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Let {Fn} and {Ln} be the Fibonacci and Lucas sequences,
respectively.

Gelin stated and Cesáro proved that for integers n ≥ 2,

Fn−2Fn−1Fn+1Fn+2 − F 4
n = −1.

To generalize this identity, we need the following definition due
to Horadam.
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Definition
Let {Wn} be defined by W0 = a, W1 = b, and
Wn = pWn−1 − qWn−2 for n ≥ 2, where a, b, p, and q are
integers and q 6= 0. Let e = pab − qa2 − b2.

Melham and Shannon generalized the Gelin-Cesáro identity by
proving that for integers n ≥ 2,

Wn−2Wn−1Wn+1Wn+2 −W 4
n = eqn−2(p2 + q)W 2

n + e2q2n−3p2.
(1)

In this paper, we will generalize and prove some similar high
degree generalized Fibonacci identities.
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To generalize the Melham and Shannon identity, we need the
following definition.

Definition
Let {Un} be defined by U0 = 0, U1 = 1, and
Un = pUn−1 − qUn−2 for n ≥ 2, where p and q are integers and
q 6= 0.

The sequence {Un} is the fundamental sequence of Lucas.
With this definition, we can state a generalization of the
Melham and Shannon identity.
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Theorem
Let r and s be positive integers and n ≥ r + s be an integer.
Then

Wn−r−sWn−r Wn+r Wn+r+s

= W 4
n + eqn−r−s(qsU2

r + U2
r+s)W 2

n + e2q2n−2r−sU2
r U2

r+s. (2)

We note that when r = 1 and s = 1, this is the Melham and
Shannon identity.
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The proof of (2) is similar to the proof of the Melham and
Shannon identity. Before we begin the proof (2), we require
more definitions and a lemma from Melham and Shannon.

Definition
Let {Yn} be defined by Y0 = a1, Y1 = b1, and
Yn = pYn−1 − qYn−2 for n ≥ 2, where a1, b1, p, and q are
integers and q 6= 0.
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Definition
Let s be a nonnegative integer. Let

Ψ(s) = (pa1b − qaa1 − bb1)Us + (ab1 − a1b)Us+1.

Lemma
Let n be a nonnegative integer and r and s be positive integers.
Then

WnYn+r+s −Wn+r Yn+s = Ψ(s)qnUr . (3)
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In (3), replacing n by n − r and s by r gives

Wn−r Yn+r −WnYn = Ψ(r)qn−r Ur . (4)

Replacing r by r + s in (4), we have

Wn−r−sYn+r+s −WnYn = Ψ(r + s)qn−r−sUr+s. (5)

Adding (4) and (5) gives

Wn−r Yn+r + Wn−r−sYn+r+s

= 2WnYn + Ψ(r)qn−r Ur + Ψ(r + s)qn−r−sUr+s. (6)
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Subtracting (5) from (4) gives

Wn−r Yn+r −Wn−r−sYn+r+s = Ψ(r)qn−r Ur −Ψ(r +s)qn−r−sUr+s.
(7)

Squaring (6) and subtracting the square of (7), we obtain

4Wn−r−sWn−r Yn+r Yn+r+s

= 4W 2
n Y 2

n + 4qn−r−s(qsΨ(r)Ur + Ψ(r + s)Ur+s)WnYn

+ 4Ψ(r)Ψ(r + s)q2n−2r−sUr Ur+s. (8)
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Divide both sides of the equation by 4. Now, if (a1,b1) = (a,b),
then {Wn} = {Yn}, Ψ(r) = eUr , and Ψ(r + s) = eUr+s.
Substituting these quantities in (8), we see that (8) becomes
(2). This is what we wanted to prove.

Theorem
Let r and s be positive integers and n ≥ r + s be an integer.
Then

Wn−r−sWn−r Wn+r Wn+r+s

= W 4
n + eqn−r−s(qsU2

r + U2
r+s)W 2

n + e2q2n−2r−sU2
r U2

r+s.
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Note that if r = 1 and s = 1, then (2) becomes (1). Also, note
that if a = 0, b = 1, p = 1, and q = −1, then {Wn} = {Fn}.

Thus from (3), we have the following identity for Fibonacci
numbers.

Fn−r−sFn−r Fn+r Fn+r+s

= F 4
n + (−1)n−r−s−1((−1)sF 2

r + F 2
r+s)F 2

n + (−1)sF 2
r F 2

r+s.

