M	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
000		00	0 000000	00		
		000				

Mersenne Primes, GIMPS, and the LL Test

Curtis Cooper University of Central Missouri

June 13, 2018

3 × < 3 ×

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
		o 000000	00 0 0		

- Primes
- Mersenne Primes
- 2 History of Mersenne Primes
 - Marin Mersenne
 - Edouard Lucas
 - Computer Era
- 3 50th Mersenne Prime
 - M77232917
 - News on 50th Mersenne Prime
- GIMPS
 - GIMPS
 - GIMPS People
 - GIMPS Links
 - Lucas-Lehmer Test and Lucas Game
 - Lucas-Lehmer Test

Curtis Cooper University of Central Missouri

Mersenne Primes, GIMPS, and the LL Test

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへぐ

	ersenne Primes o	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
P	rimes					

 A prime number is a positive integer which has exactly two factors, itself and one.

. . .

글 > - < 글 >

э

Curtis Cooper University of Central Missouri

Mersenne Primes ● ○○	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Primes					

- A prime number is a positive integer which has exactly two factors, itself and one.
- Prime Numbers Less Than 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
0 00	00 00 000	0 000000	00 0 0		
Mersenne Primes					

Mersenne Numbers

• A Mersenne number is a number of the form $2^p - 1$, where *p* is a prime number.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
0 •0	00 00 000	0 000000	00 0 0		
Mersenne Primes					

Mersenne Numbers

- A Mersenne number is a number of the form $2^{p} 1$, where *p* is a prime number.
- Examples of Mersenne numbers are:

$$M2 = 2^{2} - 1 = 3$$

$$M3 = 2^{3} - 1 = 7$$

$$M5 = 2^{5} - 1 = 31$$

$$M7 = 2^{7} - 1 = 127$$

$$M11 = 2^{11} - 1 = 2047$$

∃ ► < ∃ ►</p>

э.

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○●	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Mersenne Primes					

• A Mersenne prime is a Mersenne number that is prime.

・ロト・日本・日本・日本・日本・日本

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○●	History of Mersenne Primes	50th Mersenne Prime o oooooo	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Mersenne Primes					

- A Mersenne prime is a Mersenne number that is prime.
- Examples of Mersenne primes are:

$$3 = 2^{2} - 1$$

$$7 = 2^{3} - 1$$

$$31 = 2^{5} - 1$$

$$127 = 2^{7} - 1$$

$$8191 = 2^{13} - 1$$

∃ ► < ∃ ►</p>

э

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○●	History of Mersenne Primes	50th Mersenne Prime o oooooo	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Mersenne Primes					

- A Mersenne prime is a Mersenne number that is prime.
- Examples of Mersenne primes are:

$$3 = 2^{2} - 1$$

$$7 = 2^{3} - 1$$

$$31 = 2^{5} - 1$$

$$127 = 2^{7} - 1$$

$$8191 = 2^{13} - 1$$

< < >> < < < < < >>

▲ 플 → ▲ 플 →

э

•
$$2047 = 2^{11} - 1 = 23 \times 89$$
.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
00	00	000000			
	000				

- Primes
- Mersenne Primes

2 History of Mersenne Primes

- Marin Mersenne
- Edouard Lucas
- Computer Era
- 3 50th Mersenne Prime
 - M77232917
 - News on 50th Mersenne Prime
- GIMPS
 - GIMPS
 - GIMPS People
 - GIMPS Links
 - Lucas-Lehmer Test and Lucas Game
 - Lucas-Lehmer Test

Curtis Cooper University of Central Missouri

Mersenne Primes, GIMPS, and the LL Test

- ▲日本 ▲国本 ▲国本 ▲国本 - 国 - ろんら

Mersenne Primes ^O ^O O	History of Mersenne Primes ●○ ○○ ○○	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Marin Mersenne					

Marin Mersenne

 Mersenne primes are named after a 17th-century French monk and mathematician

Marin Mersenne (1588-1648)

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	○ ○○ ○○○	0 000000	00 0 0		
Marin Mersenne					

 Mersenne compiled what was supposed to be a list of Mersenne primes with exponents up to 257.

3 D A 3 D D

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	○ ○○ ○○○	0 000000	00 0 0		
Marin Mersenne					

- Mersenne compiled what was supposed to be a list of Mersenne primes with exponents up to 257.
- 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	○ ○○ ○○○	0 000000	00 0 0		
Marin Mersenne					

- Mersenne compiled what was supposed to be a list of Mersenne primes with exponents up to 257.
- 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257
- His list was largely incorrect, as Mersenne mistakenly included M67 and M257 (which are composite), and omitted M61, M89, and M107 (which are prime).

	Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
		00		00	0000000	
00 00 00000 0	00	00	000000			

Edouard Lucas

Edouard Lucas

<ロ> <四> <四> <日> <日> <日> <日</p>

Ξ.

Curtis Cooper University of Central Missouri

Mersenne I	Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
		00		00	0000000	
		•0				
		000				

Edouard Lucas

Edouard Lucas

• Lucas proved in 1876 that M127 is indeed prime, as Mersenne claimed. This was the largest known prime number for 75 years, and the largest ever calculated by hand.

