Some High Degree Generalized Fibonacci Identities

Curtis Cooper

University of Central Missouri

July 5, 2018

Curtis Cooper University of Central Missouri
Some High Degree Generalized Fibonacci Identities

Outline

(1) Introduction

(2) Generalization of the Melham and Shannon IdentityA Generalized Sixth Degree IdentityA Generalized 2kth Degree IdentityA Generalization of a Fourth Degree Fibonacci IdentityA Generalization of a Fifth Degree Fibonacci Identity

Let $\left\{F_{n}\right\}$ and $\left\{L_{n}\right\}$ be the Fibonacci and Lucas sequences, respectively.

Let $\left\{F_{n}\right\}$ and $\left\{L_{n}\right\}$ be the Fibonacci and Lucas sequences, respectively.

Gelin stated and Cesáro proved that for integers $n \geq 2$,

$$
F_{n-2} F_{n-1} F_{n+1} F_{n+2}-F_{n}^{4}=-1
$$

Let $\left\{F_{n}\right\}$ and $\left\{L_{n}\right\}$ be the Fibonacci and Lucas sequences, respectively.

Gelin stated and Cesáro proved that for integers $n \geq 2$,

$$
F_{n-2} F_{n-1} F_{n+1} F_{n+2}-F_{n}^{4}=-1
$$

To generalize this identity, we need the following definition due to Horadam.

Definition

Let $\left\{W_{n}\right\}$ be defined by $W_{0}=a, W_{1}=b$, and $W_{n}=p W_{n-1}-q W_{n-2}$ for $n \geq 2$, where a, b, p, and q are integers and $q \neq 0$. Let $e=p a b-q a^{2}-b^{2}$.

Definition

Let $\left\{W_{n}\right\}$ be defined by $W_{0}=a, W_{1}=b$, and $W_{n}=p W_{n-1}-q W_{n-2}$ for $n \geq 2$, where a, b, p, and q are integers and $q \neq 0$. Let $e=p a b-q a^{2}-b^{2}$.

Melham and Shannon generalized the Gelin-Cesáro identity by proving that for integers $n \geq 2$,

$$
\begin{equation*}
W_{n-2} W_{n-1} W_{n+1} W_{n+2}-W_{n}^{4}=e q^{n-2}\left(p^{2}+q\right) W_{n}^{2}+e^{2} q^{2 n-3} p^{2} \tag{1}
\end{equation*}
$$

Definition

Let $\left\{W_{n}\right\}$ be defined by $W_{0}=a, W_{1}=b$, and $W_{n}=p W_{n-1}-q W_{n-2}$ for $n \geq 2$, where a, b, p, and q are integers and $q \neq 0$. Let $e=p a b-q a^{2}-b^{2}$.

Melham and Shannon generalized the Gelin-Cesáro identity by proving that for integers $n \geq 2$,

$$
\begin{equation*}
W_{n-2} W_{n-1} W_{n+1} W_{n+2}-W_{n}^{4}=e q^{n-2}\left(p^{2}+q\right) W_{n}^{2}+e^{2} q^{2 n-3} p^{2} \tag{1}
\end{equation*}
$$

In this paper, we will generalize and prove some similar high degree generalized Fibonacci identities.

Outline

Introduction

2) Generalization of the Melham and Shannon Identity

A Generalized Sixth Degree IdentityA Generalized $2 k$ th Degree IdentityA Generalization of a Fourth Degree Fibonacci IdentityA Generalization of a Fifth Degree Fibonacci Identity

Curtis Cooper University of Central Missouri
Some High Degree Generalized Fibonacci Identities

To generalize the Melham and Shannon identity, we need the following definition.

To generalize the Melham and Shannon identity, we need the following definition.

Definition

Let $\left\{U_{n}\right\}$ be defined by $U_{0}=0, U_{1}=1$, and
$U_{n}=p U_{n-1}-q U_{n-2}$ for $n \geq 2$, where p and q are integers and $q \neq 0$.

To generalize the Melham and Shannon identity, we need the following definition.

Definition

Let $\left\{U_{n}\right\}$ be defined by $U_{0}=0, U_{1}=1$, and
$U_{n}=p U_{n-1}-q U_{n-2}$ for $n \geq 2$, where p and q are integers and $q \neq 0$.

The sequence $\left\{U_{n}\right\}$ is the fundamental sequence of Lucas. With this definition, we can state a generalization of the Melham and Shannon identity.