Curtis Cooper University of Central Missouri

Some High Degree Generalized Fibonacci Identities



Introduction Generalization of the Melham and Shannon Identity A Generalized Sixth Degree Identity A Generalized 2k th Degree Identity A Generalization of a Fourth Degree Fibonacci Identity A Generalization of a Fifth Degree Fibonacci Identity

Note that if r = 1 and s = 1, then (2) becomes (1). Also, note
that if a = 0, b = 1, p = 1, and q = −1, then {Wn} = {Fn}.

Thus from (3), we have the following identity for Fibonacci
numbers.

Fn−r−sFn−r Fn+r Fn+r+s

= F 4
n + (−1)n−r−s−1((−1)sF 2

r + F 2
r+s)F 2

n + (−1)sF 2
r F 2

r+s.

Curtis Cooper University of Central Missouri

Some High Degree Generalized Fibonacci Identities



Introduction Generalization of the Melham and Shannon Identity A Generalized Sixth Degree Identity A Generalized 2k th Degree Identity A Generalization of a Fourth Degree Fibonacci Identity A Generalization of a Fifth Degree Fibonacci Identity

Outline

1 Introduction

2 Generalization of the Melham and Shannon Identity

3 A Generalized Sixth Degree Identity

4 A Generalized 2k th Degree Identity

5 A Generalization of a Fourth Degree Fibonacci Identity

6 A Generalization of a Fifth Degree Fibonacci Identity

Curtis Cooper University of Central Missouri

Some High Degree Generalized Fibonacci Identities



Introduction Generalization of the Melham and Shannon Identity A Generalized Sixth Degree Identity A Generalized 2k th Degree Identity A Generalization of a Fourth Degree Fibonacci Identity A Generalization of a Fifth Degree Fibonacci Identity

Theorem
Let r and s be positive integers and n ≥ r + s be an integer.
Then

3Wn−r−sW 2
n−r W

2
n+r Wn+r+s + W 3

n−r−sW 3
n+r+s

= 4W 6
n + 6eqn−r−s(qsU2

r + U2
r+s)W 4

n

+ 3e2q2n−2r−2s(q2sU4
r + 2qsU2

r U2
r+s + U4

r+s)W 2
n

+ e3q3n−3r−3s(3q2sU4
r U2

r+s + U6
r+s). (9)
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Again, the proof of this Theorem is similar to the proof of (1),
but with a few modifications.

We start the proof of this Theorem as we started the proof of
the previous Theorem. Instead of squaring, we cube (6) and
subtract the cube of (7).

We obtain

6W 2
n−r Y

2
n+r Wn−r−sYn+r+s + 2W 3

n−r−sY 3
n+r+s (10)

= 8W 3
n Y 3

n + 12W 2
n Y 2

n Ψ(r)qn−r Ur + 12W 2
n Y 2

n Ψ(r + s)qn−r−sUr+s

+ 6WnYnΨ(r)2q2n−2r U2
r + 12WnYnΨ(r)q2n−2r−sΨ(r + s)Ur Ur+s

+ 6WnYnΨ(r + s)2q2n−2r−2sU2
r+s + 6q3n−3r−sΨ(r)2Ψ(r + s)U2

r Ur+s

+ 2q3n−3r−3sΨ(r + s)3U3
r+s.
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Divide both sides of the equation by 2. Again, if
(a1,b1) = (a,b), then {Wn} = {Yn}, Ψ(r) = eUr , and
Ψ(r + s) = eUr+s.

Substituting these quantities in (10), we see that (10) becomes
(9). This is what we wanted to prove.

Theorem
Let r and s be positive integers and n ≥ r + s be an integer.
Then
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Again, if a = 0, b = 1, p = 1, and q = −1, then {Wn} = {Fn}.

Thus from (9), we have the following identity for Fibonacci
numbers.

3Fn−r−sF 2
n−r F

2
n+r Fn+r+s + F 3

n−r−sF 3
n+r+s

= 4F 6
n + 6(−1)n−r−s−1((−1)sF 2

r + F 2
r+s)F 4

n

+ 3(F 4
r + 2(−1)sF 2

r F 2
r+s + F 4

r+s)F 2
n

+ (−1)n−r−s−1(3F 4
r F 2

r+s + F 6
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Theorem
Let r and s be positive integers, k ≥ 2 be an integer, and
n ≥ r + s be an integer. Then

2
∑
i≥1

(
k

2i − 1

)
(Wn−r Wn+r )k+1−2i(Wn−r−sWn+r+s)2i−1 (11)

=
k−1∑
i=0

(
k
i

)
(2W 2

n )k−ieiqin−ir−is(qsU2
r + U2

r+s)i

+ 2ekqkn−kr−ks
∑
i≥1

(
k

2i − 1

)
q(k+1−2i)sU2(k+1−2i)

r U2(2i−1)
r+s .
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Again, the proof of this Theorem is similar to the proof of (1),
but with a few modifications.

