The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Curtis Cooper University of Central Missouri

July 22, 2013
(1) Mersenne Primes

- Primes
- Mersenne PrimesHistory of Mersenne Primes
- Marin Mersenne
- Edouard Lucas
- Computer Era

3 48th Mersenne Prime

- News on 48th Mersenne PrimeGIMPS

- GIMPS People
- GIMPS Links
(5) Lucas-Lehmer Test and Fast Fourier Transforms
- Lucas-Lehmer Test
- $2^{11}-1$ is not prime

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Prime Numbers

- A prime number is an integer, greater than 1, which has exactly two factors, itself and one.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Prime Numbers

- A prime number is an integer, greater than 1, which has exactly two factors, itself and one.
- Prime Numbers Less Than 100:
$2,3,5,7,11,13,17,19,23,29,31,37,41$, $43,47,53,59,61,67,71,73,79,83,89,97$

Mersenne Numbers

- A Mersenne number is a number of the form $2^{p}-1$, where p is a prime number.

Mersenne Numbers

- A Mersenne number is a number of the form $2^{p}-1$, where p is a prime number.
- Examples of Mersenne numbers are:

$$
\begin{aligned}
M 2 & =3=2^{2}-1 \\
M 3 & =7=2^{3}-1 \\
M 5 & =31=2^{5}-1 \\
M 7 & =127=2^{7}-1 \\
M 11 & =2047=2^{11}-1
\end{aligned}
$$

Mersenne Primes

- A Mersenne prime is a Mersenne number that is prime.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Mersenne Primes

- A Mersenne prime is a Mersenne number that is prime.
- Examples of Mersenne primes are:

$$
\begin{aligned}
3 & =2^{2}-1 \\
7 & =2^{3}-1 \\
31 & =2^{5}-1 \\
127 & =2^{7}-1 \\
8191 & =2^{13}-1
\end{aligned}
$$

Mersenne Primes

- A Mersenne prime is a Mersenne number that is prime.
- Examples of Mersenne primes are:

$$
\begin{aligned}
3 & =2^{2}-1 \\
7 & =2^{3}-1 \\
31 & =2^{5}-1 \\
127 & =2^{7}-1 \\
8191 & =2^{13}-1
\end{aligned}
$$

- $2047=2^{11}-1=23 \times 89$.

Viersenne Primes

- Primes
- Mersenne Primes
(2) History of Mersenne Primes
- Marin Mersenne
- Edouard Lucas
- Computer Era48th Mersenne Prime
- News on 48th Mersenne PrimeGIMPS
- GIMPS
- GIMPS People
- GIMPS Links
(5) Lucas-Lehmer Test and Fast Fourier Transforms
- Lucas-Lehmer Test
- $2^{11}-1$ is not prime

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Marin Mersenne

- Mersenne primes are named after a 17th-century French monk and mathematician

Marin Mersenne (1588-1648)

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

- Mersenne compiled what was supposed to be a list of Mersenne primes with exponents up to 257.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

- Mersenne compiled what was supposed to be a list of Mersenne primes with exponents up to 257.
- His list was largely incorrect, as Mersenne mistakenly included M67 and M257 (which are composite), and omitted M61, M89, and M107 (which are prime).

Mersenne Primes History of Mersenne Primes
00
0000

48th Mersenne Prime

Edouard Lucas

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Edouard Lucas

- Lucas proved in 1876 that M127 is indeed prime, as Mersenne claimed. This was the largest known prime number for 75 years, and the largest ever calculated by hand.

