Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

Mersenne Primes and GIMPS

Curtis Cooper University of Central Missouri

July 24, 2014

< < >> < <</>

(*) * (*) *)

э.

Curtis Cooper University of Central Missouri

Mersenne Pr o oo	rimes	History of Mersenne Primes oo ooooooooooooooooooooooooooooooooo	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
-1	Mers	enne Primes				
	Pr	imes				
	• Me	ersenne Primes				
2	Histo	ory of Mersenne P	rimes			
	• Ma	arin Mersenne				
	• Ec	ouard Lucas				
	• Co	omputer Era				
3	GIM	PS				
	• Gl	MPS				
	• Gl	MPS People				
	• Gl	MPS Links				
4	M578	885161				
5	Luca	is-Lehmer Test				
		icas-Lehmer Test				
	۲	2 ¹¹ – 1 is not prime				

5 990

イロン イヨン イヨン

● 2³¹ - 1 is prime

Curtis Cooper University of Central Missouri

Mersenne Primes ● ○○	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Primes					
Prime Nu	umbers				

• A **prime number** is a positive integer that has exactly two factors.

< < >> < <</>

A B > A B >

э.

Mersenne Primes ● ○○	History of Mersenne Primes	GIMPS 00 0 0	M57885161	Lucas-Lehmer Test	Reasons				
Primes									
Drime Nu	Prime Numbers								

- A **prime number** is a positive integer that has exactly two factors.
- Prime Numbers Less Than 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

Mersenne Primes ○ ●○	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Mersenne Primes					

Mersenne Numbers

• A Mersenne number is a number of the form $2^p - 1$, where *p* is a prime number.

< ロ > < 同 > < 三 > < 三 > -

э.

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ●○	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Mersenne Primes					

Mersenne Numbers

- A Mersenne number is a number of the form $2^{p} 1$, where *p* is a prime number.
- Examples of Mersenne numbers are:

$$M2 = 2^{2} - 1 = 3$$

$$M3 = 2^{3} - 1 = 7$$

$$M5 = 2^{5} - 1 = 31$$

$$M7 = 2^{7} - 1 = 127$$

$$M11 = 2^{11} - 1 = 2047$$

∃ ► < ∃ ►</p>

э.

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○●	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Mersenne Primes					
Mersenn	e Primes				

• A Mersenne prime is a Mersenne number that is prime.

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○●	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons	
Mersenne Primes						
Maraanna Drimaa						

Mersenne Primes

- A Mersenne prime is a Mersenne number that is prime.
- Examples of Mersenne primes are:

$$3 = 2^{2} - 1$$

$$7 = 2^{3} - 1$$

$$31 = 2^{5} - 1$$

$$127 = 2^{7} - 1$$

$$8191 = 2^{13} - 1$$

A B > A B >

э.

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○●	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons	
Mersenne Primes						
Maraanna Drimaa						

Mersenne Primes

- A Mersenne prime is a Mersenne number that is prime.
- Examples of Mersenne primes are:

$$3 = 2^{2} - 1$$

$$7 = 2^{3} - 1$$

$$31 = 2^{5} - 1$$

$$127 = 2^{7} - 1$$

$$8191 = 2^{13} - 1$$

< < >> < <</>

= nar

•
$$2047 = 2^{11} - 1 = 23 \times 89$$
.

Curtis Cooper University of Central Missouri

Mersenne	Primes
0 00	

M57885161

Lucas-Lehmer Test

3 X X 3 X

Reasons

Mersenne Primes

- Primes
- Mersenne Primes

Pistory of Mersenne Primes

- Marin Mersenne
- Edouard Lucas
- Computer Era

GIMP

- GIMPS
- GIMPS People
- GIMPS Links
- 4 M57885161
- Lucas-Lehmer Test
 - Lucas-Lehmer Test

 - 2³¹ 1 is prime

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Marin Mersenne					

Marin Mersenne

 Mersenne primes are named after a 17th-century French monk and mathematician

Marin Mersenne (1588-1648)

3 D A 3 D D

Curtis Cooper University of Central Missouri

 Mersenne compiled what was supposed to be a list of Mersenne primes with exponents up to 257. His list of numbers n where 2ⁿ - 1 is prime is

n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257.

A B > A B >

Curtis Cooper University of Central Missouri

 Mersenne compiled what was supposed to be a list of Mersenne primes with exponents up to 257. His list of numbers n where 2ⁿ - 1 is prime is

n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257.