Theorem

Let r and s be positive integers and $n \geq r+s$ be an integer. Then

$$
\begin{align*}
& W_{n-r-s} W_{n-r} W_{n+r} W_{n+r+s} \\
& =W_{n}^{4}+e q^{n-r-s}\left(q^{s} U_{r}^{2}+U_{r+s}^{2}\right) W_{n}^{2}+e^{2} q^{2 n-2 r-s} U_{r}^{2} U_{r+s}^{2} \tag{2}
\end{align*}
$$

Theorem

Let r and s be positive integers and $n \geq r+s$ be an integer. Then

$$
\begin{align*}
& W_{n-r-s} W_{n-r} W_{n+r} W_{n+r+s} \\
& =W_{n}^{4}+e q^{n-r-s}\left(q^{s} U_{r}^{2}+U_{r+s}^{2}\right) W_{n}^{2}+e^{2} q^{2 n-2 r-s} U_{r}^{2} U_{r+s}^{2} \tag{2}
\end{align*}
$$

We note that when $r=1$ and $s=1$, this is the Melham and Shannon identity.

The proof of (2) is similar to the proof of the Melham and Shannon identity. Before we begin the proof (2), we require more definitions and a lemma from Melham and Shannon.

The proof of (2) is similar to the proof of the Melham and Shannon identity. Before we begin the proof (2), we require more definitions and a lemma from Melham and Shannon.

Definition

Let $\left\{Y_{n}\right\}$ be defined by $Y_{0}=a_{1}, Y_{1}=b_{1}$, and $Y_{n}=p Y_{n-1}-q Y_{n-2}$ for $n \geq 2$, where a_{1}, b_{1}, p, and q are integers and $q \neq 0$.

Definition

Let s be a nonnegative integer. Let

$$
\Psi(s)=\left(p a_{1} b-q a a_{1}-b b_{1}\right) U_{s}+\left(a b_{1}-a_{1} b\right) U_{s+1}
$$

Definition

Let s be a nonnegative integer. Let

$$
\Psi(s)=\left(p a_{1} b-q a a_{1}-b b_{1}\right) U_{s}+\left(a b_{1}-a_{1} b\right) U_{s+1}
$$

Lemma

Let n be a nonnegative integer and r and s be positive integers. Then

$$
\begin{equation*}
W_{n} Y_{n+r+s}-W_{n+r} Y_{n+s}=\Psi(s) q^{n} U_{r} \tag{3}
\end{equation*}
$$

In (3), replacing n by $n-r$ and s by r gives

$$
\begin{equation*}
W_{n-r} Y_{n+r}-W_{n} Y_{n}=\Psi(r) q^{n-r} U_{r} \tag{4}
\end{equation*}
$$

Curtis Cooper University of Central Missouri
Some High Degree Generalized Fibonacci Identities

In (3), replacing n by $n-r$ and s by r gives

$$
\begin{equation*}
W_{n-r} Y_{n+r}-W_{n} Y_{n}=\Psi(r) q^{n-r} U_{r} \tag{4}
\end{equation*}
$$

Replacing r by $r+s$ in (4), we have

$$
\begin{equation*}
W_{n-r-s} Y_{n+r+s}-W_{n} Y_{n}=\Psi(r+s) q^{n-r-s} U_{r+s} \tag{5}
\end{equation*}
$$

In (3), replacing n by $n-r$ and s by r gives

$$
\begin{equation*}
W_{n-r} Y_{n+r}-W_{n} Y_{n}=\Psi(r) q^{n-r} U_{r} \tag{4}
\end{equation*}
$$

Replacing r by $r+s$ in (4), we have

$$
\begin{equation*}
W_{n-r-s} Y_{n+r+s}-W_{n} Y_{n}=\Psi(r+s) q^{n-r-s} U_{r+s} \tag{5}
\end{equation*}
$$

Adding (4) and (5) gives

$$
\begin{align*}
& W_{n-r} Y_{n+r}+W_{n-r-s} Y_{n+r+s} \\
& =2 W_{n} Y_{n}+\Psi(r) q^{n-r} U_{r}+\Psi(r+s) q^{n-r-s} U_{r+s} \tag{6}
\end{align*}
$$

Subtracting (5) from (4) gives

$$
W_{n-r} Y_{n+r}-W_{n-r-s} Y_{n+r+s}=\Psi(r) q^{n-r} U_{r}-\Psi(r+s) q^{n-r-s} U_{r+s}
$$

Subtracting (5) from (4) gives

$W_{n-r} Y_{n+r}-W_{n-r-s} Y_{n+r+s}=\Psi(r) q^{n-r} U_{r}-\Psi(r+s) q^{n-r-s} U_{r+s}$.

Squaring (6) and subtracting the square of (7), we obtain

$$
\begin{align*}
& 4 W_{n-r-s} W_{n-r} Y_{n+r} Y_{n+r+s} \\
& =4 W_{n}^{2} Y_{n}^{2}+4 q^{n-r-s}\left(q^{s} \Psi(r) U_{r}+\Psi(r+s) U_{r+s}\right) W_{n} Y_{n} \\
& +4 \Psi(r) \Psi(r+s) q^{2 n-2 r-s} U_{r} U_{r+s} \tag{8}
\end{align*}
$$

Divide both sides of the equation by 4. Now, if $\left(a_{1}, b_{1}\right)=(a, b)$, then $\left\{W_{n}\right\}=\left\{Y_{n}\right\}, \Psi(r)=e U_{r}$, and $\Psi(r+s)=e U_{r+s}$. Substituting these quantities in (8), we see that (8) becomes (2). This is what we wanted to prove.

