The 48th Mersenne Prime, GIMPS, and the LL Test and FFTs

Curtis Cooper University of Central Missouri

February 18, 2013

- **1** Mersenne Primes
 - Primes
 - Mersenne Primes
- **2** 48th Mersenne Prime
 - News on 48th Mersenne Prime
- GIMPS
 - GIMPS
 - GIMPS People
 - GIMPS Links
- 4 Lucas-Lehmer Test and Fast Fourier Transforms
 - Lucas-Lehmer Test
 - 2¹¹ − 1 is not prime
 - 2³¹ − 1 is prime
 - Fast Fourier Transforms

000 **Primes**

Mersenne Primes

Prime Numbers

 A prime number is an integer, greater than 1, which has exactly two factors, itself and one.

Prime Numbers

- A **prime number** is an integer, greater than 1, which has exactly two factors, itself and one.
- Prime Numbers Less Than 100:

Mersenne Primes

° •00

Mersenne Numbers

• A Mersenne number is a number of the form $2^p - 1$, where p is a prime number.

Mersenne Numbers

• A Mersenne number is a number of the form $2^p - 1$, where p is a prime number.

GIMPS

• Examples of Mersenne numbers are:

$$3 = 2^{2} - 1$$

$$7 = 2^{3} - 1$$

$$31 = 2^{5} - 1$$

$$127 = 2^{7} - 1$$

$$2047 = 2^{11} - 1$$

Mersenne Primes

0.0

Mersenne Primes

• A **Mersenne prime** is a Mersenne number that is prime.

Mersenne Primes

Mersenne Primes

• A **Mersenne prime** is a Mersenne number that is prime.

GIMPS

• Examples of Mersenne primes are:

$$3 = 2^2 - 1$$

$$7 = 2^3 - 1$$

$$31 = 2^5 - 1$$

$$127 = 2^7 - 1$$

$$8191 = 2^{13} - 1$$

Mersenne Primes

• A **Mersenne prime** is a Mersenne number that is prime.

GIMPS

• Examples of Mersenne primes are:

$$3 = 2^{2} - 1$$

$$7 = 2^{3} - 1$$

$$31 = 2^{5} - 1$$

$$127 = 2^{7} - 1$$

$$8191 = 2^{13} - 1$$

$$2047 = 2^{11} - 1 = 23 \times 89.$$

Mersenne Primes

000

Marin Mersenne

 Mersenne primes are named after a 17th-century French monk and mathematician

Marin Mersenne (1588-1648)



- Mersenne Primes
 - Primes
 - Mersenne Primes
- 2 48th Mersenne Prime
 - News on 48th Mersenne Prime
- GIMPS
 - GIMPS
 - GIMPS People
 - GIMPS Links
- Lucas-Lehmer Test and Fast Fourier Transforms
 - Lucas-Lehmer Test
 - 2¹¹ − 1 is not prime
 - 2³¹ − 1 is prime
 - Fast Fourier Transforms

News About 48th Mersenne Prime

 Official Press Release http://www.mersenne.org/various/57885161.htm

News on 48th Mersenne Prime

News About 48th Mersenne Prime

- Official Press Release http://www.mersenne.org/various/57885161.htm
- Huffington Post Story http://www.math-cs.ucmo.edu/ curtisc/M57885161.html

News About 48th Mersenne Prime

- Official Press Release http://www.mersenne.org/various/57885161.htm
- Huffington Post Story http://www.math-cs.ucmo.edu/ curtisc/M57885161.html
- New York Times Story http://www.math-cs.ucmo.edu/ curtisc/M57885161.html

News on 48th Mersenne Prime

More About 48th Mersenne Prime

 Fox 4 Kansas City News Story http://fox4kc.com/2013/02/08/ucm-professors-big-primenumber-discovery-has-bragging-rights/ News on 48th Mersenne Prime

More About 48th Mersenne Prime

- Fox 4 Kansas City News Story http://fox4kc.com/2013/02/08/ucm-professors-big-primenumber-discovery-has-bragging-rights/
- Lee Judge Cartoon http://www.cartoonistgroup.com/subject/The-Judge-Comics-and-Cartoons.php

More About 48th Mersenne Prime

- Fox 4 Kansas City News Story http://fox4kc.com/2013/02/08/ucm-professors-big-primenumber-discovery-has-bragging-rights/
- Lee Judge Cartoon http://www.cartoonistgroup.com/subject/The-Judge-Comics-and-Cartoons.php
- Digits of M57885161 http://www.isthe.com/chongo/tech/math/digit/m57885161/primec.html