 Mersenne mistakenly included M67 and M257 (which are composite), and omitted M61, M89, and M107 (which are prime).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
000	00	00			
Edouard Lucas					

Edouard Lucas

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Curtis Cooper University of Central Missouri

 In 1876 Lucas, using a test he developed, showed that M67 is composite without finding a factor.

Curtis Cooper University of Central Missouri

- In 1876 Lucas, using a test he developed, showed that M67 is composite without finding a factor.
- No factor was found until a famous talk by Frank Cole at an AMS meeting in 1903. Cole devoted 20 years of Sunday afternoon computations to discover that

 $2^{67} - 1 = 193700721 \times 761838257287.$

- In 1876 Lucas, using a test he developed, showed that M67 is composite without finding a factor.
- No factor was found until a famous talk by Frank Cole at an AMS meeting in 1903. Cole devoted 20 years of Sunday afternoon computations to discover that

$$2^{67} - 1 = 193700721 \times 761838257287.$$

• Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

• The base 2 representation of 67 is 1000011.

(日) (四) (三) (三) (三) (三) (○)

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

- The base 2 representation of 67 is 1000011.
- 1: $1^2 \times 2 = 2$.

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Curtis Cooper University of Central Missouri

Mersenn o oo	e Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
		0000				
Edouard	Lucas					

- The base 2 representation of 67 is 1000011.
- 1: $1^2 \times 2 = 2$.
- 0: 2² = 4.

・ロト・日本・日本・日本・日本・日本

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

- The base 2 representation of 67 is 1000011.
- 1: $1^2 \times 2 = 2$.
- 0: 2² = 4.
- 0: 4² = 16.

Me oc		History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Ed	ouard Lucas					

- The base 2 representation of 67 is 1000011.
- 1: $1^2 \times 2 = 2$.
- 0: 2² = 4.
- 0: 4² = 16.
- 0: 16² = 256.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

- The base 2 representation of 67 is 1000011.
- 1: $1^2 \times 2 = 2$.
- 0: 2² = 4.
- 0: 4² = 16.
- 0: 16² = 256.
- 0: $256^2 = 65536$.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

- The base 2 representation of 67 is 1000011.
- 1: $1^2 \times 2 = 2$.
- 0: 2² = 4.
- 0: 4² = 16.
- 0: $16^2 = 256$.
- 0: $256^2 = 65536$.
- 1: $65536^2 \times 2 = 8589934592$.

Mersenne Prim	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas	3				

- The base 2 representation of 67 is 1000011.
- 1: $1^2 \times 2 = 2$.
- 0: 2² = 4.
- 0: 4² = 16.
- 0: $16^2 = 256$.
- 0: $256^2 = 65536$.
- 1: $65536^2 \times 2 = 8589934592$.
- 1: $8589934592^2 \times 2 = 147573952589676412928$.

Mersenne Prim	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas	3				

- The base 2 representation of 67 is 1000011.
- 1: $1^2 \times 2 = 2$.
- 0: 2² = 4.
- 0: 4² = 16.
- 0: $16^2 = 256$.
- 0: $256^2 = 65536$.
- 1: $65536^2 \times 2 = 8589934592$.
- 1: $8589934592^2 \times 2 = 147573952589676412928$.
- $2^{67} 1 = 147573952589676412927$.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas		0			

• On the other side of the board, he multiplied 193,707,721 times 761,838,257,287 and got the same number.

э

ㅋㅋ ㅋㅋㅋ

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

- On the other side of the board, he multiplied 193,707,721 times 761,838,257,287 and got the same number.
- 193707721 × 761838257287 = 147573952589676412927.

э

ㅋㅋ ㅋㅋㅋ

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

- On the other side of the board, he multiplied 193,707,721 times 761,838,257,287 and got the same number.
- $193707721 \times 761838257287 = 147573952589676412927$.
- He returned to his seat (to applause) without speaking.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

• Lucas proved in 1876 that M127 is prime. This was the largest known prime number for 75 years, and the largest ever calculated by hand.

Curtis Cooper University of Central Missouri

Merso 0 00	enne Primes	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edou	ard Lucas					

- Lucas proved in 1876 that M127 is prime. This was the largest known prime number for 75 years, and the largest ever calculated by hand.
- Based on some theorems Lucas discovered and properties of Fibonacci numbers, his hand calculations boiled down to showing that if $r_1 = 3$, and

$$r_{k+1}=r_k^2-2,$$

then if

$$r_{126} \equiv 0 \pmod{M127}$$

then M127 is prime.