Divide both sides of the equation by 4. Now, if $\left(a_{1}, b_{1}\right)=(a, b)$, then $\left\{W_{n}\right\}=\left\{Y_{n}\right\}, \Psi(r)=e U_{r}$, and $\Psi(r+s)=e U_{r+s}$. Substituting these quantities in (8), we see that (8) becomes (2). This is what we wanted to prove.

Theorem

Let r and s be positive integers and $n \geq r+s$ be an integer. Then

$$
\begin{aligned}
& W_{n-r-s} W_{n-r} W_{n+r} W_{n+r+s} \\
& =W_{n}^{4}+e q^{n-r-s}\left(q^{s} U_{r}^{2}+U_{r+s}^{2}\right) W_{n}^{2}+e^{2} q^{2 n-2 r-s} U_{r}^{2} U_{r+s}^{2}
\end{aligned}
$$

Note that if $r=1$ and $s=1$, then (2) becomes (1). Also, note that if $a=0, b=1, p=1$, and $q=-1$, then $\left\{W_{n}\right\}=\left\{F_{n}\right\}$.

Note that if $r=1$ and $s=1$, then (2) becomes (1). Also, note that if $a=0, b=1, p=1$, and $q=-1$, then $\left\{W_{n}\right\}=\left\{F_{n}\right\}$.

Thus from (3), we have the following identity for Fibonacci numbers.

$$
\begin{aligned}
& F_{n-r-s} F_{n-r} F_{n+r} F_{n+r+s} \\
& =F_{n}^{4}+(-1)^{n-r-s-1}\left((-1)^{s} F_{r}^{2}+F_{r+s}^{2}\right) F_{n}^{2}+(-1)^{s} F_{r}^{2} F_{r+s}^{2}
\end{aligned}
$$

Outline

(1)

Introduction

Generalization of the Melham and Shannon Identity

(3) A Generalized Sixth Degree IdentityA Generalized 2kth Degree IdentityA Generalization of a Fourth Degree Fibonacci IdentityA Generalization of a Fifth Degree Fibonacci Identity

Curtis Cooper University of Central Missouri
Some High Degree Generalized Fibonacci Identities

Theorem

Let r and s be positive integers and $n \geq r+s$ be an integer. Then

$$
\begin{align*}
& 3 W_{n-r-s} W_{n-r}^{2} W_{n+r}^{2} W_{n+r+s}+W_{n-r-s}^{3} W_{n+r+s}^{3} \\
& =4 W_{n}^{6}+6 e q^{n-r-s}\left(q^{s} U_{r}^{2}+U_{r+s}^{2}\right) W_{n}^{4} \\
& +3 e^{2} q^{2 n-2 r-2 s}\left(q^{2 s} U_{r}^{4}+2 q^{s} U_{r}^{2} U_{r+s}^{2}+U_{r+s}^{4}\right) W_{n}^{2} \\
& +e^{3} q^{3 n-3 r-3 s}\left(3 q^{2 s} U_{r}^{4} U_{r+s}^{2}+U_{r+s}^{6}\right) . \tag{9}
\end{align*}
$$

Again, the proof of this Theorem is similar to the proof of (1), but with a few modifications.

Again, the proof of this Theorem is similar to the proof of (1), but with a few modifications.

We start the proof of this Theorem as we started the proof of the previous Theorem. Instead of squaring, we cube (6) and subtract the cube of (7).

Again, the proof of this Theorem is similar to the proof of (1), but with a few modifications.

We start the proof of this Theorem as we started the proof of the previous Theorem. Instead of squaring, we cube (6) and subtract the cube of (7).

We obtain

$$
\begin{align*}
& 6 W_{n-r}^{2} Y_{n+r}^{2} W_{n-r-s} Y_{n+r+s}+2 W_{n-r-s}^{3} Y_{n+r+s}^{3} \tag{10}\\
& =8 W_{n}^{3} Y_{n}^{3}+12 W_{n}^{2} Y_{n}^{2} \Psi(r) q^{n-r} U_{r}+12 W_{n}^{2} Y_{n}^{2} \Psi(r+s) q^{n-r-s} U_{r+s} \\
& +6 W_{n} Y_{n} \Psi(r)^{2} q^{2 n-2 r} U_{r}^{2}+12 W_{n} Y_{n} \Psi(r) q^{2 n-2 r-s} \Psi(r+s) U_{r} U_{r+s} \\
& +6 W_{n} Y_{n} \Psi(r+s)^{2} q^{2 n-2 r-2 s} U_{r+s}^{2}+6 q^{3 n-3 r-s} \Psi(r)^{2} \Psi(r+s) U_{r}^{2} U_{r+s} \\
& +2 q^{3 n-3 r-3 s} \Psi(r+s)^{3} U_{r+s}^{3} .
\end{align*}
$$

Divide both sides of the equation by 2. Again, if $\left(a_{1}, b_{1}\right)=(a, b)$, then $\left\{W_{n}\right\}=\left\{Y_{n}\right\}, \Psi(r)=e U_{r}$, and $\Psi(r+s)=e U_{r+s}$.