Mersenne I	Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
		00		00	0000000	
		•0				
		000				

Edouard Lucas

Edouard Lucas

- Lucas proved in 1876 that M127 is indeed prime, as Mersenne claimed. This was the largest known prime number for 75 years, and the largest ever calculated by hand.
- Without finding a factor, Lucas demonstrated that M67 is actually composite.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00	0 000000	00		
Edouard Lucas	000				

• No factor was found until a famous talk by Cole in 1903.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Curtis Cooper University of Central Missouri

- No factor was found until a famous talk by Cole in 1903.
- Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 0● 000	0 000000	00 0 0		
Edouard Lucas					

- No factor was found until a famous talk by Cole in 1903.
- Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one.
- On the other side of the board, he multiplied 193,707,721 times 761,838,257,287 and got the same number, then returned to his seat (to applause) without speaking.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 0● 000	0 000000	00 0 0		
Edouard Lucas					

- No factor was found until a famous talk by Cole in 1903.
- Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one.
- On the other side of the board, he multiplied 193,707,721 times 761,838,257,287 and got the same number, then returned to his seat (to applause) without speaking.
- A correct list of all Mersenne primes in this number range was completed and rigorously verified only about three centuries after Mersenne published his list.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 0●	0 000000	00		
Edouard Lucas	000		0		

- No factor was found until a famous talk by Cole in 1903.
- Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one.
- On the other side of the board, he multiplied 193,707,721 times 761,838,257,287 and got the same number, then returned to his seat (to applause) without speaking.
- A correct list of all Mersenne primes in this number range was completed and rigorously verified only about three centuries after Mersenne published his list.
- 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 •00	0 000000	00 0 0		
Computer Era					

 The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
Computer Era					

- The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
- Landon Curt Noll and Laura Nickel, 18 year-old high school students, discovered M21701. They were both studying number theory under Dr. Lehmer. This is the 25th Mersenne prime.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 •00	0 000000	00 0 0		
Computer Era					

- The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
- Landon Curt Noll and Laura Nickel, 18 year-old high school students, discovered M21701. They were both studying number theory under Dr. Lehmer. This is the 25th Mersenne prime.
- Later Landon Curt Noll found M23209.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
0	00	0 000000	00		
	000	000000			
Computer Era					

- The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
- Landon Curt Noll and Laura Nickel, 18 year-old high school students, discovered M21701. They were both studying number theory under Dr. Lehmer. This is the 25th Mersenne prime.
- Later Landon Curt Noll found M23209.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
0 00	00	0 000000	00		
	000				
Computer Era					

 On August 23, 2008, Edson Smith at UCLA, participating in GIMPS, discovered the Mersenne prime M43112609 with almost 13 million decimal digits.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
0 00	00	0 000000	00		
	000				
Computer Era					

- On August 23, 2008, Edson Smith at UCLA, participating in GIMPS, discovered the Mersenne prime M43112609 with almost 13 million decimal digits.
- He claimed the 100,000 dollar prize, awarded by the Electronic Frontier Foundation, for the first known prime with at least 10 million decimal digits.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
0 00	00	0 000000	00		
	000				
Computer Era					

- On August 23, 2008, Edson Smith at UCLA, participating in GIMPS, discovered the Mersenne prime M43112609 with almost 13 million decimal digits.
- He claimed the 100,000 dollar prize, awarded by the Electronic Frontier Foundation, for the first known prime with at least 10 million decimal digits.
- The prime was found on a Dell OptiPlex 745. This is the eighth Mersenne prime discovered at UCLA.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 00●	0 000000	00 0 0		
Computer Era					

< < >> < <</>

프 () (프)

э.

 List of 50 Known Mersenne Primes https://en.wikipedia.org/wiki/Mersenne_prime

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	50th Mersenne Prime ooooooo	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	rsenne Primes				
• F	Primes				
	Java anna Duimaca				

Pistory of Mersenne Primes

- Marin Mersenne
- Edouard Lucas
- Computer Era
- 3 50th Mersenne Prime
 - M77232917
 - News on 50th Mersenne Prime
- 4 GIMPS
 - GIMPS
 - GIMPS People
 - GIMPS Links
 - Lucas-Lehmer Test and Lucas Game
 - Lucas-Lehmer Test

Curtis Cooper University of Central Missouri

Mersenne Primes, GIMPS, and the LL Test

・ 日本 ・ 聞 ・ ・ 聞 ・ ・ 聞 ・ 今々で

Mersenne Primes oo	History of Mersenne Primes	50th Mersenne Prime	GIMPS 00 0 0	Lucas-Lehmer Test and Lucas Game	Luca
M77232917					

• 2⁷⁷²³²⁹¹⁷ - 1 is prime!

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	50th Mersenne Prime ● ○○○○○	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
M77232917					

- 2⁷⁷²³²⁹¹⁷ 1 is prime!
- Largest Known Prime Number

Mersenne Primes ⁰ ₀₀	History of Mersenne Primes	50th Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luc
M77929017	000				

- 2⁷⁷²³²⁹¹⁷ 1 is prime!
- Largest Known Prime Number
- 23,249,425 decimal digits

Mersenne Primes 0 00	History of Mersenne Primes	50th Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
M77232017					

- 2⁷⁷²³²⁹¹⁷ 1 is prime!
- Largest Known Prime Number
- 23,249,425 decimal digits
- Discovered on December 26, 2017 by GIMPS and Jonathan Pace using the LLT / Prime95 on a quad-core Intel i5-6600 CPU.

Mersenne Primes 0 00	History of Mersenne Primes	50th Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
M77232017					

- 2⁷⁷²³²⁹¹⁷ 1 is prime!
- Largest Known Prime Number
- 23,249,425 decimal digits
- Discovered on December 26, 2017 by GIMPS and Jonathan Pace using the LLT / Prime95 on a quad-core Intel i5-6600 CPU.
- The primality proof took six days of non-stop computing.

Mersenne Primes 0 00	History of Mersenne Primes	50th Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
M77232017					

- 2⁷⁷²³²⁹¹⁷ 1 is prime!
- Largest Known Prime Number
- 23,249,425 decimal digits
- Discovered on December 26, 2017 by GIMPS and Jonathan Pace using the LLT / Prime95 on a quad-core Intel i5-6600 CPU.
- The primality proof took six days of non-stop computing.
- Jon, a GIMPS volunteer for over 14 years, is a 51-year old Electrical Engineer living in Germantown TN.

Mersenne Primes 0 00	History of Mersenne Primes	50th Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
M77232017					

- 2⁷⁷²³²⁹¹⁷ 1 is prime!
- Largest Known Prime Number
- 23,249,425 decimal digits
- Discovered on December 26, 2017 by GIMPS and Jonathan Pace using the LLT / Prime95 on a quad-core Intel i5-6600 CPU.
- The primality proof took six days of non-stop computing.
- Jon, a GIMPS volunteer for over 14 years, is a 51-year old Electrical Engineer living in Germantown TN.
- He is a long-time math enthusiast who is working for FedEx and is active in community charities.