Curtis Cooper University of Central Missouri

 Therefore, Lucas had to perform about 120 squaring operations and about 120 divide operations on 39 digit numbers.

< < >> < <</>

∃ → < ∃ →</p>

Curtis Cooper University of Central Missouri

- Therefore, Lucas had to perform about 120 squaring operations and about 120 divide operations on 39 digit numbers.
- To do this, Lucas turned these calculations into a game. He used a 127×127 chessboard to do the calculations.

- Therefore, Lucas had to perform about 120 squaring operations and about 120 divide operations on 39 digit numbers.
- To do this, Lucas turned these calculations into a game. He used a 127×127 chessboard to do the calculations.
- To see how Lucas did this, we will reduce the problem.

- Therefore, Lucas had to perform about 120 squaring operations and about 120 divide operations on 39 digit numbers.
- To do this, Lucas turned these calculations into a game. He used a 127×127 chessboard to do the calculations.
- To see how Lucas did this, we will reduce the problem.
- We will show that $M7 = 2^7 1 = 127$ is prime.

- Therefore, Lucas had to perform about 120 squaring operations and about 120 divide operations on 39 digit numbers.
- To do this, Lucas turned these calculations into a game. He used a 127×127 chessboard to do the calculations.
- To see how Lucas did this, we will reduce the problem.
- We will show that $M7 = 2^7 1 = 127$ is prime.
- For our reduced problem, we will play Lucas' game on a 7×7 chessboard.

< ロ > < 同 > < 三 > < 三 >

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

• The calculations we need to do to show $M7 = 2^7 - 1 = 127$ is prime are the following.

・ロト・日本・日本・日本・日本・日本

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- *r*₁ = 3

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- *r*₁ = 3
- $r_2 = 3^2 2 = 7$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- *r*₁ = 3

•
$$r_2 = 3^2 - 2 = 7$$

•
$$r_3 = 7^2 - 2 = 47$$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

э.

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- *r*₁ = 3

•
$$r_2 = 3^2 - 2 = 7$$

•
$$r_3 = 7^2 - 2 = 47$$

•
$$r_4 = 47^2 - 2 \equiv 48 \pmod{127}$$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

< ロ > < 同 > < 回 > < 回 > .

э.

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- $r_1 = 3$ • $r_2 = 3^2 - 2 = 7$ • $r_3 = 7^2 - 2 = 47$
- $r_3 = r_1 = 47^2 2 \equiv 48 \pmod{127}$
- $r_5 = 48^2 2 \equiv 16 \pmod{127}$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

< ロ > < 同 > < 回 > < 回 > .

э.

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- $r_1 = 3$ • $r_2 = 3^2 - 2 = 7$ • $r_3 = 7^2 - 2 = 47$ • $r_4 = 47^2 - 2 \equiv 48 \pmod{127}$ • $r_5 = 48^2 - 2 \equiv 16 \pmod{127}$ • $r_6 = 256 - 2 \equiv 0 \pmod{127}$.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

< ロ > < 同 > < 回 > < 回 > .

э.

- The calculations we need to do to show $M7 = 2^7 1 = 127$ is prime are the following.
- *r*₁ = 3

•
$$r_2 = 3^2 - 2 = 7$$

•
$$r_3 = 7^2 - 2 = 47$$

• $r_4 = 47^2 - 2 \equiv 48 \pmod{127}$

•
$$r_5 = 48^2 - 2 \equiv 16 \pmod{127}$$

•
$$r_6 = 256 - 2 \equiv 0 \pmod{127}$$
.

• Therefore, M7 is prime.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

• The 7 \times 7 chessboard will store the calculations in base 2 (modulo 127). Columns on the board will represent powers of 2 and the rows will store the product of a single base 2 digit in r_k times the base 2 number r_k . Lucas used a pawn or no pawn to represent a 1 or 0 on the board, respectively.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

• The 7 \times 7 chessboard will store the calculations in base 2 (modulo 127). Columns on the board will represent powers of 2 and the rows will store the product of a single base 2 digit in r_k times the base 2 number r_k . Lucas used a pawn or no pawn to represent a 1 or 0 on the board, respectively.