Edouard Lucas

- Lucas proved in 1876 that M127 is indeed prime, as Mersenne claimed. This was the largest known prime number for 75 years, and the largest ever calculated by hand.
- Without finding a factor, Lucas demonstrated that M67 is actually composite.
- No factor was found until a famous talk by Cole in 1903.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

- No factor was found until a famous talk by Cole in 1903.
- Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one.
- No factor was found until a famous talk by Cole in 1903.
- Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one.
- On the other side of the board, he multiplied 193,707,721 times 761,838,257,287 and got the same number, then returned to his seat (to applause) without speaking.
- No factor was found until a famous talk by Cole in 1903.
- Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one.
- On the other side of the board, he multiplied 193,707,721 times 761,838,257,287 and got the same number, then returned to his seat (to applause) without speaking.
- A correct list of all Mersenne primes in this number range was completed and rigorously verified only about three centuries after Mersenne published his list.
- The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
- The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
- Landon Curt Noll and Laura Nickel, 18 year-old high school students, discovered M21701. They were both studying number theory under Dr. Lehmer. This is the 25th Mersenne prime.
- The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
- Landon Curt Noll and Laura Nickel, 18 year-old high school students, discovered M21701. They were both studying number theory under Dr. Lehmer. This is the 25th Mersenne prime.
- Later Landon Curt Noll found M23209.
- The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
- Landon Curt Noll and Laura Nickel, 18 year-old high school students, discovered M21701. They were both studying number theory under Dr. Lehmer. This is the 25th Mersenne prime.
- Later Landon Curt Noll found M23209.

- M4253 is the first Mersenne prime with more that 1000 digits.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

- M4253 is the first Mersenne prime with more that 1000 digits.
- M44497 is the first with more than 10,000 digits.
- M4253 is the first Mersenne prime with more that 1000 digits.
- M44497 is the first with more than 10,000 digits.
- M6,972,593 was the first prime with at least $1,000,000$ digits.
- M4253 is the first Mersenne prime with more that 1000 digits.
- M44497 is the first with more than 10,000 digits.
- M6,972,593 was the first prime with at least $1,000,000$ digits.
- All three were the first known prime of any kind of that size.
- In September 2008, Edson Smith at UCLA, participating in GIMPS, won part of a 100,000 dollar prize from the Electronic Frontier Foundation for their discovery of a very nearly 13-million-digit Mersenne prime.
- In September 2008, Edson Smith at UCLA, participating in GIMPS, won part of a 100,000 dollar prize from the Electronic Frontier Foundation for their discovery of a very nearly 13-million-digit Mersenne prime.
- The prize, finally confirmed in October 2009, is for the first known prime with at least 10 million digits.
- In September 2008, Edson Smith at UCLA, participating in GIMPS, won part of a 100,000 dollar prize from the Electronic Frontier Foundation for their discovery of a very nearly 13-million-digit Mersenne prime.
- The prize, finally confirmed in October 2009, is for the first known prime with at least 10 million digits.
- The prime was found on a Dell OptiPlex 745 on August 23, 2008. This is the eighth Mersenne prime discovered at UCLA.
- In September 2008, Edson Smith at UCLA, participating in GIMPS, won part of a 100,000 dollar prize from the Electronic Frontier Foundation for their discovery of a very nearly 13 -million-digit Mersenne prime.
- The prize, finally confirmed in October 2009, is for the first known prime with at least 10 million digits.
- The prime was found on a Dell OptiPlex 745 on August 23, 2008. This is the eighth Mersenne prime discovered at UCLA.
- UCM's part of the prize, for discovering Mersenne primes in December 2005 and September 2006, was 6666 dollars.
- List of 48 Known Mersenne Primes http://en.wikipedia.org/wiki/Mersenne_prime

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Mersenne Primes

- Primes
- Mersenne Primes

History of Mersenne Primes

- Marin Mersenne
- Edouard Lucas
- Computer Era
(3) 48th Mersenne Prime
- News on 48th Mersenne Prime

GIMPS

- GIMPS
- GIMPS People
- GIMPS Links
(5) Lucas-Lehmer Test and Fast Fourier Transforms
- Lucas-Lehmer Test
- $2^{11}-1$ is not prime