We start the proof of this Theorem as we started the proof of
the other Theorem. But, this time, we consider (7) and (8) and
let (a1,b1) = (a,b). Then {Wn} = {Yn}, Ψ(r) = eUr , and
Ψ(r + s) = eUr+s. Substituting these quantities in (7) and (8),
we obtain
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Wn−r Wn+r + Wn−r−sWn+r+s = 2W 2
n + eqn−r U2

r + eqn−r−sU2
r+s

(12)
and

Wn−r Wn+r −Wn−r−sWn+r+s = eqn−r U2
r − eqn−r−sU2

r+s. (13)
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Instead of squaring, we raise (12) to the k th power and subtract
(13) raised to the k th power and using polynomial expansion,
we obtain

(Wn−r Wn+r + Wn−r−sWn+r+s)k − (Wn−r Wn+r −Wn−r−sWn+r+s)k

=
k−1∑
i=0

(
k
i

)
(2W 2

n )k−i(eqn−r U2
r + eqn−r−sU2

r+s)i

+ (eqn−r U2
r + eqn−r−sU2

r+s)k − (eqn−r U2
r − eqn−r−sU2

r+s)k .
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Expanding the products on both sides of the equation and
collecting and canceling terms gives

2
∑
i≥1

(
k

2i − 1

)
(Wn−r Wn+r )k+1−2i(Wn−r−sWn+r+s)2i−1

=
k−1∑
i=0

(
k
i

)
(2W 2

n )k−ieiqin−ir−is(qsU2
r + U2

r+s)i

+ 2ek
∑
i≥1

(
k

2i − 1

)
(qn−r U2

r )k+1−2i(qn−r−sU2
r+s)2i−1.
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Simplifying some more, we obtain

2
∑
i≥1

(
k

2i − 1

)
(Wn−r Wn+r )k+1−2i(Wn−r−sWn+r+s)2i−1

=
k−1∑
i=0

(
k
i

)
(2W 2

n )k−ieiqin−ir−is(qsU2
r + U2

r+s)i

+ 2ekqkn−kr−ks
∑
i≥1

(
k

2i − 1

)
q(k+1−2i)sU2(k+1−2i)

r U2(2i−1)
r+s .

This is (11) and what we wanted to prove.
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Again, if a = 0, b = 1, p = 1, and q = −1, then {Wn} = {Fn}.

Thus from (11), we have the following identity for Fibonacci
numbers.

2
∑
i≥1

(
k

2i − 1

)
(Fn−r Fn+r )k+1−2i(Fn−r−sFn+r+s)2i−1

=
k−1∑
i=0

(
k
i

)
(2F 2

n )k−i(−1)in−ir−is+i((−1)sF 2
r + F 2

r+s)i

+ 2(−1)k (−1)kn−kr−ks
∑
i≥1

(
k

2i − 1

)
(−1)(k+1−2i)sF 2(k+1−2i)

r F 2(2i−1)
r+s .
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Next, we start with another fourth degree Fibonacci identity. If n
is a nonnegative integer, then

FnF 3
n+4 − F 3

n+2Fn+6 = (−1)n+1Fn+3Ln+3. (14)

To state a generalization to (14), we need a definition due to
Rabinowitz.

Definition
Let n be an integer. Then

Xn = Wn+1 − qWn−1.
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The sequence {Xn} may be considered to be a companion
sequence to {Wn}, in the same sense that the Lucas sequence
is the companion of the Fibonacci sequence.

Theorem
Let n be a nonnegative integer. Then

WnW 3
n+4 −W 3

n+2Wn+6 = ep3qnWn+3Xn+3. (15)
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Let n be a nonnegative integer. Let x = Wn and y = Wn+1.

Then, after some substitutions and collecting terms, we have

Wn = x
Wn+1 = y
Wn+2 = py − qx

Wn+3 = (p2 − q)y − pqx

Wn+4 = (p3 − 2pq)y + (−p2q + q2)x

Wn+5 = (p4 − 3p2q + q2)y + (−p3q + 2pq2)x

Wn+6 = (p5 − 4p3q + 3pq2)y + (−p4q + 3p2q2 − q3)x

Xn+3 = (p3 − 3pq)y + (−p2q + 2q2)x .