Divide both sides of the equation by 2. Again, if $\left(a_{1}, b_{1}\right)=(a, b)$, then $\left\{W_{n}\right\}=\left\{Y_{n}\right\}, \Psi(r)=e U_{r}$, and $\Psi(r+s)=e U_{r+s}$.

Substituting these quantities in (10), we see that (10) becomes (9). This is what we wanted to prove.

Divide both sides of the equation by 2．Again，if
$\left(a_{1}, b_{1}\right)=(a, b)$ ，then $\left\{W_{n}\right\}=\left\{Y_{n}\right\}, \Psi(r)=e U_{r}$ ，and $\Psi(r+s)=e U_{r+s}$.

Substituting these quantities in（10），we see that（10）becomes （9）．This is what we wanted to prove．

Theorem

Let r and s be positive integers and $n \geq r+s$ be an integer． Then

$$
\begin{aligned}
& 3 W_{n-r-s} W_{n-r}^{2} W_{n+r}^{2} W_{n+r+s}+W_{n-r-s}^{3} W_{n+r+s}^{3} \\
& =4 W_{n}^{6}+6 e q^{n-r-s}\left(q^{s} U_{r}^{2}+U_{r+s}^{2}\right) W_{n}^{4} \\
& +3 e^{2} q^{2 n-2 r-2 s}\left(q^{2 s} U_{r}^{4}+2 q^{s} U_{r}^{2} U_{r+s}^{2}+U_{r+s}^{4}\right) W_{n}^{2} \\
& +e^{3} q^{3 n-3 r-3 s}\left(3 q^{2 s} U_{r}^{4} U_{r+s}^{2}+U_{r+s}^{6}\right) .
\end{aligned}
$$

Again, if $a=0, b=1, p=1$, and $q=-1$, then $\left\{W_{n}\right\}=\left\{F_{n}\right\}$.

Again, if $a=0, b=1, p=1$, and $q=-1$, then $\left\{W_{n}\right\}=\left\{F_{n}\right\}$.
Thus from (9), we have the following identity for Fibonacci numbers.

$$
\begin{aligned}
& 3 F_{n-r-s} F_{n-r}^{2} F_{n+r}^{2} F_{n+r+s}+F_{n-r-s}^{3} F_{n+r+s}^{3} \\
& =4 F_{n}^{6}+6(-1)^{n-r-s-1}\left((-1)^{s} F_{r}^{2}+F_{r+s}^{2}\right) F_{n}^{4} \\
& +3\left(F_{r}^{4}+2(-1)^{s} F_{r}^{2} F_{r+s}^{2}+F_{r+s}^{4}\right) F_{n}^{2} \\
& +(-1)^{n-r-s-1}\left(3 F_{r}^{4} F_{r+s}^{2}+F_{r+s}^{6}\right) .
\end{aligned}
$$

Outline

（1）

Introduction

Generalization of the Melham and Shannon IdentityA Generalized Sixth Degree Identity4 A Generalized $2 k$ th Degree Identity
（5）A Generalization of a Fourth Degree Fibonacci Identity
6）A Generalization of a Fifth Degree Fibonacci Identity

Theorem

Let r and s be positive integers, $k \geq 2$ be an integer, and $n \geq r+s$ be an integer. Then

$$
\begin{align*}
& 2 \sum_{i \geq 1}\binom{k}{2 i-1}\left(W_{n-r} W_{n+r}\right)^{k+1-2 i}\left(W_{n-r-s} W_{n+r+s}\right)^{2 i-1} \tag{11}\\
& =\sum_{i=0}^{k-1}\binom{k}{i}\left(2 W_{n}^{2}\right)^{k-i} e^{i} q^{i n-i r-i s}\left(q^{s} U_{r}^{2}+U_{r+s}^{2}\right)^{i} \\
& +2 e^{k} q^{k n-k r-k s} \sum_{i \geq 1}\binom{k}{2 i-1} q^{(k+1-2 i) s} U_{r}^{2(k+1-2 i)} U_{r+s}^{2(2 i-1)} .
\end{align*}
$$

Again, the proof of this Theorem is similar to the proof of (1), but with a few modifications.

Again, the proof of this Theorem is similar to the proof of (1), but with a few modifications.