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

News About 48th Mersenne Prime

- Official Press Release http://www.mersenne.org/various/57885161.htm

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

News About 48th Mersenne Prime

- Official Press Release http://www.mersenne.org/various/57885161.htm
- Huffington Post Story http://www.math-cs.ucmo.edu/~curtisc/M57885161.html

News About 48th Mersenne Prime

- Official Press Release http://www.mersenne.org/various/57885161.htm
- Huffington Post Story http://www.math-cs.ucmo.edu/~curtisc/M57885161.html
- New York Times Story http://www.math-cs.ucmo.edu/~curtisc/M57885161.html

More About 48th Mersenne Prime

- Fox 4 Kansas City News Story http://fox4kc.com/2013/02/08/ucm-professors-big-prime-number-discovery-has-bragging-rights/

More About 48th Mersenne Prime

- Fox 4 Kansas City News Story http://fox4kc.com/2013/02/08/ucm-professors-big-prime-number-discovery-has-bragging-rights/
- Lee Judge Cartoon http://www.cartoonistgroup.com/subject/The-Judge-Comics-and-Cartoons.php

Mersenne Buttons

- M30402457 Button http://www.mathcs.ucmo.edu/~curtisc/photos/M30402457.jpg

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Mersenne Buttons

- M30402457 Button http://www.mathcs.ucmo.edu/~curtisc/photos/M30402457.jpg
- M32582657 Button http://www.mathcs.ucmo.edu/~curtisc/photos/M32582657.jpg

Mersenne Buttons

- M30402457 Button http://www.mathcs.ucmo.edu/~curtisc/photos/M30402457.jpg
- M32582657 Button http://www.mathcs.ucmo.edu/~curtisc/photos/M32582657.jpg
- M57885161 Button http://www.math-cs.ucmo.edu/~curtisc/images/1.jpg

Jumping GIFS

- 3 Primes GIF http://www.math-cs.ucmo.edu/~curtisc/images/6.gif

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Jumping GIFS

- 3 Primes GIF
http://www.math-cs.ucmo.edu/~curtisc/images/6.gif
- UCM GIF
http://www.math-cs.ucmo.edu/~curtisc/images/14.gif

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Digits of M57885161

- Digits of M57885161
http://www.isthe.com/chongo/tech/math/digit/m57885161/primec.html

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Digits of M57885161

- Digits of M57885161
http://www.isthe.com/chongo/tech/math/digit/m57885161/primec.html
- Pronunciation of M57885161
http://www.isthe.com/chongo/tech/math/digit/m57885161/primed.html

Nersenne Primes

- Primes
- Mersenne Primes
(2) History of Mersenne Primes
- Marin Mersenne
- Edouard Lucas
- Computer Era48th Mersenne Prime
- News on 48th Mersenne Prime

4 GIMPS

- GIMPS
- GIMPS People
- GIMPS Links
(5) Lucas-Lehmer Test and Fast Fourier Transforms
- Lucas-Lehmer Test
- $2^{11}-1$ is not prime

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

The Great Internet Mersenne Prime Search

- GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.

The Great Internet Mersenne Prime Search

- GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.
- George Woltman founded GIMPS in January 1996 and wrote the prime testing software.

The Great Internet Mersenne Prime Search

- GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.
- George Woltman founded GIMPS in January 1996 and wrote the prime testing software.
- Scott Kurowski wrote the PrimeNet server that supports GIMPS. In 1997 he founded Entropia, a distributed computing software company.
- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.
- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.
- As of February 5, 2013, GIMPS had a sustained throughput of approximately 129 trillion floating-point operations per second).
- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.
- As of February 5, 2013, GIMPS had a sustained throughput of approximately 129 trillion floating-point operations per second).
- The GIMPS project consists of 98,980 users, 574 teams, and 730,562 CPUs.
- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.
- As of February 5, 2013, GIMPS had a sustained throughput of approximately 129 trillion floating-point operations per second).
- The GIMPS project consists of 98,980 users, 574 teams, and 730,562 CPUs.
- UCM has over 1000 computers performing LL-tests on Mersenne numbers.

