 1676390412            |
| 26 | 1159251674            |
| 27 | 211987665             |



| i  | $S_i \mod 2^{31} - 1$ |
|----|-----------------------|
| 20 | 1883625615            |
| 21 | 1992425718            |
| 22 | 721929267             |
| 23 | 27220594              |
| 24 | 1570086542            |
| 25 | 1676390412            |
| 26 | 1159251674            |
| 27 | 211987665             |
| 28 | 1181536708            |

# $2^{31} - 1$ is prime

| i  | $S_i \mod 2^{31} - 1$ |
|----|-----------------------|
| 20 | 1883625615            |
| 21 | 1992425718            |
| 22 | 721929267             |
| 23 | 27220594              |
| 24 | 1570086542            |
| 25 | 1676390412            |
| 26 | 1159251674            |
| 27 | 211987665             |
| 28 | 1181536708            |
| 29 | 65536                 |



# $2^{31} - 1$ is prime

| i  | $S_i \mod 2^{31} - 1$ |
|----|-----------------------|
| 20 | 1883625615            |
| 21 | 1992425718            |
| 22 | 721929267             |
| 23 | 27220594              |
| 24 | 1570086542            |
| 25 | 1676390412            |
| 26 | 1159251674            |
| 27 | 211987665             |
| 28 | 1181536708            |
| 29 | 65536                 |
| 30 | 0                     |

- **44 Mersenne Primes** 
  - Before Computers
  - Mainframe and Supercomputer Era
  - GIMPS Era

- GIMPS People
- GIMPS Links
- **Top 10**



### List of 44 Known Mersenne Primes, $2^p - 1$

**Before Computers** 

exponent Digits in  $M_p$  year discoverer



**Before Computers** 

Mersenne Primes

### List of 44 Known Mersenne Primes, $2^p - 1$

#### Before Computers

|   | exponent | Digits in $M_p$ | year | discoverer |
|---|----------|-----------------|------|------------|
| 1 | 2        | 1               | _    |            |
| 2 | 3        | 1               | _    |            |
| 3 | 5        | 2               |      |            |
| 4 | 7        | 3               | _    |            |



# List of 44 Known Mersenne Primes, $2^p - 1$

#### **Before Computers**

|   | exponent | Digits in $M_p$ | year | discoverer |
|---|----------|-----------------|------|------------|
| 1 | 2        | 1               | _    |            |
| 2 | 3        | 1               | _    |            |
| 3 | 5        | 2               | _    |            |
| 4 | 7        | 3               | _    |            |
| 5 | 13       | 4               | 1456 | anonymous  |



**Before Computers** 

Mersenne Primes

# List of 44 Known Mersenne Primes, $2^p - 1$

#### Before Computers

|   | exponent | Digits in $M_p$ | year | discoverer |
|---|----------|-----------------|------|------------|
| 1 | 2        | 1               | _    |            |
| 2 | 3        | 1               | _    |            |
| 3 | 5        | 2               |      | _          |
| 4 | 7        | 3               |      | _          |
| 5 | 13       | 4               | 1456 | anonymous  |
| 6 | 17       | 6               | 1588 | Cataldi    |
| 7 | 19       | 6               | 1588 | Cataldi    |



**Before Computers** 

Mersenne Primes

### List of 44 Known Mersenne Primes, $2^p - 1$

Digits in  $M_p$ exponent discoverer year 1772 8 31 Euler 10



**GIMPS** 

**Before Computers** 

Mersenne Primes

### List of 44 Known Mersenne Primes, $2^p - 1$

Digits in  $M_p$ exponent discoverer year 1772 8 31 Euler 10



61 Pervushin 9 19 1883



**Before Computers** 

# List of 44 Known Mersenne Primes, $2^p - 1$

exponent Digits in  $M_p$  year discoverer 8 31 10 1772 Euler



| 9  | 61  | 19 | 1883 | Pervushin |
|----|-----|----|------|-----------|
| 10 | 89  | 27 | 1911 | Powers    |
| 11 | 107 | 33 | 1914 | Powers    |