Mersenne Primes 0 00	History of Mersenne Primes	50th Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
M77232017					

- 2⁷⁷²³²⁹¹⁷ 1 is prime!
- Largest Known Prime Number
- 23,249,425 decimal digits
- Discovered on December 26, 2017 by GIMPS and Jonathan Pace using the LLT / Prime95 on a quad-core Intel i5-6600 CPU.
- The primality proof took six days of non-stop computing.
- Jon, a GIMPS volunteer for over 14 years, is a 51-year old Electrical Engineer living in Germantown TN.
- He is a long-time math enthusiast who is working for FedEx and is active in community charities.
- As SysAdmin for his charities, he runs Prime95 on all PCs and servers.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	00000			
	000				

News About 50th Mersenne Prime

Official Press Release

https://www.mersenne.org/primes/press/M77232917.html

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	00000			
	000				

News About 50th Mersenne Prime

- Official Press Release https://www.mersenne.org/primes/press/M77232917.html
- Science Daily https://www.sciencedaily.com/release/2018/01/180104164507.htt

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	00000			
	000				

News About 50th Mersenne Prime

- Official Press Release https://www.mersenne.org/primes/press/M77232917.html
- Science Daily https://www.sciencedaily.com/release/2018/01/180104164507.html

John D. Cook

https://www.johndcook.com/blog/2018/01/04/new-primenumber-record-50th-mersenne-prime/

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	00000			
	000				

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

News on 50th Mersenne Prime

Digits of M77232917 by Landon Curt Noll

 Digits of M77232917 http://lcn2.github.io/mersenne-englishname/m77232917/prime-c.html

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	00000			
	000				

Digits of M77232917 by Landon Curt Noll

- Digits of M77232917 http://lcn2.github.io/mersenne-englishname/m77232917/prime-c.html
- Pronunciation of M77232917 http://lcn2.github.io/mersenne-englishname/m77232917/prime.html

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			
	000				

UCM's Four Mersenne Primes

M30402457

https://www.mersenne.org/primes/?press=M30402457

= nar

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			
	000				

UCM's Four Mersenne Primes

• M30402457

https://www.mersenne.org/primes/?press=M30402457

M32582657

https://www.mersenne.org/primes/?press=M32582657

・ロト・日本・日本・日本・日本・今日・

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			
	000				

UCM's Four Mersenne Primes

• M30402457

https://www.mersenne.org/primes/?press=M30402457

 M32582657 https://www.mersenne.org/primes/?press=M32582657

• M57885161

https://www.mersenne.org/primes/?press=M57885161

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			
	000				

UCM's Four Mersenne Primes

M30402457

https://www.mersenne.org/primes/?press=M30402457

- M32582657 https://www.mersenne.org/primes/?press=M32582657
- M57885161 https://www.mersenne.org/primes/?press=M57885161

M74207281 https://www.mersenne.org/primes/?press=M74207281

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			
	000				

UCM's Four Mersenne Primes

M30402457

https://www.mersenne.org/primes/?press=M30402457

- M32582657 https://www.mersenne.org/primes/?press=M32582657
- M57885161 https://www.mersenne.org/primes/?press=M57885161

M74207281 https://www.mersenne.org/primes/?press=M74207281

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			
	000				

More About 49th Mersenne Prime

 Standupmaths https://www.youtube.com/watch?v=q5ozBnrd5Zc

《日》《聞》《聞》《聞》 『聞

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			
	000				

More About 49th Mersenne Prime

- Standupmaths https://www.youtube.com/watch?v=q5ozBnrd5Zc
- Standupmaths2 https://www.youtube.com/watch?v=jNXAMBvYe-Y

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			
	000				

More About 49th Mersenne Prime

- Standupmaths https://www.youtube.com/watch?v=q5ozBnrd5Zc
- Standupmaths2 https://www.youtube.com/watch?v=jNXAMBvYe-Y
- Jimmy Fallon https://www.facebook.com/kshbtv/videos/10153315475526190

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	õõ	_ 0000●0	00 0 0		

Mersenne Buttons

M30402457 Button cs.ucmo.edu/~cnc8851/images/9.jpg

・ロト・日本・日本・日本・日本

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	õõ	o 0000●0	00 0 0		

Mersenne Buttons

- M30402457 Button cs.ucmo.edu/~cnc8851/images/9.jpg
- M32582657 Button cs.ucmo.edu/~cnc8851/images/11.jpg

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	õõ	o 0000●0	00 0 0		

Mersenne Buttons

- M30402457 Button cs.ucmo.edu/~cnc8851/images/9.jpg
- M32582657 Button cs.ucmo.edu/~cnc8851/images/11.jpg
- M57885161 Button cs.ucmo.edu/~cnc8851/images/7.jpg

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	õõ	o 0000●0	00 0 0		

Mersenne Buttons

- M30402457 Button cs.ucmo.edu/~cnc8851/images/9.jpg
- M32582657 Button cs.ucmo.edu/~cnc8851/images/11.jpg
- M57885161 Button cs.ucmo.edu/~cnc8851/images/7.jpg
- M74207281 Button cs.ucmo.edu/~cnc8851/images/0.jpg

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
0	00	0	00		
	000	000000			
News on 50th Mers	senne Prime				

・ロト ・四ト ・ モト ・ モトー

э.