GIMPS

Lucas-Lehmer Test and Fast Fourier Transf

Woltman

Kurowski

Crandall

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

- The GIMPS home page can be found at: http://www.mersenne.org

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

- The GIMPS home page can be found at: http://www.mersenne.org
- A Mersenne Prime discussion forum can be found at: http://www.mersenneforum.org

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Nersenne Primes

- Primes
- Mersenne PrimesHistory of Mersenne Primes
- Marin Mersenne
- Edouard Lucas
- Computer Era48th Mersenne Prime
- News on 48th Mersenne PrimeGIMPS
- GIMPS
- GIMPS People
- GIMPS Links

5 Lucas-Lehmer Test and Fast Fourier Transforms

- Lucas-Lehmer Test
- $2^{11}-1$ is not prime

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

- The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.
- The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

Definition

Let $S_{1}=4$ and

$$
S_{n+1}=S_{n}^{2}-2 \text { for } n \geq 1
$$

- The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

Definition

Let $S_{1}=4$ and

$$
S_{n+1}=S_{n}^{2}-2 \text { for } n \geq 1
$$

- The first few terms of the S sequence are:

4, 14, 194, 37634, 1416317954, 2005956546822746114, 4023861667741036022825635656102100994, ...

Lucas-Lehmer Test

Let p be a prime number. Then

$$
\begin{aligned}
& M_{p}=2^{p}-1 \text { is prime } \\
& \text { if and only if } \\
& S_{p-1} \bmod M_{p}=0 .
\end{aligned}
$$

Lucas

Lehmer

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem
 $M_{11}=2^{11}-1=2047$ is not prime.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{11}=2^{11}-1=2047$ is not prime.
Proof

i
 $S_{i} \bmod 2047$

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{11}=2^{11}-1=2047$ is not prime.
Proof

i
 1
 $S_{i} \bmod 2047$
 4

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{11}=2^{11}-1=2047$ is not prime.
Proof

$$
\begin{array}{cc}
i & S_{i} \bmod 2047 \\
1 & 4 \\
2 & \left(4^{2}-2\right)=14 \bmod 2047=14
\end{array}
$$

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{11}=2^{11}-1=2047$ is not prime.
Proof

$$
\begin{array}{cc}
i & S_{i} \bmod 2047 \\
1 & 4 \\
2 & \left(4^{2}-2\right)=14 \bmod 2047=14 \\
3 & \left(14^{2}-2\right)=194 \bmod 2047=194
\end{array}
$$

Theorem

$M_{11}=2^{11}-1=2047$ is not prime.

Proof

$$
\begin{array}{cc}
i & S_{i} \bmod 2047 \\
1 & 4 \\
2 & \left(4^{2}-2\right)=14 \bmod 2047=14 \\
3 & \left(14^{2}-2\right)=194 \bmod 2047=194 \\
4 & \left(194^{2}-2\right)=37634 \bmod 2047=788
\end{array}
$$

Theorem

$M_{11}=2^{11}-1=2047$ is not prime.

Proof

$$
\begin{array}{cc}
i & S_{i} \bmod 2047 \\
1 & 4 \\
2 & \left(4^{2}-2\right)=14 \bmod 2047=14 \\
3 & \left(14^{2}-2\right)=194 \bmod 2047=194 \\
4 & \left(194^{2}-2\right)=37634 \bmod 2047=788 \\
5 & \left(788^{2}-2\right)=620942 \bmod 2047=701
\end{array}
$$

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Proof cont.

i
 $S_{i} \bmod 2047$

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

$2^{11}-1$ is not prime

Proof cont.

$$
\begin{array}{cc}
i & S_{i} \bmod 2047 \\
6 & \left(701^{2}-2\right)=491399 \bmod 2047=119
\end{array}
$$

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

$2^{11}-1$ is not prime

Proof cont.