**Before Computers** 

Mersenne Primes

### List of 44 Known Mersenne Primes, $2^p - 1$

0000

Digits in  $M_p$ exponent discoverer year 12 127 39 1876 Lucas



Mainframe and Supercomputer Era

Mersenne Primes

# List of 44 Known Mersenne Primes, $2^p - 1$

#### Mainframe and Supercomputer Era

|    | exponent | Digits in $M_p$ | year | discoverer |
|----|----------|-----------------|------|------------|
| 13 | 521      | 157             | 1952 | Robinson   |
| 14 | 607      | 183             | 1952 | Robinson   |
| 15 | 1279     | 386             | 1952 | Robinson   |
| 16 | 2203     | 664             | 1952 | Robinson   |
| 17 | 2281     | 687             | 1952 | Robinson   |





### List of 44 Known Mersenne Primes, $2^p - 1$

Digits in  $M_p$ discoverer exponent year 18 3217 1957 Riesel 969



|    | exponent | Digits in $M_p$ | year | discoverer |
|----|----------|-----------------|------|------------|
| 18 | 3217     | 969             | 1957 | Riesel     |
| 19 | 4253     | 1281            | 1961 | Hurwitz    |
| 20 | 4423     | 1332            | 1961 | Hurwitz    |



**GIMPS** 

Mersenne Primes

|    | exponent | Digits in $M_p$ | year | discoverer |
|----|----------|-----------------|------|------------|
| 18 | 3217     | 969             | 1957 | Riesel     |
| 19 | 4253     | 1281            | 1961 | Hurwitz    |
| 20 | 4423     | 1332            | 1961 | Hurwitz    |
| 21 | 9689     | 2917            | 1963 | Gillies    |
| 22 | 9941     | 2993            | 1963 | Gillies    |
| 23 | 11213    | 3376            | 1963 | Gillies    |



|    | exponent | Digits in $M_p$ | year | discoverer |
|----|----------|-----------------|------|------------|
| 18 | 3217     | 969             | 1957 | Riesel     |
| 19 | 4253     | 1281            | 1961 | Hurwitz    |
| 20 | 4423     | 1332            | 1961 | Hurwitz    |
| 21 | 9689     | 2917            | 1963 | Gillies    |
| 22 | 9941     | 2993            | 1963 | Gillies    |
| 23 | 11213    | 3376            | 1963 | Gillies    |
| 24 | 19937    | 6002            | 1971 | Tuckerman  |



Mainframe and Supercomputer Era

Mersenne Primes

### List of 44 Known Mersenne Primes, $2^p - 1$

exponent Digits in  $M_p$  year discoverer 25 21701 6533 1978 Noll and Nickel 26 23209 6987 1979 Noll



Mainframe and Supercomputer Era

### List of 44 Known Mersenne Primes, $2^p - 1$

exponent Digits in  $M_p$  year discoverer 25 21701 6533 1978 Noll and Nickel 26 23209 6987 1979 Noll



27 44497 13395 1979 Nelson and Slowinski



**GIMPS** 

Mainframe and Supercomputer Era

### List of 44 Known Mersenne Primes, $2^p - 1$

exponent Digits in  $M_p$  year discoverer 25 21701 6533 1978 Noll and Nickel 26 23209 6987 1979 Noll



27 44497 13395 1979 Nelson and Slowinski
 28 86243 25962 1982 Slowinski



 Lucas-Lehmer Test
 44 Mersenne Primes
 2<sup>32582657</sup> − 1
 GIMPS
 Top 10

 ○○
 ○○
 ○○
 ○○

Mainframe and Supercomputer Era

Mersenne Primes

### List of 44 Known Mersenne Primes, $2^p - 1$

|    | exponent | Digits in $M_p$ | year | discoverer      |
|----|----------|-----------------|------|-----------------|
| 25 | 21701    | 6533            | 1978 | Noll and Nickel |
| 26 | 23209    | 6987            | 1979 | Noll            |