• Initially, the top row will contain $r_1 = 3$.

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

 If the top row contained r_k, Lucas would square r_k with the following moves.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

- If the top row contained r_k, Lucas would square r_k with the following moves.
- He would do standard multiplication to populate the board with pawns. Each row corresponds to putting a shift of the top row in the row or having no pawns in the row, depending on whether there is a pawn in the corresponding column of the top row or not. Because Lucas is doing the calculations modulo 127, the columns wrap around the chessboard.

		History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
E	douard Lucas					

• He would then subtract 2 (once), usually by taking a pawn away from Column f. In the game, two pawns in the same column would be equivalent to removing those two pawns and replacing them by one pawn in the next column to the left. The column to the left of the left-most column is the right-most column.

Mersenne Primes o o	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

- He would then subtract 2 (once), usually by taking a pawn away from Column f. In the game, two pawns in the same column would be equivalent to removing those two pawns and replacing them by one pawn in the next column to the left. The column to the left of the left-most column is the right-most column.
- Lucas kept this game going until he didn't have two pawns in any column. Then he would slide each pawn in a column to the top row. This would be his r_{k+1} .

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

Lucas started the game with $r_1 = 3$. On the chessboard, that would be:

◆□▶▲圖▶▲圖▶▲圖▶ ▲圖 めんの

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

Squaring $r_1 = 3$ would result in the following chessboard.

< < >> < <</>

- E →

Curtis Cooper University of Central Missouri

We can subtract 2 by removing a pawn from Column f. That would result in the following chessboard.

・ロト・雪・・雪・・雪・ うらの

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

Pushing all the pawns to the top row would result in the following chessboard which is $r_2 = 7$.

▲ロと▲聞と▲臣と▲臣と 臣 のべ⊙

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

Now we need to square $r_2 = 7$. This would result in the following chessboard.

・ロト・雪・・雪・・雪・ うらぐ

Curtis Cooper University of Central Missouri

Mersenne Primes oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

Subtracting 2 would result in the following chessboard.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

We now do the game moves where we replace two pawns in a column by one pawn in the column to the left. Here are the steps in the game.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

Curtis Cooper University of Central Missouri

Mersenne Primes and GIMPS

・ロト・日本・日本・日本・日本・日本

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

Curtis Cooper University of Central Missouri

Mersenne Primes and GIMPS

・ロト・日本・日本・日本・日本・日本

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Edouard Lucas					

The final chessboard with $r_3 = 47$ would be the following.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 0000000000000000000000000000000000	00 0 0			
Edouard Lucas					

Squaring $r_3 = 47$, we obtain the following chessboard.

< < >> < <</>

-∃= >+

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
0 00		00			
	0000				
Edouard Lucas					

Continuing this game, we have $r_4 = 48$, $r_5 = 16$, and $r_6 = 0$.

E 990

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes ○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Edouard Lucas					

Continuing this game, we have $r_4 = 48$, $r_5 = 16$, and $r_6 = 0$. Therefore $M7 = 2^7 - 1 = 127$ is a Mersenne prime.

・ロト・西・・日・・日・ うくの

Curtis Cooper University of Central Missouri

• Lucas played this game on a 127×127 chessboard. It is estimated that it must have taken him between 170 and 300 hours to complete the calculations. At the end, Lucas got $r_{126} \equiv 0 \pmod{M127}$.

Curtis Cooper University of Central Missouri

- Lucas played this game on a 127×127 chessboard. It is estimated that it must have taken him between 170 and 300 hours to complete the calculations. At the end, Lucas got $r_{126} \equiv 0 \pmod{M127}$.
- A correct list of all Mersenne primes in the exponent range up to 257 was completed and rigorously verified in 1947.

- Lucas played this game on a 127×127 chessboard. It is estimated that it must have taken him between 170 and 300 hours to complete the calculations. At the end, Lucas got $r_{126} \equiv 0 \pmod{M127}$.
- A correct list of all Mersenne primes in the exponent range up to 257 was completed and rigorously verified in 1947.
- That list is:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
0 00	00	00			
	0000				
Computer Era					

• The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.

э

3 D A 3 D D

Mersenne Primes o oo	History of Mersenne Primes ○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Computer Era					

- The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
- Landon Curt Noll and Laura Nickel, 18 year-old high school students, discovered M21701. They were both studying number theory under Dr. Lehmer. This is the 25th Mersenne prime.