Curtis Cooper University of Central Missouri

$2^{11}-1$ is not prime

Proof cont.

i	$S_{i} \bmod 2047$
6	$\left(701^{2}-2\right)=491399 \bmod 2047=119$
7	$\left(119^{2}-2\right)=14159 \bmod 2047=1877$
8	$\left(1877^{2}-2\right)=3523127 \bmod 2047=240$

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

$2^{11}-1$ is not prime

Proof cont.

$$
\begin{array}{lc}
i & S_{i} \bmod 2047 \\
6 & \left(701^{2}-2\right)=491399 \bmod 2047=119 \\
7 & \left(119^{2}-2\right)=14159 \bmod 2047=1877 \\
8 & \left(1877^{2}-2\right)=3523127 \bmod 2047=240 \\
9 & \left(240^{2}-2\right)=57598 \bmod 2047=282
\end{array}
$$

$2^{11}-1$ is not prime

Proof cont.

$$
\begin{array}{cc}
i & S_{i} \bmod 2047 \\
6 & \left(701^{2}-2\right)=491399 \bmod 2047=119 \\
7 & \left(119^{2}-2\right)=14159 \bmod 2047=1877 \\
8 & \left(1877^{2}-2\right)=3523127 \bmod 2047=240 \\
9 & \left(240^{2}-2\right)=57598 \bmod 2047=282 \\
10 & \left(282^{2}-2\right)=79522 \bmod 2047=1736
\end{array}
$$

Theorem

$M_{31}=2^{31}-1=2147483647$ is prime .

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{31}=2^{31}-1=2147483647$ is prime .
Proof.
$i \quad S_{i} \bmod 2^{31}-1$

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{31}=2^{31}-1=2147483647$ is prime .
Proof.
i
1

$$
S_{i} \bmod 2^{31}-1
$$

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{31}=2^{31}-1=2147483647$ is prime .
Proof.
i
1
2
$S_{i} \bmod 2^{31}-1$
4
14

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{31}=2^{31}-1=2147483647$ is prime .
Proof.
i
1
2
3
$S_{i} \bmod 2^{31}-1$
4
14
194

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{31}=2^{31}-1=2147483647$ is prime .
Proof.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{31}=2^{31}-1=2147483647$ is prime .
Proof.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{31}=2^{31}-1=2147483647$ is prime .
Proof.

i	$S_{i} \bmod 2^{31}-1$
1	4
2	14
3	194
4	37634
5	1416317954
6	669670838

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{31}=2^{31}-1=2147483647$ is prime .
Proof.

i	$S_{i} \bmod 2^{31}-1$
1	4
2	14
3	194
4	37634
5	1416317954
6	669670838
7	1937259419

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

$M_{31}=2^{31}-1=2147483647$ is prime .
Proof.

i	$S_{i} \bmod 2^{31}-1$
1	4
2	14
3	194
4	37634
5	1416317954
6	669670838
7	1937259419
8	425413602

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

$2^{31}-1$ is prime

i	$S_{i} \bmod 2^{31}-1$
9	842014276
10	12692426
11	2044502122
12	1119438707
13	1190075270
14	1450757861
15	877666528
16	630853853
17	940321271
18	512995887
19	692931217

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

$2^{31}-1$ is prime

i	$S_{i} \bmod 2^{31}-1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

$2^{31}-1$ is prime

i	$S_{i} \bmod 2^{31}-1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

$2^{31}-1$ is prime

i	$S_{i} \bmod 2^{31}-1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

$2^{31}-1$ is prime

i	$S_{i} \bmod 2^{31}-1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

$2^{31}-1$ is prime

i	$S_{i} \bmod 2^{31}-1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708
29	65536

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

$2^{31}-1$ is prime

i	$S_{i} \bmod 2^{31}-1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708
29	65536
30	0

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Fast Fourier Transforms

Fast Fourier Transforms

- Fast Fourier Transform Paper http://www.math-cs.ucmo.edu/ curtisc/M57885161.html