We start the proof of this Theorem as we started the proof of the other Theorem. But, this time, we consider (7) and (8) and let $\left(a_{1}, b_{1}\right)=(a, b)$. Then $\left\{W_{n}\right\}=\left\{Y_{n}\right\}, \Psi(r)=e U_{r}$, and $\Psi(r+s)=e U_{r+s}$. Substituting these quantities in (7) and (8), we obtain

$$
\begin{equation*}
W_{n-r} W_{n+r}+W_{n-r-s} W_{n+r+s}=2 W_{n}^{2}+e q^{n-r} U_{r}^{2}+e q^{n-r-s} U_{r+s}^{2} \tag{12}
\end{equation*}
$$ and

$$
\begin{equation*}
W_{n-r} W_{n+r}-W_{n-r-s} W_{n+r+s}=e q^{n-r} U_{r}^{2}-e q^{n-r-s} U_{r+s}^{2} . \tag{13}
\end{equation*}
$$

Instead of squaring, we raise (12) to the k th power and subtract (13) raised to the k th power and using polynomial expansion, we obtain

$$
\begin{aligned}
& \left(W_{n-r} W_{n+r}+W_{n-r-s} W_{n+r+s}\right)^{k}-\left(W_{n-r} W_{n+r}-W_{n-r-s} W_{n+r+s}\right)^{k} \\
& =\sum_{i=0}^{k-1}\binom{k}{i}\left(2 W_{n}^{2}\right)^{k-i}\left(e q^{n-r} U_{r}^{2}+e q^{n-r-s} U_{r+s}^{2}\right)^{i} \\
& +\left(e q^{n-r} U_{r}^{2}+e q^{n-r-s} U_{r+s}^{2}\right)^{k}-\left(e q^{n-r} U_{r}^{2}-e q^{n-r-s} U_{r+s}^{2}\right)^{k} .
\end{aligned}
$$

Expanding the products on both sides of the equation and collecting and canceling terms gives

$$
\begin{aligned}
& 2 \sum_{i \geq 1}\binom{k}{2 i-1}\left(W_{n-r} W_{n+r}\right)^{k+1-2 i}\left(W_{n-r-s} W_{n+r+s}\right)^{2 i-1} \\
& =\sum_{i=0}^{k-1}\binom{k}{i}\left(2 W_{n}^{2}\right)^{k-i} e^{i} q^{i n-i r-i s}\left(q^{s} U_{r}^{2}+U_{r+s}^{2}\right)^{i} \\
& +2 e^{k} \sum_{i \geq 1}\binom{k}{2 i-1}\left(q^{n-r} U_{r}^{2}\right)^{k+1-2 i}\left(q^{n-r-s} U_{r+s}^{2}\right)^{2 i-1} .
\end{aligned}
$$

Simplifying some more, we obtain

$$
\begin{aligned}
& 2 \sum_{i \geq 1}\binom{k}{2 i-1}\left(W_{n-r} W_{n+r}\right)^{k+1-2 i}\left(W_{n-r-s} W_{n+r+s}\right)^{2 i-1} \\
& =\sum_{i=0}^{k-1}\binom{k}{i}\left(2 W_{n}^{2}\right)^{k-i} e^{i} q^{i n-i r-i s}\left(q^{s} U_{r}^{2}+U_{r+s}^{2}\right)^{i} \\
& +2 e^{k} q^{k n-k r-k s} \sum_{i \geq 1}\binom{k}{2 i-1} q^{(k+1-2 i) s} U_{r}^{2(k+1-2 i)} U_{r+s}^{2(2 i-1)}
\end{aligned}
$$

Simplifying some more, we obtain

$$
\begin{aligned}
& 2 \sum_{i \geq 1}\binom{k}{2 i-1}\left(W_{n-r} W_{n+r}\right)^{k+1-2 i}\left(W_{n-r-s} W_{n+r+s}\right)^{2 i-1} \\
& =\sum_{i=0}^{k-1}\binom{k}{i}\left(2 W_{n}^{2}\right)^{k-i} e^{i} q^{i n-i r-i s}\left(q^{s} U_{r}^{2}+U_{r+s}^{2}\right)^{i} \\
& +2 e^{k} q^{k n-k r-k s} \sum_{i \geq 1}\binom{k}{2 i-1} q^{(k+1-2 i) s} U_{r}^{2(k+1-2 i)} U_{r+s}^{2(2 i-1)}
\end{aligned}
$$

This is (11) and what we wanted to prove.

Theorem

Let r and s be positive integers, $k \geq 2$ is an integer, and $n \geq r+s$ is an integer. Then

$$
\begin{aligned}
& 2 \sum_{i \geq 1}\binom{k}{2 i-1}\left(W_{n-r} W_{n+r}\right)^{k+1-2 i}\left(W_{n-r-s} W_{n+r+s}\right)^{2 i-1} \\
& =\sum_{i=0}^{k-1}\binom{k}{i}\left(2 W_{n}^{2}\right)^{k-i} e^{i} q^{i n-i r-i s}\left(q^{s} U_{r}^{2}+U_{r+s}^{2}\right)^{i} \\
& +2 e^{k} q^{k n-k r-k s} \sum_{i \geq 1}\binom{k}{2 i-1} q^{(k+1-2 i) s} U_{r}^{2(k+1-2 i)} U_{r+s}^{2(2 i-1)} .
\end{aligned}
$$

Again, if $a=0, b=1, p=1$, and $q=-1$, then $\left\{W_{n}\right\}=\left\{F_{n}\right\}$.