Mersenne Primes o oo	History of Mersenne Primes ○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Computer Era					

- The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
- Landon Curt Noll and Laura Nickel, 18 year-old high school students, discovered M21701. They were both studying number theory under Dr. Lehmer. This is the 25th Mersenne prime.
- Later Landon Curt Noll found M23209.

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			
Computer Era					

M4253 is the first Mersenne prime with more that 1000 digits.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Curtis Cooper University of Central Missouri

Mersenne Primes ^O ^{OO}	History of Mersenne Primes ○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Computer Era					

- M4253 is the first Mersenne prime with more that 1000 digits.
- M44497 is the first with more than 10,000 digits.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes oo ooooooooooooooooooooooooooooooooo	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Computer Era					

- M4253 is the first Mersenne prime with more that 1000 digits.
- M44497 is the first with more than 10,000 digits.
- M6972593 was the first prime with at least 1,000,000 digits.

Mersenne Primes o oo	History of Mersenne Primes ○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
Computer Era					

- M4253 is the first Mersenne prime with more that 1000 digits.
- M44497 is the first with more than 10,000 digits.
- M6972593 was the first prime with at least 1,000,000 digits.
- All three were the first known primes of any kind of that size.

 On August 23, 2008, Edson Smith at UCLA, participating in GIMPS, discovered M43112609, a 12.9-million-digit Mersenne prime.

< < >> < <</>

★ ∃ > < ∃ >

- On August 23, 2008, Edson Smith at UCLA, participating in GIMPS, discovered M43112609, a 12.9-million-digit Mersenne prime.
- Since this prime was the first known prime with at least 10 million digits, the Electronic Frontier Foundation (EFF) awarded GIMPS 100,000 dollars. Part of the 100,000 dollars went to UCLA.

< ロ > < 同 > < 三 > < 三 >

- On August 23, 2008, Edson Smith at UCLA, participating in GIMPS, discovered M43112609, a 12.9-million-digit Mersenne prime.
- Since this prime was the first known prime with at least 10 million digits, the Electronic Frontier Foundation (EFF) awarded GIMPS 100,000 dollars. Part of the 100,000 dollars went to UCLA.
- The prime was found on a Dell OptiPlex 745 and is the eighth Mersenne prime discovered at UCLA.

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
0	00	00			
	00000000000000000000000000000000000000				
Computer Era					

 List of 48 Known Mersenne Primes http://en.wikipedia.org/wiki/Mersenne_prime

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
1 Mers	enne Primes				
Pri	imes				
Me	ersenne Primes				
2 Histo	ory of Mersenne Pri	mes			
	arin Mersenne				
• Ed	louard Lucas				
	mputer Era				
• GI	-				
	MPS People				
	MPS Links				
	885161				
	s-Lehmer Test				
	cas-Lehmer Test				
	$2^{11} - 1$ is not prime				
	$2^{31} - 1$ is prime		۰.	▶ < @ ▶ < 일 ▶ < 일 ▶	E nac
Curtia Cooper, Univer	rsity of Central Missouri				/ .

Curtis Cooper University of Central Missouri

Mersenne Primes oo	History of Mersenne Primes	GIMPS O O O	M57885161	Lucas-Lehmer Test	Reasons	
GIMPS						

The Great Internet Mersenne Prime Search

 GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.

Mersenne Primes o oo	History of Mersenne Primes 00 000000000000000000000000000000000000	GIMPS O O O	M57885161	Lucas-Lehmer Test	Reasons	
GIMPS						

The Great Internet Mersenne Prime Search

- GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.
- George Woltman founded GIMPS in January 1996 and wrote the prime testing software.

Mersenne Primes o oo	History of Mersenne Primes 00 000000000000000000000000000000000	GIMPS • • • •	M57885161	Lucas-Lehmer Test	Reasons	
GIMPS						

The Great Internet Mersenne Prime Search

- GIMPS is a collaborative project of volunteers who are searching for Mersenne prime numbers. The software used by GIMPS volunteers is Prime95. This software can be downloaded from the Internet for free.
- George Woltman founded GIMPS in January 1996 and wrote the prime testing software.
- Scott Kurowski wrote the PrimeNet server that supports GIMPS. In 1997 he founded Entropia, a distributed computing software company.

 Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions – essentially big multiplication operations.