Nersenne Primes

- Primes
- Mersenne Primes

2 History of Mersenne Primes

- Marin Mersenne
- Edouard Lucas
- Computer Era
(3) 48th Mersenne Prime
- News on 48th Mersenne Prime

- GIMPS
- GIMPS People
- GIMPS Links
(5) Lucas-Lehmer Test and Fast Fourier Transforms
- Lucas-Lehmer Test
- $2^{11}-1$ is not prime

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

If p is an odd prime, then any prime q that divides $2^{p}-1$ must be 1 plus a multiple of $2 p$. This holds even when $2^{p}-1$ is prime

Theorem

If p is an odd prime, then any prime q that divides $2^{p}-1$ must be 1 plus a multiple of $2 p$. This holds even when $2^{p}-1$ is prime

- $2^{5}-1=31$ is prime and $31=1+3 \times 2 \times 5$.

Theorem

If p is an odd prime, then any prime q that divides $2^{p}-1$ must be 1 plus a multiple of $2 p$. This holds even when $2^{p}-1$ is prime

- $2^{5}-1=31$ is prime and $31=1+3 \times 2 \times 5$.
- $2^{11}-1=2047=23 \times 89$, where $23=1+2 \times 11$ and $89=1+4 \times 2 \times 11$.

Theorem

If p is an odd prime, then any prime q that divides $2^{p}-1$ must be congruent to $\pm 1(\bmod 8)$

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

If p is an odd prime, then any prime q that divides $2^{p}-1$ must be congruent to $\pm 1(\bmod 8)$

- Primes 23 and 89 divide $2^{11}-1=2047.23 \equiv 1(\bmod 8)$ and $89 \equiv 1(\bmod 8)$.

Theorem

If p is an odd prime, then any prime q that divides $2^{p}-1$ must be congruent to $\pm 1(\bmod 8)$

- Primes 23 and 89 divide $2^{11}-1=2047.23 \equiv 1(\bmod 8)$ and $89 \equiv 1(\bmod 8)$.
- Primes 47 and 178481 divide $2^{23}-1=8,388,607$. $47 \equiv-1(\bmod 8)$ and $178481 \equiv 1(\bmod 8)$.

Theorem

If M_{p} is prime, then p is prime.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Theorem

If M_{p} is prime, then p is prime.

Proof

By contradiction. Suppose p is composite. Then $p=a b$ for some $a, b>1$. But then

$$
\begin{aligned}
2^{p}-1 & =2^{a b}-1=\left(2^{a}\right)^{b}-1 \\
& =\left(2^{a}-1\right) \cdot\left(2^{a(b-1)}+2^{a(b-2)}+\cdots+2^{a}+1\right)
\end{aligned}
$$

Since the last two factors are both greater than $1,2^{p}-1$ is composite, a contradiction.

Perfect Numbers

- A perfect number is a positive integer that is equal to the sum of its proper positive divisors, that is the sum of its positive divisors excluding the number itself.

Perfect Numbers

- A perfect number is a positive integer that is equal to the sum of its proper positive divisors, that is the sum of its positive divisors excluding the number itself.
- First Eight Perfect Numbers:

$$
\begin{aligned}
6 & =1+2+3 \\
28 & =1+2+4+7+14 \\
496 & =1+2+4+8+16+31+62+124+248
\end{aligned}
$$

8128, 33550336, 8589869056, 137438691328, 2305843008139952128

Perfect Number Theorem

Theorem

An even positive integer n is perfect if and only if there exists a positive integer p such that $2^{p}-1$ is prime and $n=2^{p-1} \cdot\left(2^{p}-1\right)$.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Proof

(\Leftarrow) Let $n=2^{p-1} \cdot\left(2^{p}-1\right)$, where $2^{p}-1$ is prime. Since 2^{p-1} and $2^{p}-1$ are relatively prime, the sum of the divisors of n is equal to the sum of the divisors of 2^{p-1} times the sum of the divisors of $2^{p}-1$. But the sum of the divisors of 2^{p-1} is

$$
1+2+\cdots+2^{p-2}+2^{p-1}=2^{p}-1
$$

and the sum of the divisors of $2^{p}-1$ is 2^{p}, since $2^{p}-1$ is prime. And the product is

$$
\left(2^{p}-1\right) \cdot 2^{p}=2 \cdot 2^{p-1}\left(2^{p}-1\right)=2 n .
$$

So the sum of the proper divisors of n is n and n is perfect.