More About 48th Mersenne Prime

- Fox 4 Kansas City News Story http://fox4kc.com/2013/02/08/ucm-professors-big-primenumber-discovery-has-bragging-rights/
- Lee Judge Cartoon http://www.cartoonistgroup.com/subject/The-Judge-Comics-and-Cartoons.php
- Digits of M57885161 http://www.isthe.com/chongo/tech/math/digit/m57885161/primec.html
- Pronunciation of M57885161 http://www.isthe.com/chongo/tech/math/digit/m57885161/primed.html

- - Primes
 - Mersenne Primes
- - News on 48th Mersenne Prime
- **GIMPS**
 - GIMPS
 - GIMPS People
 - GIMPS Links
- **Lucas-Lehmer Test and Fast Fourier Transforms**
 - Lucas-Lehmer Test
 - $2^{11} 1$ is not prime
 - 2³¹ − 1 is prime
 - Fast Fourier Transforms

 GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.

The Great Internet Mersenne Prime Search

 GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.

GIMPS •0

 George Woltman founded GIMPS in January 1996 and wrote the prime testing software.

 GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.

- George Woltman founded GIMPS in January 1996 and wrote the prime testing software.
- Scott Kurowski wrote the PrimeNet server that supports GIMPS. In 1997 he founded Entropia, a distributed computing software company.

GIMPS

Mersenne Primes

 Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.

GIMPS

00

 Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.

GIMPS

 As of July 25, 2012, GIMPS had a sustained throughput of approximately 83.9 teraflops (a teraflop is 10¹² floating-point operations per second).

 Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.

- As of July 25, 2012, GIMPS had a sustained throughput of approximately 83.9 teraflops (a teraflop is 1012 floating-point operations per second).
- The GIMPS project consists of 88,074 users, 539 teams, and 642,683 CPUs.

 Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions essentially big multiplication operations.

- As of July 25, 2012, GIMPS had a sustained throughput of approximately 83.9 teraflops (a teraflop is 10¹² floating-point operations per second).
- The GIMPS project consists of 88,074 users, 539 teams, and 642,683 CPUs.
- UCM has over 1000 computers performing LL-tests on Mersenne numbers

GIMPS People

Mersenne Primes

Kurowski

Crandall

GIMPS Links

Mersenne Primes

• The GIMPS home page can be found at: http://www.mersenne.org

GIMPS Links

Mersenne Primes

- The GIMPS home page can be found at: http://www.mersenne.org
- A Mersenne Prime discussion forum can be found at: http://www.mersenneforum.org

- **1** Mersenne Primes
 - Primes
 - Mersenne Primes
- 2 48th Mersenne Prime
 - News on 48th Mersenne Prime
- **3** GIMPS
 - GIMPS
 - GIMPS People
 - GIMPS Links
- Lucas-Lehmer Test and Fast Fourier Transforms
 - Lucas-Lehmer Test
 - 2¹¹ − 1 is not prime
 - 2³¹ − 1 is prime
 - Fast Fourier Transforms

Mersenne Primes

 The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

 The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

GIMPS

Definition

Let $S_1 = 4$ and

$$S_{n+1} = S_n^2 - 2$$
 for $n \ge 1$.

 The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

GIMPS

Definition

Let $S_1 = 4$ and

$$S_{n+1} = S_n^2 - 2 \text{ for } n \ge 1.$$

- The first few terms of the S sequence are:
 - 4, 14, 194, 37634, 1416317954, 2005956546822746114, 4023861667741036022825635656102100994....

Mersenne Primes

Lucas-Lehmer Test

Let p be a prime number. Then

$$M_p = 2^p - 1$$
 is prime if and only if $S_{p-1} \mod M_p = 0$.

Mersenne Primes

Lehmer

Theorem

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Mersenne Primes

Theorem

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

S_i mod 2047

Mersenne Primes

Theorem

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

S_i mod 2047

Mersenne Primes

Theorem

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$

Theorem

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$
3 $(14^2 - 2) = 194 \mod 2047 = 194$

Theorem

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$
3 $(14^2 - 2) = 194 \mod 2047 = 194$
4 $(194^2 - 2) = 37634 \mod 2047 = 788$

Theorem

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$
3 $(14^2 - 2) = 194 \mod 2047 = 194$
4 $(194^2 - 2) = 37634 \mod 2047 = 788$
5 $(788^2 - 2) = 620942 \mod 2047 = 701$