Curtis Cooper University of Central Missouri

	Mersenne Primes	History of Mersenne Primes	GIMPS ○● ○	M57885161	Lucas-Lehmer Test	Reasons
C	GIMPS					

- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions – essentially big multiplication operations.
- As of February 5, 2013, GIMPS had a sustained throughput of approximately 129 trillion floating-point operations per second).

	Mersenne Primes	History of Mersenne Primes	GIMPS ○● ○	M57885161	Lucas-Lehmer Test	Reasons
C	GIMPS					

- Woltman's program uses a special algorithm, discovered in the early 1990's by Richard Crandall. Crandall found ways to double the speed of what are called convolutions – essentially big multiplication operations.
- As of February 5, 2013, GIMPS had a sustained throughput of approximately 129 trillion floating-point operations per second).
- The GIMPS project consists of 98,980 users, 574 teams, and 730,562 CPUs.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS ○○ ● ○	M57885161	Lucas-Lehmer To
GIMPS People				

Woltman

Kurowski

Crandall

・ロト・日本・山田・ ・田・ うらる

Fest

Reasons

Curtis Cooper University of Central Missouri

	N	lersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	C C		000000000000000000000000000000000000000			0000000	
GIMPS Links	G	GIMPS Links	0000	•			

< < >> < <</>

A B > A B >

э.

• The GIMPS home page can be found at: http://www.mersenne.org

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	GIMPS ○○ ●	M57885161	Lucas-Lehmer Test	Reasons
GIMPS Links					

- The GIMPS home page can be found at: http://www.mersenne.org
- A Mersenne Prime discussion forum can be found at: http://www.mersenneforum.org

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes		M57885161	Lucas-Lehmer Test	Reasons
	0000				
1 Mers	enne Primes				
• Pr	imes				
• Me	ersenne Primes				
2 Histo	ory of Mersenne Pri	mes			
	arin Mersenne				
	louard Lucas				
	omputer Era				
3 GIM					
	MPS				
	MPS People				
	MPS Links				
	385161				
	s-Lehmer Test				
	cas-Lehmer Test 2 ¹¹ – 1 is not prime				
	$2^{31} - 1$ is prime				- 000
			< □	1 > 《레 > 《문 > 《문 >	画 うくぐ

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			

• On January 25, 2013, Curtis Cooper, as a participant in GIMPS, discovered the 48th known Mersenne prime,

 $2^{57885161}-1,\\$

a 17,425,170 digit number.

Curtis Cooper University of Central Missouri

Mersenne I	Primes I	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
		00 00000000000000000000000000 0000	00 0 0			

• On January 25, 2013, Curtis Cooper, as a participant in GIMPS, discovered the 48th known Mersenne prime,

```
2^{57885161}-1,\\
```

a 17,425,170 digit number.

• The first and last digits of this prime are:

58188726623 ... 071724285951

I naa

< ロ > < 同 > < 回 > < 回 > - < 回 > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - <

N	lersenne Primes	History of Mersenne Primes	M57885161	Lucas-Lehmer Test	Reasons
č		00000000000000000000000000000000000000			

 On January 25, 2013, Curtis Cooper, as a participant in GIMPS, discovered the 48th known Mersenne prime,

```
2^{57885161}-1,\\
```

a 17,425,170 digit number.

• The first and last digits of this prime are:

58188726623 ... 071724285951

• This is the 14th Mersenne prime found by GIMPS.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			

 On January 25, 2013, Curtis Cooper, as a participant in GIMPS, discovered the 48th known Mersenne prime,

```
2^{57885161}-1,\\
```

a 17,425,170 digit number.

• The first and last digits of this prime are:

58188726623 ... 071724285951

- This is the 14th Mersenne prime found by GIMPS.
- The new prime was independently verified using different programs running on different hardware.

э.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

 Serge Batalov ran Ernst Mayer's MLucas software on a 32-core server in 6 days (resource donated by Novartis IT group) to verify the new prime.

3 × < 3 ×

э.

- Serge Batalov ran Ernst Mayer's MLucas software on a 32-core server in 6 days (resource donated by Novartis IT group) to verify the new prime.
- Jerry Hallett verified the prime using the CUDALucas software running on a NVidia GPU in 3.6 days.