Again, if $a=0, b=1, p=1$, and $q=-1$, then $\left\{W_{n}\right\}=\left\{F_{n}\right\}$.
Thus from (11), we have the following identity for Fibonacci numbers.

$$
\begin{aligned}
& 2 \sum_{i \geq 1}\binom{k}{2 i-1}\left(F_{n-r} F_{n+r}\right)^{k+1-2 i}\left(F_{n-r-s} F_{n+r+s}\right)^{2 i-1} \\
& =\sum_{i=0}^{k-1}\binom{k}{i}\left(2 F_{n}^{2}\right)^{k-i}(-1)^{i n-i r-i s+i}\left((-1)^{s} F_{r}^{2}+F_{r+s}^{2}\right)^{i} \\
& +2(-1)^{k}(-1)^{k n-k r-k s} \sum_{i \geq 1}\binom{k}{2 i-1}(-1)^{(k+1-2 i) s} F_{r}^{2(k+1-2 i)} F_{r+s}^{2(2 i-1)} .
\end{aligned}
$$

Outline

Introduction

Generalization of the Melham and Shannon IdentityA Generalized Sixth Degree IdentityA Generalized 2kth Degree Identity(5) A Generalization of a Fourth Degree Fibonacci IdentityA Generalization of a Fifth Degree Fibonacci Identity

Curtis Cooper University of Central Missouri
Some High Degree Generalized Fibonacci Identities

Next, we start with another fourth degree Fibonacci identity. If n is a nonnegative integer, then

$$
\begin{equation*}
F_{n} F_{n+4}^{3}-F_{n+2}^{3} F_{n+6}=(-1)^{n+1} F_{n+3} L_{n+3} \tag{14}
\end{equation*}
$$

Next, we start with another fourth degree Fibonacci identity. If n is a nonnegative integer, then

$$
\begin{equation*}
F_{n} F_{n+4}^{3}-F_{n+2}^{3} F_{n+6}=(-1)^{n+1} F_{n+3} L_{n+3} \tag{14}
\end{equation*}
$$

To state a generalization to (14), we need a definition due to Rabinowitz.

Next, we start with another fourth degree Fibonacci identity. If n is a nonnegative integer, then

$$
\begin{equation*}
F_{n} F_{n+4}^{3}-F_{n+2}^{3} F_{n+6}=(-1)^{n+1} F_{n+3} L_{n+3} \tag{14}
\end{equation*}
$$

To state a generalization to (14), we need a definition due to Rabinowitz.

Definition

Let n be an integer. Then

$$
x_{n}=W_{n+1}-q W_{n-1}
$$

The sequence $\left\{X_{n}\right\}$ may be considered to be a companion sequence to $\left\{W_{n}\right\}$, in the same sense that the Lucas sequence is the companion of the Fibonacci sequence.

The sequence $\left\{X_{n}\right\}$ may be considered to be a companion sequence to $\left\{W_{n}\right\}$, in the same sense that the Lucas sequence is the companion of the Fibonacci sequence.

Theorem

Let n be a nonnegative integer. Then

$$
\begin{equation*}
W_{n} W_{n+4}^{3}-W_{n+2}^{3} W_{n+6}=e p^{3} q^{n} W_{n+3} X_{n+3} \tag{15}
\end{equation*}
$$

Let n be a nonnegative integer. Let $x=W_{n}$ and $y=W_{n+1}$.

Let n be a nonnegative integer. Let $x=W_{n}$ and $y=W_{n+1}$.
Then, after some substitutions and collecting terms, we have

$$
\begin{aligned}
& W_{n}=x \\
& W_{n+1}=y \\
& W_{n+2}=p y-q x \\
& W_{n+3}=\left(p^{2}-q\right) y-p q x \\
& W_{n+4}=\left(p^{3}-2 p q\right) y+\left(-p^{2} q+q^{2}\right) x \\
& W_{n+5}=\left(p^{4}-3 p^{2} q+q^{2}\right) y+\left(-p^{3} q+2 p q^{2}\right) x \\
& W_{n+6}=\left(p^{5}-4 p^{3} q+3 p q^{2}\right) y+\left(-p^{4} q+3 p^{2} q^{2}-q^{3}\right) x \\
& X_{n+3}=\left(p^{3}-3 p q\right) y+\left(-p^{2} q+2 q^{2}\right) x .
\end{aligned}
$$