 27
 44497
 13395
 1979
 Nelson and Slowinski

 28
 86243
 25962
 1982
 Slowinski

 29
 110503
 33265
 1988
 Colquitt and Welsh



**GIMPS** 

Mainframe and Supercomputer Era

|    | exponent | Digits in $M_p$ | year | discoverer |
|----|----------|-----------------|------|------------|
| 30 | 132049   | 39751           | 1983 | Slowinski  |
| 31 | 216091   | 65050           | 1985 | Slowinski  |



|    | exponent | Digits in $M_p$ | year | discoverer         |
|----|----------|-----------------|------|--------------------|
| 30 | 132049   | 39751           | 1983 | Slowinski          |
| 31 | 216091   | 65050           | 1985 | Slowinski          |
| 32 | 756839   | 227832          | 1992 | Slowinski and Gage |
| 33 | 859433   | 258716          | 1994 | Slowinski and Gage |
| 34 | 1257787  | 378632          | 1996 | Slowinski and Gage |





GIMPS Era

Mersenne Primes

# List of 44 Known Mersenne Primes, $2^p - 1$

GIMPS (Woltman, Kurowski, et al.) Era

exponent Digits in  $M_p$  year discoverer 35 1398269 420921 1996 Armengaud, GIMPS



**GIMPS** 

GIMPS Era

# List of 44 Known Mersenne Primes, $2^p - 1$

GIMPS (Woltman, Kurowski, et al.) Era

|    | exponent | Digits in $M_p$ | year | discoverer       |
|----|----------|-----------------|------|------------------|
| 35 | 1398269  | 420921          | 1996 | Armengaud, GIMPS |
| 36 | 2976221  | 895932          | 1997 | Spence, GIMPS    |

# List of 44 Known Mersenne Primes, $2^p - 1$

GIMPS (Woltman, Kurowski, et al.) Era

|    | exponent | Digits in $M_p$ | year | discoverer       |
|----|----------|-----------------|------|------------------|
| 35 | 1398269  | 420921          | 1996 | Armengaud, GIMPS |
| 36 | 2976221  | 895932          | 1997 | Spence, GIMPS    |
| 37 | 3021377  | 909526          | 1998 | Clarkson, GIMPS  |

**GIMPS Era** 

Mersenne Primes

### List of 44 Known Mersenne Primes, $2^p - 1$

#### GIMPS (Woltman, Kurowski, et al.) Era

|    | exponent | Digits in $M_p$ | year | discoverer        |
|----|----------|-----------------|------|-------------------|
| 35 | 1398269  | 420921          | 1996 | Armengaud, GIMPS  |
| 36 | 2976221  | 895932          | 1997 | Spence, GIMPS     |
| 37 | 3021377  | 909526          | 1998 | Clarkson, GIMPS   |
| 38 | 6972593  | 2098960         | 1999 | Hajratwala, GIMPS |





000

GIMPS Era

Mersenne Primes

# List of 44 Known Mersenne Primes, $2^p - 1$

exponent Digits in  $M_p$  year discoverer 39? 13466917 4053946 2001 Cameron, GIMPS



**GIMPS Era** 

Mersenne Primes

# List of 44 Known Mersenne Primes, $2^p - 1$

000

exponent Digits in  $M_p$ year discoverer 4053946 39? 13466917 2001 Cameron, GIMPS 40? 20996011 6320430 2003 Shafer, GIMPS



000

**GIMPS Era** 

Mersenne Primes

# List of 44 Known Mersenne Primes, $2^p - 1$

exponent Digits in  $M_p$  year discoverer 41? 24036583 7235733 2004 Findley, GIMPS



**GIMPS Era** 

**Mersenne Primes** 

# List of 44 Known Mersenne Primes, $2^p - 1$

|     | exponent | Digits in $M_p$ | year | discoverer     |
|-----|----------|-----------------|------|----------------|
| 41? | 24036583 | 7235733         | 2004 | Findley, GIMPS |
| 42? | 25964951 | 7816230         | 2005 | Nowak, GIMPS   |



**GIMPS Era** 

**Mersenne Primes** 

# List of 44 Known Mersenne Primes, $2^p - 1$

|     | exponent | Digits in $M_p$ | year | discoverer     |
|-----|----------|-----------------|------|----------------|
| 41? | 24036583 | 7235733         | 2004 | Findley, GIMPS |
| 42? | 25964951 | 7816230         | 2005 | Nowak, GIMPS   |
| 43? | 30402457 | 9152052         | 2005 | Cooper, Boone, |
|     |          |                 |      | UCM, GIMPS     |
| 44? | 32582657 | 9808358         | 2006 | Cooper, Boone, |
|     |          |                 |      | UCM, GIMPS     |