Proof

(\Rightarrow) The proof is left to the reader.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Nersenne Primes

- Primes
- Mersenne Primes

2 History of Mersenne Primes

- Marin Mersenne
- Edouard Lucas
- Computer Era
(3) 48th Mersenne Prime
- News on 48th Mersenne Prime

- GIMPS
- GIMPS People
- GIMPS Links
(5) Lucas-Lehmer Test and Fast Fourier Transforms
- Lucas-Lehmer Test
- $2^{11}-1$ is not prime

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Top 10

Top 10 Reasons to Search for Large Mersenne Primes

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Top 10

Top 10 Reasons to Search for Large Mersenne Primes

10. Because Mersenne primes are rare and beautiful.

Top 10

Top 10 Reasons to Search for Large Mersenne Primes

10. Because Mersenne primes are rare and beautiful.
11. To continue the mathematics and computer science tradition of Euler, Fermat, Mersenne, Lucas, Lehmer, etc.

Top 10

Top 10 Reasons to Search for Large Mersenne Primes

10. Because Mersenne primes are rare and beautiful.
11. To continue the mathematics and computer science tradition of Euler, Fermat, Mersenne, Lucas, Lehmer, etc.
12. To discover new number theory theorems as a by-product of the quest.

Top 10

Top 10 Reasons to Search for Large Mersenne Primes

10. Because Mersenne primes are rare and beautiful.
11. To continue the mathematics and computer science tradition of Euler, Fermat, Mersenne, Lucas, Lehmer, etc.
12. To discover new number theory theorems as a by-product of the quest.
13. To discover new and more efficient algorithms for testing the primality of large numbers.

Top 10

6. To help detect hardware problems (fan and CPU/bus problems) on individual computers at UCM.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Top 10

6. To help detect hardware problems (fan and CPU/bus problems) on individual computers at UCM.
7. To put to good use the idle CPU cycles of hundreds of computers in labs and offices across UCM's campus.

Top 10

6. To help detect hardware problems (fan and CPU/bus problems) on individual computers at UCM.
7. To put to good use the idle CPU cycles of hundreds of computers in labs and offices across UCM's campus.
8. To learn more about the distribution of Mersenne primes.

Top 10

3. To discover something that, to number theorists and computer scientists, is comparable to an astronomer discovering a new planet or a chemist discovering a new element.

Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Top 10

3. To discover something that, to number theorists and computer scientists, is comparable to an astronomer discovering a new planet or a chemist discovering a new element.
4. To produce much favorable press for UCM and demonstrate that the University of Central Missouri is a first-class research and teaching institution.

Top 10

3. To discover something that, to number theorists and computer scientists, is comparable to an astronomer discovering a new planet or a chemist discovering a new element.
4. To produce much favorable press for UCM and demonstrate that the University of Central Missouri is a first-class research and teaching institution.
5. To win the $\$ 150,000$ offered by the Electronic Frontier Foundation (EFF) for the discovery of the first one-hundred million digit prime number. EFF's motivation is to encourage research in computational number theory related to large primes
Curtis Cooper University of Central Missouri
The 48th Mersenne Prime, GIMPS, the LL Test, and Perfect Numbers

Email Address and Talk URL

Curtis Cooper's Email: cooper@ucmo.edu

Talk:
http://www.math-
cs.ucmo.edu/~curtisc/talks/gimps_cs4hs/mersennecs4hs.pdf