We need one more quantity, eq ${ }^{n}$. We have that

$$
e q^{n}=W_{n} W_{n+2}-W_{n+1}^{2}=x(p y-q x)-y^{2}=-q x^{2}+p x y-y^{2}
$$

We need one more quantity, eq ${ }^{n}$. We have that

$$
e q^{n}=W_{n} W_{n+2}-W_{n+1}^{2}=x(p y-q x)-y^{2}=-q x^{2}+p x y-y^{2}
$$

After substitutions and some algebra, the left side of (15) simplifies to

$$
\begin{aligned}
& \left(-p^{6} q^{3}+2 p^{4} q^{4}\right) x^{4}+\left(3 p^{7} q^{2}-8 p^{5} q^{3}+2 p^{3} q^{4}\right) x^{3} y \\
& +\left(-3 p^{8} q+9 p^{6} q^{2}-3 p^{4} q^{3}\right) x^{2} y^{2} \\
& +\left(p^{9}-2 p^{7} q-3 p^{5} q^{2}+2 p^{3} q^{3}\right) x y^{3} \\
& +\left(-p^{8}+4 p^{6} q-3 p^{4} q^{2}\right) y^{4}
\end{aligned}
$$

Again, after substitutions and some algebra, the right side of (15) simplifies to

$$
\begin{aligned}
& \left(-p^{6} q^{3}+2 p^{4} q^{4}\right) x^{4}+\left(3 p^{7} q^{2}-8 p^{5} q^{3}+2 p^{3} q^{4}\right) x^{3} y \\
& +\left(-3 p^{8} q+9 p^{6} q^{2}-3 p^{4} q^{3}\right) x^{2} y^{2} \\
& +\left(p^{9}-2 p^{7} q-3 p^{5} q^{2}+2 p^{3} q^{3}\right) x y^{3} \\
& +\left(-p^{8}+4 p^{6} q-3 p^{4} q^{2}\right) y^{4}
\end{aligned}
$$

Again, after substitutions and some algebra, the right side of (15) simplifies to

$$
\begin{aligned}
& \left(-p^{6} q^{3}+2 p^{4} q^{4}\right) x^{4}+\left(3 p^{7} q^{2}-8 p^{5} q^{3}+2 p^{3} q^{4}\right) x^{3} y \\
& +\left(-3 p^{8} q+9 p^{6} q^{2}-3 p^{4} q^{3}\right) x^{2} y^{2} \\
& +\left(p^{9}-2 p^{7} q-3 p^{5} q^{2}+2 p^{3} q^{3}\right) x y^{3} \\
& +\left(-p^{8}+4 p^{6} q-3 p^{4} q^{2}\right) y^{4}
\end{aligned}
$$

Therefore, the left side and right side of (15) are equal. This completes the proof of the theorem.

Outline

（1）

Introduction

Generalization of the Melham and Shannon IdentityA Generalized Sixth Degree IdentityA Generalized $2 k$ th Degree IdentityA Generalization of a Fourth Degree Fibonacci Identity6 A Generalization of a Fifth Degree Fibonacci Identity

Finally, we present a fifth degree Fibonacci identity. If n is a nonnegative integer, then

$$
\begin{equation*}
F_{n}^{2} F_{n+5}^{3}-F_{n+1}^{3} F_{n+6}^{2}=(-1)^{n+1} L_{n+3}^{3} \tag{16}
\end{equation*}
$$

A generalization of (16) is presented in the following theorem.

A generalization of (16) is presented in the following theorem.

Theorem

Let n be a nonnegative integer. Then

$$
\begin{aligned}
& W_{n}^{2} W_{n+5}^{3}-W_{n+1}^{3} W_{n+6}^{2} \\
& =e q^{n} X_{n+3}\left(\left(2 p^{3}-3 p q\right) W_{n+3}^{2}+\left(p^{7}-2 p^{5} q+p^{3} q^{2}\right) e q^{n}\right)
\end{aligned}
$$

Again, we require the following quantities.

$$
\begin{aligned}
& W_{n}=x \\
& W_{n+1}=y \\
& W_{n+2}=p y-q x \\
& W_{n+3}=\left(p^{2}-q\right) y-p q x \\
& W_{n+4}=\left(p^{3}-2 p q\right) y+\left(-p^{2} q+q^{2}\right) x \\
& W_{n+5}=\left(p^{4}-3 p^{2} q+q^{2}\right) y+\left(-p^{3} q+2 p q^{2}\right) x \\
& W_{n+6}=\left(p^{5}-4 p^{3} q+3 p q^{2}\right) y+\left(-p^{4} q+3 p^{2} q^{2}-q^{3}\right) x \\
& X_{n+3}=\left(p^{3}-3 p q\right) y+\left(-p^{2} q+2 q^{2}\right) x .
\end{aligned}
$$