- 2 Lucas-Lehmer Test
- **3** 44 Mersenne Primes
  - Before Computers
  - Mainframe and Supercomputer Era
  - GIMPS Era
- 6 GIMPS

- GIMPS
- GIMPS People
- GIMPS Links
- **6** Top 10



# 2<sup>32582657</sup> – 1 Button





232582657 \_ 1

Mersenne Primes

 On September 4, 2006 at 12:33:48 pm (CST), computer commwd102–04l in the Communications Lab (Wood 102) proved that  $2^{32582657} - 1$  is prime.

### News About 2<sup>32582657</sup>

- On September 4, 2006 at 12:33:48 pm (CST), computer commwd102–04l in the Communications Lab (Wood 102) proved that  $2^{32582657} - 1$  is prime.
- News items on the web regarding M32582657 can be found at: http://www.math-cs.cmsu.edu/~curtisc/M32582657.html



# **Digits of** $2^{32582657} - 1$

• The digits of M32582657 can be found at: http://mersenneforum.org/txt/44.txt



- The digits of M32582657 can be found at: http://mersenneforum.org/txt/44.txt
- Comments about M30402457 and M32582657 can be found at: http://primes.utm.edu/bios/code.php?code=G9



- **Mersenne Primes**
- 2 Lucas-Lehmer Test
- **3** 44 Mersenne Primes
  - Before Computers
  - Mainframe and Supercomputer Era
  - GIMPS Era
- $2^{32582657} 1$
- 6 GIMPS

- GIMPS
- GIMPS People
- GIMPS Links
- Top 10



**GIMPS** 

Mersenne Primes

#### The Great Internet Mersenne Prime Search

 GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime 95 and Mprime. This software can be downloaded from the Internet for free.



#### The Great Internet Mersenne Prime Search

- GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime 95 and Mprime. This software can be downloaded from the Internet for free.
- George Woltman founded GIMPS in January 1996 and wrote the prime testing software.



Mersenne Primes

### The Great Internet Mersenne Prime Search

- GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime 95 and Mprime. This software can be downloaded from the Internet for free.
- George Woltman founded GIMPS in January 1996 and wrote the prime testing software.
- Scott Kurowski wrote the PrimeNet server that supports GIMPS. In 1997 he founded Entropia, a distributed computing software company.



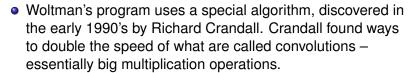
Mersenne Primes

 Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.



- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.
- As of October 11, 2006, GIMPS had a sustained throughput of approximately 22 trillion calculations per second





- As of October 11, 2006, GIMPS had a sustained throughput of approximately 22 trillion calculations per second.
- The GIMPS project consists of 46,000 individuals or groups and 71,000 networked computers.



Top 10

- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.
- As of October 11, 2006, GIMPS had a sustained throughput of approximately 22 trillion calculations per second
- The GIMPS project consists of 46,000 individuals or groups and 71,000 networked computers.
- CMSU has over 850 computers performing LL-tests on Mersenne numbers



**GIMPS People** 













Woltman

#### **GIMPS People**



Woltman



Kurowski



00 •00







Kurowski



Crandall

00

Mersenne Primes

 Tony Reix of Bull S.A. in Grenoble, France, using 16 Itanium2 1.5 GHz CPUs of a Bull NovaScale 6160 HPC at Bull Grenoble Research Center, double-checked M32582657 in 6 days.

000

- Tony Reix of Bull S.A. in Grenoble, France, using 16 Itanium 1.5 GHz CPUs of a Bull NovaScale 6160 HPC at Bull Grenoble Research Center, double-checked M32582657 in 6 days.
- T.Rex ran the Glucas program by Guillermo Ballester Valor of Granada, Spain.