 3 Primes GIF http://cs.ucmo.edu/~cnc8851/images/6.gif

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	50th Mersenne Prime ○ ○○○○○●	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
News on 50th Me	rsenne Prime				

- 3 Primes GIF http://cs.ucmo.edu/~cnc8851/images/6.gif
- UCM GIF http://cs.ucmo.edu/~cnc8851/images/14.gif

Curtis Cooper University of Central Missouri

Mersenne Pri o oo		listory of Mersen 00 00 000	ne Primes	50th Mersenne Prime o oooooo	GIMPS 00 0 0	Lucas-Lehmer Test and Lucas Game	Luca
_							
(1)	Mers	senne Prir	nes				
	• Pr	rimes					
	• M	ersenne P	rimes				
2	Histo	ory of Mei	senne	e Primes			

- Marin Mersenne
- Edouard Lucas
- Computer Era
- 3 50th Mersenne Prime
 - M77232917
 - News on 50th Mersenne Prime
- GIMPS
 - GIMPS
 - GIMPS People
 - GIMPS Links
 - Lucas-Lehmer Test and Lucas Game
 - Lucas-Lehmer Test

Curtis Cooper University of Central Missouri

Mersenne Primes, GIMPS, and the LL Test

・ ロト・ 御 ト・ 言 と き うへぐ

0 00 0 00 000000 00 000000 00 000 00	

GIMPS

The Great Internet Mersenne Prime Search

 GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	00 00 000	0 000000	• 0 0		

GIMPS

The Great Internet Mersenne Prime Search

- GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.
- George Woltman founded GIMPS in January 1996 and wrote the prime testing software.

Mersenne Primes Hi	istory of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
		0 000000	• 0 0 0		

GIMPS

The Great Internet Mersenne Prime Search

- GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.
- George Woltman founded GIMPS in January 1996 and wrote the prime testing software.
- Scott Kurowski wrote the PrimeNet server that supports GIMPS. In 1997 he founded Entropia, a distributed computing software company.

Mersenne Primes oo	History of Mersenne Primes	50th Mersenne Prime	GIMPS ○● ○	Lucas-Lehmer Test and Lucas Game	Luca
GIMPS					

 Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions – essentially big multiplication operations.

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	50th Mersenne Prime o oooooo	GIMPS ○● ○	Lucas-Lehmer Test and Lucas Game	Luca
GIMPS					

- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions – essentially big multiplication operations.
- As of June 11, 2018, GIMPS had a sustained throughput of approximately 308 trillion floating-point operations per second.

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	South Mersenne Prime	GIMPS ○● ○	Lucas-Lehmer Test and Lucas Game	Luca
GIMPS					

- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions – essentially big multiplication operations.
- As of June 11, 2018, GIMPS had a sustained throughput of approximately 308 trillion floating-point operations per second.
- The GIMPS project consists of 194,134 users, 1229 teams, and 1,711,236 computers.

Mersenne Primes ○ ○○	History of Mersenne Primes	South Mersenne Prime	GIMPS ○● ○	Lucas-Lehmer Test and Lucas Game	Luca
GIMPS					

- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions – essentially big multiplication operations.
- As of June 11, 2018, GIMPS had a sustained throughput of approximately 308 trillion floating-point operations per second.
- The GIMPS project consists of 194,134 users, 1229 teams, and 1,711,236 computers.
- UCM has over 700 computers performing LL-tests on Mersenne numbers.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	00 00 000	0 000000	00		

GIMPS People

Woltman

Kurowski

Crandall

▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● ○ ○ ○

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	Soth Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
GIMPS Links					

< < >> < <</>

A B + A B +

э.

 The GIMPS home page can be found at: https://www.mersenne.org

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	South Mersenne Prime	GIMPS ○○ ●	Lucas-Lehmer Test and Lucas Game	Luca
GIMPS Links					

- The GIMPS home page can be found at: https://www.mersenne.org
- A Mersenne Prime discussion forum can be found at: http://www.mersenneforum.org

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

Curtis Cooper University of Central Missouri

Mersenne Primes ° °	History of Mersenne Primes	50th Mersenne Prime ooooooo	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
	rsenne Primes				

- Mersenne Primes
- 2 History of Mersenne Primes
 - Marin Mersenne
 - Edouard Lucas
 - Computer Era
- 3 50th Mersenne Prime
 - M77232917
 - News on 50th Mersenne Prime
- GIMPS
 - GIMPS
 - GIMPS People
 - GIMPS Links
- 5 Lucas-Lehmer Test and Lucas Game
 - Lucas-Lehmer Test

Curtis Cooper University of Central Missouri

Mersenne Primes, GIMPS, and the LL Test

- * ロ * * @ * * 差 * 注 * の < @

Mersenne Primes o oo	History of Mersenne Primes	50th Mersenne Prime o oooooo	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test					

• The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

Curtis Cooper University of Central Missouri

 The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

Definition

Let $S_1 = 4$ and

$$S_{n+1} = S_n^2 - 2$$
 for $n \ge 1$.

< ロ > < 同 > < 回 > < 回 > .

э.

Curtis Cooper University of Central Missouri

 The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

Definition

Let $S_1 = 4$ and

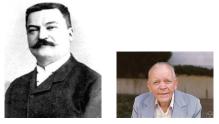
$$S_{n+1} = S_n^2 - 2$$
 for $n \ge 1$.

• The first few terms of the *S* sequence are:

4, 14, 194, 37634, 1416317954, 2005956546822746114, 4023861667741036022825635656102100994,...

Curtis Cooper University of Central Missouri

	Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
○ ○○<		00	0 000000	00 0 0	0000000	


Lucas-Lehmer Test

Let p be a prime number. Then

 $M_p = 2^p - 1$ is prime if and only if $S_{p-1} \mod M_p = 0.$

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00	0 000000	00	000000	
	000				

Lucas

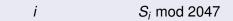
Lehmer

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test					

 $M_{11} = 2^{11} - 1 = 2047$ is not prime.


▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● ○ ○ ○

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	50th Mersenne Prime 000000	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Curtis Cooper University of Central Missouri

Mersenne Primes ^O ^O O	History of Mersenne Primes	50th Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

S_i mod 2047 4

Curtis Cooper University of Central Missouri

Mersenne Primes ^O ^O O	History of Mersenne Primes	50th Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

$$egin{array}{ccc} i & S_i \mbox{ mod } 2047 \ 1 & 4 \ 2 & (4^2-2) = 14 \mbox{ mod } 2047 = 14 \ \end{array}$$

Curtis Cooper University of Central Missouri

Mersenne Primes ^O ^O O	History of Mersenne Primes	50th Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$
3 $(14^2 - 2) = 194 \mod 2047 = 194$

Curtis Cooper University of Central Missouri

Mersenne Primes 0 00	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luc
Lucas-Lohmor Tost					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

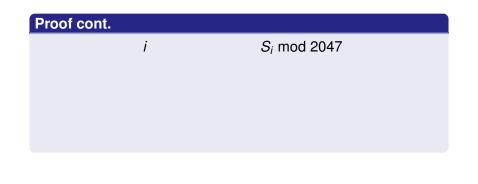
i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$
3 $(14^2 - 2) = 194 \mod 2047 = 194$
4 $(194^2 - 2) = 37634 \mod 2047 = 788$

Curtis Cooper University of Central Missouri

Mersenne Primes 0 00	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lohmor Tost					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.


Proof

i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$
3 $(14^2 - 2) = 194 \mod 2047 = 194$
4 $(194^2 - 2) = 37634 \mod 2047 = 788$
5 $(788^2 - 2) = 620942 \mod 2047 = 701$

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	0 000000	00 0 0	0000000	

$2^{11} - 1$ is not prime

・ロト・西ト・ヨト・ヨー もんの

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	0 000000	00 0 0	0000000	

$2^{11} - 1$ is not prime

Proof cont.

i $S_i \mod 2047$ 6 $(701^2 - 2) = 491399 \mod 2047 = 119$

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	0 000000	00 0 0	0000000	

$2^{11} - 1$ is not prime

Proof cont.

i $S_i \mod 2047$ 6 $(701^2 - 2) = 491399 \mod 2047 = 119$ 7 $(119^2 - 2) = 14159 \mod 2047 = 1877$

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			

$2^{11} - 1$ is not prime

Proof cont.

i $S_i \mod 2047$ 6 $(701^2 - 2) = 491399 \mod 2047 = 119$ 7 $(119^2 - 2) = 14159 \mod 2047 = 1877$ 8 $(1877^2 - 2) = 3523127 \mod 2047 = 240$

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			

$2^{11} - 1$ is not prime

i $S_i \mod 2047$ 6 $(701^2 - 2) = 491399 \mod 2047 = 119$ 7 $(119^2 - 2) = 14159 \mod 2047 = 1877$ 8 $(1877^2 - 2) = 3523127 \mod 2047 = 240$ 9 $(240^2 - 2) = 57598 \mod 2047 = 282$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			

$2^{11} - 1$ is not prime

i $S_i \mod 2047$ 6 $(701^2 - 2) = 491399 \mod 2047 = 119$ 7 $(119^2 - 2) = 14159 \mod 2047 = 1877$ 8 $(1877^2 - 2) = 3523127 \mod 2047 = 240$ 9 $(240^2 - 2) = 57598 \mod 2047 = 282$ 10 $(282^2 - 2) = 79522 \mod 2047 = 1736$

<ロ> (日) (日) (日) (日) (日) (日) (000

Curtis Cooper University of Central Missouri

Μ	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
		00		00	00000000	
		000				

Theorem

$M_{31} = 2^{31} - 1 = 2147483647$ is prime.

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test	:				

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

i

 $S_i \mod (2^{31} - 1)$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test	:				

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

$$S_i \mod (2^{31} - 1)$$

4

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test	:				

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

$$S_i \mod (2^{31} - 1) \ 4 \ 14$$

Curtis Cooper University of Central Missouri

Mersenne Primes, GIMPS, and the LL Test

2

Mersenne Primes o oo	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test	:				

Theorem

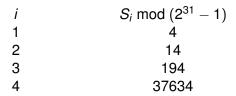
 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

$$i$$
 $S_i \mod (2^{31} - 1)$
1 4
2 14
3 194

Curtis Cooper University of Central Missouri

Mer	senne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
					00000000	
00		00	000000			


▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

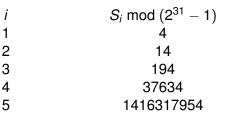
Lucas-Lehmer Test

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

Curtis Cooper University of Central Missouri

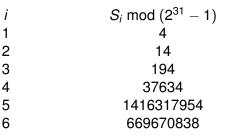

Mersenne Primes o oo	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Lucas-Lehmer Test	:				

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.


Curtis Cooper University of Central Missouri

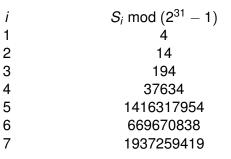
Mer	senne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
					00000000	
00		00	000000			

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

▲□▶▲@▶▲≧▶▲≧▶ 差 のへぐ


Curtis Cooper University of Central Missouri

Mer	senne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
					00000000	
00		00	000000			

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

Curtis Cooper University of Central Missouri

Mer	senne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
					00000000	
00		00	000000			

Lucas-Lehmer Test

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

i	$S_i \mod (2^{31} - 1)$
	4
2	14
3	194
1	37634
5	1416317954
6	669670838
7	1937259419
3	425413602

Curtis Cooper University of Central Missouri

Mersenne Primes, GIMPS, and the LL Test

8

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	00		00	00000000	
00	00	000000			

$2^{31} - 1$ is prime

i	$S_i \mod (2^{31} - 1)$
9	842014276
10	12692426
11	2044502122
12	1119438707
13	1190075270
14	1450757861
15	877666528
16	630853853
17	940321271
18	512995887
19	692931217

イロン イロン イヨン イヨン

∃ 990

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
				0000000	
00	00	000000			
	000				

イロン イロン イヨン イヨン

∃ 990

Lucas-Lehmer Test

$2^{31} - 1$ is prime

i	$S_i \mod (2^{31} - 1)$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
				0000000	
00	00	000000			
	000				

イロン イロン イヨン イヨン

∃ 990

Lucas-Lehmer Test

$2^{31} - 1$ is prime

i	$S_i \mod (2^{31} - 1)$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674