Lucas-Lehmer Test and Fast Fourier Transforms

○○○

○○

○○

Lucas-Lehmer Test

$2^{11} - 1$ is not prime

Proof cont. $i S_i \bmod 2047$

Mersenne Primes

$2^{11} - 1$ is not prime

Proof cont.

i
$$S_i \mod 2047$$

6 $(701^2 - 2) = 491399 \mod 2047 = 119$

Mersenne Primes

$2^{11} - 1$ is not prime

Proof cont.

i
$$S_i \mod 2047$$

6 $(701^2 - 2) = 491399 \mod 2047 = 119$
7 $(119^2 - 2) = 14159 \mod 2047 = 1877$

$2^{11} - 1$ is not prime

Proof cont.

$$\begin{array}{ll} i & S_i \text{ mod } 2047 \\ 6 & (701^2-2) = 491399 \text{ mod } 2047 = 119 \\ 7 & (119^2-2) = 14159 \text{ mod } 2047 = 1877 \\ 8 & (1877^2-2) = 3523127 \text{ mod } 2047 = 240 \\ \end{array}$$

$2^{11} - 1$ is not prime

Proof cont.

i
$$S_i \mod 2047$$

6 $(701^2 - 2) = 491399 \mod 2047 = 119$
7 $(119^2 - 2) = 14159 \mod 2047 = 1877$
8 $(1877^2 - 2) = 3523127 \mod 2047 = 240$
9 $(240^2 - 2) = 57598 \mod 2047 = 282$

$2^{11} - 1$ is not prime

Proof cont.

i
$$S_i \mod 2047$$

6 $(701^2 - 2) = 491399 \mod 2047 = 119$
7 $(119^2 - 2) = 14159 \mod 2047 = 1877$
8 $(1877^2 - 2) = 3523127 \mod 2047 = 240$
9 $(240^2 - 2) = 57598 \mod 2047 = 282$
10 $(282^2 - 2) = 79522 \mod 2047 = 1736$

Theorem

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

Mersenne Primes

Theorem

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

Proof.

$$S_i \mod 2^{31} - 1$$

Mersenne Primes

Theorem

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

Proof.

$$i$$
 $S_i \mod 2^{31} - 1$ 1 4

Mersenne Primes

Theorem

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

Proof.

$$S_i \mod 2^{31} - 1$$
1 4
2 14

Lucas-Lehmer Test

Mersenne Primes

Theorem

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

$$i$$
 $S_i \mod 2^{31} - 1$ 4 2 14 3 194

Lucas-Lehmer Test

Mersenne Primes

Theorem

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

$$i$$
 $S_i \mod 2^{31} - 1$
 1 4
 2 14
 3 194
 4 37634

Lucas-Lehmer Test

Mersenne Primes

Theorem

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

$$i$$
 $S_i \mod 2^{31} - 1$
 1 4
 2 14
 3 194
 4 37634
 5 1416317954

Lucas-Lehmer Test

Mersenne Primes

Theorem

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

$$i$$
 $S_i \mod 2^{31} - 1$
 1 4
 2 14
 3 194
 4 37634
 5 1416317954
 6 669670838

Mersenne Primes

Theorem

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

$$i$$
 $S_i \mod 2^{31} - 1$
 1 4
 2 14
 3 194
 4 37634
 5 1416317954
 6 669670838
 7 1937259419

Mersenne Primes

Theorem

$$M_{31} = 2^{31} - 1 = 2147483647$$
 is prime.

$$i$$
 $S_i \mod 2^{31} - 1$
 1 4
 2 14
 3 194
 4 37634
 5 1416317954
 6 669670838
 7 1937259419
 8 425413602

Mersenne Primes

i	$S_i \mod 2^{31} - 1$
9	842014276
10	12692426
11	2044502122
12	1119438707
13	1190075270
14	1450757861
15	877666528
16	630853853
17	940321271
18	512995887
19	692931217

i	<i>S_i</i> mod 2 ³¹ – 1
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674

Lucas-Lehmer Test

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708

Lucas-Lehmer Test

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708
29	65536

Mersenne Primes

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708
29	65536
30	0

Fast Fourier Transforms

 Fast Fourier Transform Paper http://www.math-cs.ucmo.edu/curtisc/M57885161.html

Mersenne Primes

Email Address and Talk URL

Curtis Cooper's Email: cooper@ucmo.edu

Talk: http://www.mathcs.ucmo.edu/~curtisc/talks/gimpsacm/mersenneacm.pdf