After some substitutions and collecting terms, the left side of (17) simplifies to

$$
\begin{aligned}
& \left(-p^{9} q^{3}+6 p^{7} q^{4}-12 p^{5} q^{5}+8 p^{3} q^{6}\right) x^{5} \\
& +\left(3 p^{10} q^{2}-21 p^{8} q^{3}+51 p^{6} q^{4}-48 p^{4} q^{5}+12 p^{2} q^{6}\right) x^{4} y \\
& +\left(-3 p^{1} 1 q+24 p^{9} q^{2}-69 p^{7} q^{3}+84 p^{5} q^{4}-39 p^{3} q^{5}+6 p q^{6}\right) x^{3} y^{2} \\
& +\left(p^{12}-9 p^{10} q+29 p^{8} q^{2}-39 p^{6} q^{3}+19 p^{4} q^{4}-3 p^{2} q^{5}\right) x^{2} y^{3} \\
& +\left(2 p^{9} q-14 p^{7} q^{2}+32 p^{5} q^{3}-26 p^{3} q^{4}+6 p q^{5}\right) x y^{4} \\
& +\left(-p^{10}+8 p^{8} q-22 p^{6} q^{2}+24 p^{4} q^{3}-9 p^{2} q^{4}\right) y^{5}
\end{aligned}
$$

Again, after substitutions and some algebra, the right side of

 (17) simplifies to$$
\begin{aligned}
& \left(-p^{9} q^{3}+6 p^{7} q^{4}-12 p^{5} q^{5}+8 p^{3} q^{6}\right) x^{5} \\
& +\left(3 p^{10} q^{2}-21 p^{8} q^{3}+51 p^{6} q^{4}-48 p^{4} q^{5}+12 p^{2} q^{6}\right) x^{4} y \\
& +\left(-3 p^{1} 1 q+24 p^{9} q^{2}-69 p^{7} q^{3}+84 p^{5} q^{4}-39 p^{3} q^{5}+6 p q^{6}\right) x^{3} y^{2} \\
& +\left(p^{12}-9 p^{10} q+29 p^{8} q^{2}-39 p^{6} q^{3}+19 p^{4} q^{4}-3 p^{2} q^{5}\right) x^{2} y^{3} \\
& +\left(2 p^{9} q-14 p^{7} q^{2}+32 p^{5} q^{3}-26 p^{3} q^{4}+6 p q^{5}\right) x y^{4} \\
& +\left(-p^{10}+8 p^{8} q-22 p^{6} q^{2}+24 p^{4} q^{3}-9 p^{2} q^{4}\right) y^{5}
\end{aligned}
$$

Again, after substitutions and some algebra, the right side of (17) simplifies to

$$
\begin{aligned}
& \left(-p^{9} q^{3}+6 p^{7} q^{4}-12 p^{5} q^{5}+8 p^{3} q^{6}\right) x^{5} \\
& +\left(3 p^{10} q^{2}-21 p^{8} q^{3}+51 p^{6} q^{4}-48 p^{4} q^{5}+12 p^{2} q^{6}\right) x^{4} y \\
& +\left(-3 p^{1} 1 q+24 p^{9} q^{2}-69 p^{7} q^{3}+84 p^{5} q^{4}-39 p^{3} q^{5}+6 p q^{6}\right) x^{3} y^{2} \\
& +\left(p^{12}-9 p^{10} q+29 p^{8} q^{2}-39 p^{6} q^{3}+19 p^{4} q^{4}-3 p^{2} q^{5}\right) x^{2} y^{3} \\
& +\left(2 p^{9} q-14 p^{7} q^{2}+32 p^{5} q^{3}-26 p^{3} q^{4}+6 p q^{5}\right) x y^{4} \\
& +\left(-p^{10}+8 p^{8} q-22 p^{6} q^{2}+24 p^{4} q^{3}-9 p^{2} q^{4}\right) y^{5}
\end{aligned}
$$

Therefore, the left side and right side of (17) are equal. This completes the proof of the theorem.

References

1. C. Cooper, Some Identities Involving Differences of Products of Generalized Fibonacci Numbers, Colloquium Mathematicum, 141 (2015), 45-49.
2. L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1966.
3. A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quarterly, 3.3 (1965), 161-176.
4. E. Lucas, Théorie des fonctions numériques simplement periodiques, American Journal of Mathematics, 1 (1878), 184-240, 289-321.

References (cont.)

5. R. S. Melham and A. G. Shannon, A Generalization of the Catalan Identity and Some Consequences, The Fibonacci Quarterly, 33.1 (1995), 82-84.
6. S. Rabinowitz, Algorithmic Manipulation of Second Order Linear Recurrences, The Fibonacci Quarterly, 37.2 (1999), 162-177.

Email Address and Talk URL

Curtis Cooper's Email: cooper@ucmo.edu

Talk: cs.ucmo.edu/~cnc8851/talks/halifax2018/halifax2018.pdf