Curtis Cooper University of Central Missouri

Me	rsenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
		00		00	0000000	
00		00	000000			

イロン イロン イヨン イヨン

∃ 990

Lucas-Lehmer Test

$2^{31} - 1$ is prime

i	$S_i \mod (2^{31} - 1)$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665

Curtis Cooper University of Central Missouri

N	lersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
		00		00	0000000	
		000				

$2^{31} - 1$ is prime

i	$S_i \mod (2^{31} - 1)$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
0	00	0	00	0000000	
	000				

$2^{31} - 1$ is prime

i	$S_i \mod (2^{31} - 1)$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708
29	65536

▲ロト▲御ト▲臣と▲臣と 臣 のへぐ

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
				0000000	
00	00	000000			
	000				

$2^{31} - 1$ is prime

i	$S_i \mod (2^{31} - 1)$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708
29	65536
30	0

イロン イロン イヨン イヨン

∃ 990

Curtis Cooper University of Central Missouri

Mersenne Pr oo	rimes History of Mersenne	e Primes 50th Mersenne Pr	ime GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
(1)	Mersenne Prin	nes			
	Primes				
	Mersenne Pr	imes			
	History of Mer				
	Marin Merse	nne			

News on 50th Mersenne Prime

Lucas-Lehmer Test and Lucas Game

Edouard LucasComputer Era

M77232917

GIMPS PeopleGIMPS Links

Curtis Cooper University of Central Missouri

Mersenne Primes, GIMPS, and the LL Test

GIMPS

・ロ・・個・・ヨ・・ヨ・・ロ・・
の
への
・

M	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
		00		00	0000000	
		000				

• Lucas proved in 1876 that M127 is prime. This was the largest known prime number for 75 years, and the largest ever calculated by hand.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
00	00	000000			
	000				

- Lucas proved in 1876 that M127 is prime. This was the largest known prime number for 75 years, and the largest ever calculated by hand.
- Based on some theorems Lucas discovered and properties of Fibonacci numbers, his hand calculations boiled down to showing that if $r_1 = 3$, and

$$r_{k+1}=r_k^2-2,$$

then if

$$r_{126} \mod M127 = 0,$$

then M127 is prime.

Curtis Cooper University of Central Missouri

0 00 0 00 0000000 00 00 00000 0 000 00000 0	M	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	000		00	0 000000	00 0 0		

• Therefore, Lucas had to perform 125 squaring operations and 125 divide operations on 39 digit numbers.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	00 00 000	0 000000	00 0 0		

- Therefore, Lucas had to perform 125 squaring operations and 125 divide operations on 39 digit numbers.
- To do this, Lucas turned these calculations into a game. He used a 127×127 chessboard to do the calculations.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	00 00 000	0 000000	00 0 0		

- Therefore, Lucas had to perform 125 squaring operations and 125 divide operations on 39 digit numbers.
- To do this, Lucas turned these calculations into a game. He used a 127×127 chessboard to do the calculations.
- To see how Lucas did this, we will reduce the problem.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	00 00 000	0 000000	00 0 0		

- Therefore, Lucas had to perform 125 squaring operations and 125 divide operations on 39 digit numbers.
- To do this, Lucas turned these calculations into a game. He used a 127×127 chessboard to do the calculations.
- To see how Lucas did this, we will reduce the problem.
- We will show that $M7 = 2^7 1 = 127$ is prime.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	00 00 000	0 000000	00 0 0		

- Therefore, Lucas had to perform 125 squaring operations and 125 divide operations on 39 digit numbers.
- To do this, Lucas turned these calculations into a game. He used a 127×127 chessboard to do the calculations.
- To see how Lucas did this, we will reduce the problem.
- We will show that $M7 = 2^7 1 = 127$ is prime.
- For our reduced problem, we will play Lucas' game on a 7×7 chessboard.

	Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
00 00 00000 0 000 0		õõ	0 000000	00 0 0		

• The calculations we need to do to show $M7 = 2^7 - 1 = 127$ is prime are the following.

▲口 > ▲団 > ▲臣 > ▲臣 > ― 臣 ― ����

Curtis Cooper University of Central Missouri

0 00 0 00 0000000 00 00 00000 0 000 00000 0	M	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	000		00	0 000000	00 0 0		

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- *r*₁ = 3

・ロ・・聞・・思・・思・ しゅくろ

Curtis Cooper University of Central Missouri

0 00 0 00 0000000 00 00 00000 0 000 00000 0	M	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	000		00	0 000000	00 0 0		

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- *r*₁ = 3
- $r_2 = 3^2 2 = 7$

Curtis Cooper University of Central Missouri

0 00 0 00 0000000 00 00 00000 0 000 00000 0	M	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	000		00	0 000000	00 0 0		

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- *r*₁ = 3
- $r_2 = 3^2 2 = 7$
- $r_3 = 7^2 2 = 47$

(日)

Curtis Cooper University of Central Missouri

0 00 0 00 0000000 00 00 00000 0 000 00000 0	M	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	000		00	0 000000	00 0 0		

I naa

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- $r_1 = 3$ • $r_2 = 3^2 - 2 = 7$ • $r_3 = 7^2 - 2 = 47$ • $r_4 = (47^2 - 2) \mod 127 = 48$

0 00 0 00 0000000 00 00 00000 0 000 00000 0	M	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	000		00	0 000000	00 0 0		

э.

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- $r_1 = 3$ • $r_2 = 3^2 - 2 = 7$ • $r_3 = 7^2 - 2 = 47$ • $r_4 = (47^2 - 2) \mod 127 = 48$ • $r_5 = (48^2 - 2) \mod 127 = 16$

Curtis Cooper University of Central Missouri

0 00 0 00 0000000 00 00 00000 0 000 00000 0	M	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	000		00	0 000000	00 0 0		

< ロ > < 同 > < 回 > < 回 > .

э.