 Tony Reix of Bull S.A. in Grenoble, France, using 16 Itanium 1.5 GHz CPUs of a Bull NovaScale 6160 HPC at Bull Grenoble Research Center, double-checked M32582657 in 6 days.

- T.Rex ran the Glucas program by Guillermo Ballester Valor of Granada, Spain.
- Jeff Gilchrist of Elytra Enterprises Inc. in Ottawa, Canada, using 11 days of time on 16 CPUs of an Itanium2 1.6 GHz server at SHARCNET, triple-checked M32582657.



#### **GIMPS People**







#### **GIMPS People**







T. Rex







T. Rex

Valor







Valor



Gilchrist

• The GIMPS home page can be found at: http://www.mersenne.org



- The GIMPS home page can be found at: http://www.mersenne.org
- Team Prime Rib's home page can be found at: http://www.teamprimerib.com/



- The GIMPS home page can be found at: http://www.mersenne.org
- Team Prime Rib's home page can be found at: http://www.teamprimerib.com/
- A Mersenne Prime discussion forum can be found at: http://www.mersenneforum.org



- The GIMPS home page can be found at: http://www.mersenne.org
- Team Prime Rib's home page can be found at: http://www.teamprimerib.com/
- A Mersenne Prime discussion forum can be found at: http://www.mersenneforum.org
- The GIMPS at UCM home page can be found at: http://www.math-cs.cmsu.edu/~gimps/index.html



- **Mersenne Primes**
- 2 Lucas-Lehmer Test
- **3** 44 Mersenne Primes
  - Before Computers
  - Mainframe and Supercomputer Era
  - GIMPS Era
- $2^{32582657}-1$
- 6 GIMPS
  - GIMPS
  - GIMPS People
  - GIMPS Links
- 6 Top 10



# **Top 10**

**Mersenne Primes** 



### **Top 10**

Top 10 Reasons to Search for Large Mersenne Primes

10. Because Mersenne primes are rare and beautiful.



# Top 10

Mersenne Primes

- 10. Because Mersenne primes are rare and beautiful.
- 9. To continue the mathematics and computer science tradition of Euler, Fermat, Mersenne, Lucas, Lehmer, etc.



# Top 10

Mersenne Primes

- 10. Because Mersenne primes are rare and beautiful.
- 9. To continue the mathematics and computer science tradition of Euler, Fermat, Mersenne, Lucas, Lehmer, etc.
- 8. To discover new number theory theorems as a by-product of the quest.



# Top 10

- 10. Because Mersenne primes are rare and beautiful.
- 9. To continue the mathematics and computer science tradition of Euler, Fermat, Mersenne, Lucas, Lehmer, etc.
- 8. To discover new number theory theorems as a by-product of the quest.
- 7. To discover new and more efficient algorithms for testing the primality of large numbers.



## **Top 10**

**Mersenne Primes** 

6. To help detect hardware problems (fan and CPU/bus problems) on individual computers at UCM.



#### Top 10

- 6. To help detect hardware problems (fan and CPU/bus problems) on individual computers at UCM.
- 5. To put to good use the idle CPU cycles of hundreds of computers in labs and offices across UCM's campus.



#### Top 10

- 6. To help detect hardware problems (fan and CPU/bus problems) on individual computers at UCM.
- 5. To put to good use the idle CPU cycles of hundreds of computers in labs and offices across UCM's campus.
- 4. To learn more about the distribution of Mersenne primes.



3. To discover something to number theorists and computer scientists that is comparable to an astronomer discovering a new planet or a chemist discovering a new element.

# Top 10

- 3. To discover something to number theorists and computer scientists that is comparable to an astronomer discovering a new planet or a chemist discovering a new element.
- 2. To produce much favorable press for UCM and demonstrate that the University of Central Missouri is a first-class research and teaching institution.

# Top 10

- 3. To discover something to number theorists and computer scientists that is comparable to an astronomer discovering a new planet or a chemist discovering a new element.
- 2. To produce much favorable press for UCM and demonstrate that the University of Central Missouri is a first-class research and teaching institution.
- 1. To win the \$100,000 offered by the Electronic Frontier Foundation (EFF) for the discovery of the first ten million digit prime number. EFF's motivation is to encourage research in computational number theory related to large primes.