Curtis Cooper University of Central Missouri

Some High Degree Generalized Fibonacci Identities



Introduction Generalization of the Melham and Shannon Identity A Generalized Sixth Degree Identity A Generalized 2k th Degree Identity A Generalization of a Fourth Degree Fibonacci Identity A Generalization of a Fifth Degree Fibonacci Identity

Let n be a nonnegative integer. Let x = Wn and y = Wn+1.

Then, after some substitutions and collecting terms, we have

Wn = x
Wn+1 = y
Wn+2 = py − qx

Wn+3 = (p2 − q)y − pqx

Wn+4 = (p3 − 2pq)y + (−p2q + q2)x

Wn+5 = (p4 − 3p2q + q2)y + (−p3q + 2pq2)x

Wn+6 = (p5 − 4p3q + 3pq2)y + (−p4q + 3p2q2 − q3)x

Xn+3 = (p3 − 3pq)y + (−p2q + 2q2)x .

Curtis Cooper University of Central Missouri

Some High Degree Generalized Fibonacci Identities



Introduction Generalization of the Melham and Shannon Identity A Generalized Sixth Degree Identity A Generalized 2k th Degree Identity A Generalization of a Fourth Degree Fibonacci Identity A Generalization of a Fifth Degree Fibonacci Identity

We need one more quantity, eqn. We have that

eqn = WnWn+2 −W 2
n+1 = x(py − qx)− y2 = −qx2 + pxy − y2.

After substitutions and some algebra, the left side of (15)
simplifies to

(−p6q3 + 2p4q4)x4 + (3p7q2 − 8p5q3 + 2p3q4)x3y

+ (−3p8q + 9p6q2 − 3p4q3)x2y2

+ (p9 − 2p7q − 3p5q2 + 2p3q3)xy3

+ (−p8 + 4p6q − 3p4q2)y4.
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Again, after substitutions and some algebra, the right side of
(15) simplifies to

(−p6q3 + 2p4q4)x4 + (3p7q2 − 8p5q3 + 2p3q4)x3y

+ (−3p8q + 9p6q2 − 3p4q3)x2y2

+ (p9 − 2p7q − 3p5q2 + 2p3q3)xy3

+ (−p8 + 4p6q − 3p4q2)y4.

Therefore, the left side and right side of (15) are equal. This
completes the proof of the theorem.
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Finally, we present a fifth degree Fibonacci identity. If n is a
nonnegative integer, then

F 2
n F 3

n+5 − F 3
n+1F 2

n+6 = (−1)n+1L3
n+3. (16)
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A generalization of (16) is presented in the following theorem.

Theorem
Let n be a nonnegative integer. Then

W 2
n W 3

n+5 −W 3
n+1W 2

n+6 (17)

= eqnXn+3((2p3 − 3pq)W 2
n+3 + (p7 − 2p5q + p3q2)eqn).
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Again, we require the following quantities.

Wn = x
Wn+1 = y
Wn+2 = py − qx

Wn+3 = (p2 − q)y − pqx

Wn+4 = (p3 − 2pq)y + (−p2q + q2)x

Wn+5 = (p4 − 3p2q + q2)y + (−p3q + 2pq2)x

Wn+6 = (p5 − 4p3q + 3pq2)y + (−p4q + 3p2q2 − q3)x

Xn+3 = (p3 − 3pq)y + (−p2q + 2q2)x .
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After some substitutions and collecting terms, the left side of
(17) simplifies to

(−p9q3 + 6p7q4 − 12p5q5 + 8p3q6)x5

+ (3p10q2 − 21p8q3 + 51p6q4 − 48p4q5 + 12p2q6)x4y

+ (−3p11q + 24p9q2 − 69p7q3 + 84p5q4 − 39p3q5 + 6pq6)x3y2

+ (p12 − 9p10q + 29p8q2 − 39p6q3 + 19p4q4 − 3p2q5)x2y3

+ (2p9q − 14p7q2 + 32p5q3 − 26p3q4 + 6pq5)xy4

+ (−p10 + 8p8q − 22p6q2 + 24p4q3 − 9p2q4)y5.
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Again, after substitutions and some algebra, the right side of
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Therefore, the left side and right side of (17) are equal. This
completes the proof of the theorem.
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