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- $r_1 = 3$ • $r_2 = 3^2 - 2 = 7$ • $r_3 = 7^2 - 2 = 47$ • $r_4 = (47^2 - 2) \mod 127 = 48$ • $r_5 = (48^2 - 2) \mod 127 = 16$ • $r_6 = (16^2 - 2) \mod 127 = 0$.

Curtis Cooper University of Central Missouri

0 00 0 00 0000000 00 00 00000 0 000 00000 0	M	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	000		00	0 000000	00 0 0		

э.

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- $r_1 = 3$ • $r_2 = 3^2 - 2 = 7$

•
$$r_3 = 7^2 - 2 = 47$$

- $r_4 = (47^2 2) \mod 127 = 48$
- $r_5 = (48^2 2) \mod 127 = 16$
- $r_6 = (16^2 2) \mod 127 = 0.$
- Therefore, M7 is prime.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	o 000000	00 0 0		

• The 7 \times 7 chessboard will store the calculations in base 2 (modulo 127). Columns on the board will represent powers of 2 and the rows will store the product of a single base 2 digit in r_k times the base 2 number r_k . Lucas used a pawn or no pawn to represent a 1 or 0 on the board, respectively.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
		0 000000	00 0 0		

• The 7 \times 7 chessboard will store the calculations in base 2 (modulo 127). Columns on the board will represent powers of 2 and the rows will store the product of a single base 2 digit in r_k times the base 2 number r_k . Lucas used a pawn or no pawn to represent a 1 or 0 on the board, respectively.

• Initially, the top row will contain $r_1 = 3$.

Curtis Cooper University of Central Missouri

	Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
00 00 00000 0 000 0		õõ	0 000000	00 0 0		

 If the top row contained r_k, Lucas would square r_k with the following moves.

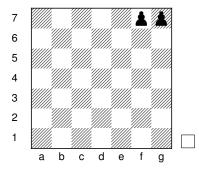
Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	000				

- If the top row contained r_k, Lucas would square r_k with the following moves.
- He would do standard multiplication to populate the board with pawns. Each row corresponds to putting a shift of the top row in the row or having no pawns in the row, depending on whether there is a pawn in the corresponding column of the top row or not. Because Lucas is doing the calculations modulo 127, the columns wrap around the chessboard.

N	lersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
		00 00	o 000000	00 0		
		000				

• He would then subtract 2 (once), usually by taking a pawn away from Column f. In the game, two pawns in the same column would be equivalent to removing those two pawns and replacing them by one pawn in the next column to the left. The column to the left of the left-most column is the right-most column.

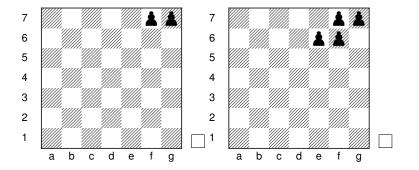

Curtis Cooper University of Central Missouri

1	lersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	00	00	000000			
		000				

- He would then subtract 2 (once), usually by taking a pawn away from Column f. In the game, two pawns in the same column would be equivalent to removing those two pawns and replacing them by one pawn in the next column to the left. The column to the left of the left-most column is the right-most column.
- Lucas kept this game going until he didn't have two pawns in any column. Then he would slide each pawn in a column to the top row. This would be his r_{k+1} .

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	0 000000	00 0 0		

Lucas started the game with $r_1 = 3$. On the chessboard, that would be:

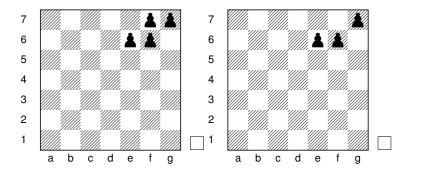


(ロ > < 聞 > < 目 > < 目 > (回 >

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	0 000000	00 0 0		

Squaring $r_1 = 3$ would result in the following chessboard.

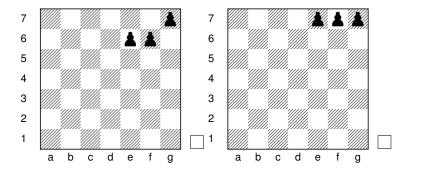


< D > < A > < B >

Curtis Cooper University of Central Missouri

М	ersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
		00		00	0000000	
	C	00	000000			

We can subtract 2 by removing a pawn from Column f. That would result in the following chessboard.

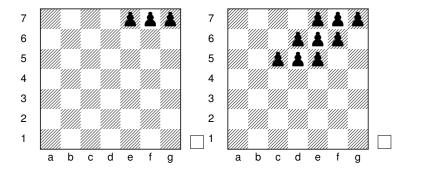


・ロト・日本・モン・モン・モーションの

Curtis Cooper University of Central Missouri

Mersenne Primes Hist	tory of mersenne ennes a	outh Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
0 00 00 00 000		0 000000	00 0 0		

Pushing all the pawns to the top row would result in the following chessboard which is $r_2 = 7$.

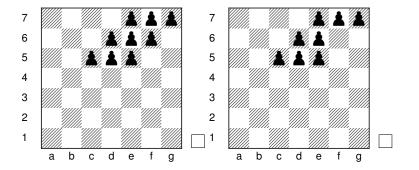


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
00	00	000000			
	000				

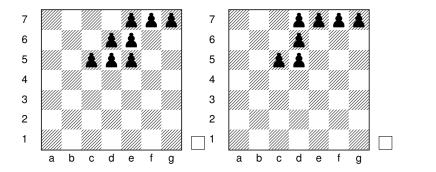
Now we need to square $r_2 = 7$. This would result in the following chessboard.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�

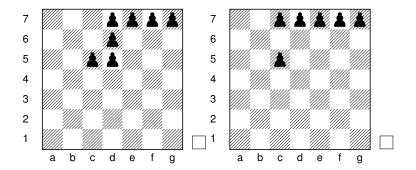
Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	0 000000	00 0 0		


Subtracting 2 would result in the following chessboard.

Curtis Cooper University of Central Missouri

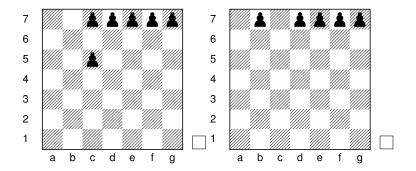
Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
00	00	000000			
	000				


We now do the game moves where we replace two pawns in a column by one pawn in the column to the left. Here are the steps in the game.

< < >> < <</>

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	o 000000	00		



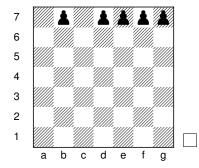
Curtis Cooper University of Central Missouri

Mersenne Primes, GIMPS, and the LL Test

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● 夕久(で)

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	0 000000	00 0 0		

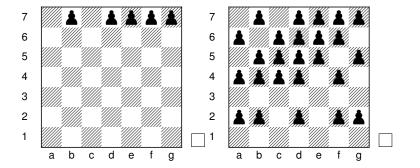
Curtis Cooper University of Central Missouri


Mersenne Primes, GIMPS, and the LL Test

<ロ> < @> < E> < E> E のQ()

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	00		00	0000000	
00	00	000000			
	000				

э.


The final chessboard with $r_3 = 47$ would be the following.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	0 000000	00 0 0		

Squaring $r_3 = 47$, we obtain the following chessboard.

э.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
	000				

Continuing this game, we have $r_4 = 48$, $r_5 = 16$, and $r_6 = 0$.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
	000				

Continuing this game, we have $r_4 = 48$, $r_5 = 16$, and $r_6 = 0$. Therefore $M7 = 2^7 - 1 = 127$ is a Mersenne prime.

▲ロと▲聞と▲臣と▲臣と 臣 めんぐ

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	50th Mersenne Prime o oooooo	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
	rsenne Primes				
• F	Primes				
• 1	Versenne Primes				
	town of Monopole	Deline			

- Pistory of Mersenne Primes
 - Marin Mersenne
 - Edouard Lucas
 - Computer Era
- 3 50th Mersenne Prime
 - M77232917
 - News on 50th Mersenne Prime
- GIMPS
 - GIMPS
 - GIMPS People
 - GIMPS Links
 - Lucas-Lehmer Test and Lucas Game
 - Lucas-Lehmer Test

Curtis Cooper University of Central Missouri

Mersenne Primes, GIMPS, and the LL Test

- * ロ > * @ > * 目 > * 目 > ~ 目 ~ のへぐ

Mersenne Primes o oo	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0 0	Lucas-Lehmer Test and Lucas Game	Luca
Top 10					
•					

Curtis Cooper University of Central Missouri

Mersenne Primes oo	History of Mersenne Primes	South Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Тор 10					

< < >> < <</>

A B + A B +

э.

10. Because Mersenne primes are rare and beautiful.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	50th Mersenne Prime 0 000000	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Тор 10					

10. Because Mersenne primes are rare and beautiful.

9. To continue the mathematics and computer science tradition of Euler, Fermat, Mersenne, Lucas, Lehmer, etc.

∃ ► < ∃ ►</p>

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	50th Mersenne Prime o oooooo	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Тор 10					

10. Because Mersenne primes are rare and beautiful.

9. To continue the mathematics and computer science tradition of Euler, Fermat, Mersenne, Lucas, Lehmer, etc.

8. To discover new number theory theorems as a by-product of the quest.

Mersenne Primes ° °0	History of Mersenne Primes	50th Mersenne Prime 0 000000	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Тор 10					

10. Because Mersenne primes are rare and beautiful.

9. To continue the mathematics and computer science tradition of Euler, Fermat, Mersenne, Lucas, Lehmer, etc.

8. To discover new number theory theorems as a by-product of the quest.

7. To discover new and more efficient algorithms for testing the primality of large numbers.

Mersenne Primes o oo	History of Mersenne Primes	Soth Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Тор 10					

6. To help detect hardware problems (fan and CPU/bus problems) on individual computers at UCM.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	50th Mersenne Prime o oooooo	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Тор 10					

6. To help detect hardware problems (fan and CPU/bus problems) on individual computers at UCM.

5. To put to good use the idle CPU cycles of hundreds of computers in labs and offices across UCM's campus.

Curtis Cooper University of Central Missouri

Mersenne Primes oo	History of Mersenne Primes	Soth Mersenne Prime	GIMPS 00 0	Lucas-Lehmer Test and Lucas Game	Luca
Тор 10					

6. To help detect hardware problems (fan and CPU/bus problems) on individual computers at UCM.

5. To put to good use the idle CPU cycles of hundreds of computers in labs and offices across UCM's campus.

4. To learn more about the distribution of Mersenne primes.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luc
	00		00	0000000	
00	00	000000			

Top 10

3. To discover something to number theorists and computer scientists that is comparable to an astronomer discovering a new planet or a chemist discovering a new element.

★ ∃ > < ∃ >

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	0 000000	00 0 0		

Top 10

3. To discover something to number theorists and computer scientists that is comparable to an astronomer discovering a new planet or a chemist discovering a new element.

2. To produce much favorable press for UCM and demonstrate that the University of Central Missouri is a first-class research and teaching institution.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00 00 000	0 000000	00 0 0		

Top 10

3. To discover something to number theorists and computer scientists that is comparable to an astronomer discovering a new planet or a chemist discovering a new element.

2. To produce much favorable press for UCM and demonstrate that the University of Central Missouri is a first-class research and teaching institution.

1. To win the \$150,000 offered by the Electronic Frontier Foundation (EFF) for the discovery of the first one-hundred million digit prime number. EFF's motivation is to encourage research in computational number theory related to large primes.

Mersenne Primes	History of Mersenne Primes	50th Mersenne Prime	GIMPS	Lucas-Lehmer Test and Lucas Game	Luca
	00		00	0000000	
00	00	000000			
	000				

Email Address and Talk URL

Curtis Cooper's Email: cooper@ucmo.edu

Talk: cs.ucmo.edu/~cnc8851/talks/gimpsmsa4/mersennemsa4.pdf

< < >> < <</>

A B + A B +

э.

Curtis Cooper University of Central Missouri