Curtis Cooper University of Central Missouri

Mersenne Primes ^O ^{OO}	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

- Serge Batalov ran Ernst Mayer's MLucas software on a 32-core server in 6 days (resource donated by Novartis IT group) to verify the new prime.
- Jerry Hallett verified the prime using the CUDALucas software running on a NVidia GPU in 3.6 days.
- Finally, Dr. Jeff Gilchrist verified the find using the GIMPS software on an Intel i7 CPU in 4.5 days and the CUDALucas program on a NVidia GTX 560 Ti in 7.7 days.

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00	00		0000000	
	0000				

• This is the third Mersenne prime found at the University of Central Missouri.

= nar

< ロ > < 同 > < 回 > < 回 > < 回 > <

Mersenne Primes	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

- This is the third Mersenne prime found at the University of Central Missouri.
- The first Mersenne prime is 2³⁰⁴⁰²⁴⁵⁷ 1 and was found on December 15, 2005. It has 9.125 million digits.

< ロ > < 同 > < 回 > < 回 > < 回 > <

I naa

Mersenne Primes	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

- This is the third Mersenne prime found at the University of Central Missouri.
- The first Mersenne prime is 2³⁰⁴⁰²⁴⁵⁷ 1 and was found on December 15, 2005. It has 9.125 million digits.
- The second Mersenne prime is 2³²⁵⁸²⁶⁵⁷ 1 and was found on September 4, 2006. It has 9.8 million digits.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

• All of these Mersenne primes were the largest known prime at the time of their discovery.

Curtis Cooper University of Central Missouri

- All of these Mersenne primes were the largest known prime at the time of their discovery.
- The new Mersenne prime was found in the Modern Language Lab at UCM. It was on the computer named: ml-wd-210-22I (Wood Building 210, Computer Number 22).

Mersenne Primes ^O ^{OO}	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

- All of these Mersenne primes were the largest known prime at the time of their discovery.
- The new Mersenne prime was found in the Modern Language Lab at UCM. It was on the computer named: ml-wd-210-22I (Wood Building 210, Computer Number 22).
- This computer was a 3 GHz Intel Core2 Duo E8400

Mersenne Primes History of Mersenne Primes GIMPS M57885161 Lucas-Let	ner Test Reasons
0000 0	

• The exponent was assigned by the PrimeNet server on December 12, 2012 and started work on the exponent 5 days later.

Curtis Cooper University of Central Missouri

Merse	nne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
00						
		0000				

- The exponent was assigned by the PrimeNet server on December 12, 2012 and started work on the exponent 5 days later.
- The computer ran George Woltman's program, implementing the Lucas-Lehmer test with Fast Fourier Transforms, for 39 days.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00	00		0000000	
	0000				

- The exponent was assigned by the PrimeNet server on December 12, 2012 and started work on the exponent 5 days later.
- The computer ran George Woltman's program, implementing the Lucas-Lehmer test with Fast Fourier Transforms, for 39 days.
- Interesting enough, the exponent which resulted in this Mersenne prime was assigned to two other users before we were assigned the number to test. Both times, the exponent was reclaimed by the PrimeNet server after 60 days because of inactivity in the computations.

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			

- The exponent was assigned by the PrimeNet server on December 12, 2012 and started work on the exponent 5 days later.
- The computer ran George Woltman's program, implementing the Lucas-Lehmer test with Fast Fourier Transforms, for 39 days.
- Interesting enough, the exponent which resulted in this Mersenne prime was assigned to two other users before we were assigned the number to test. Both times, the exponent was reclaimed by the PrimeNet server after 60 days because of inactivity in the computations.
- We have over 1000 computers at UCM participating in the GIMPS project.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

 My primary job as a participant in GIMPS is making sure all the computers are running Woltman's program. I basically install and start George Woltman's program on UCM's lab computers.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

- My primary job as a participant in GIMPS is making sure all the computers are running Woltman's program. I basically install and start George Woltman's program on UCM's lab computers.
- The administration has been a great help to me, giving me administrator access to many computers in UCM's labs.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

- My primary job as a participant in GIMPS is making sure all the computers are running Woltman's program. I basically install and start George Woltman's program on UCM's lab computers.
- The administration has been a great help to me, giving me administrator access to many computers in UCM's labs.
- In recent years, I have been able to access these lab computers from home.

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons

- My primary job as a participant in GIMPS is making sure all the computers are running Woltman's program. I basically install and start George Woltman's program on UCM's lab computers.
- The administration has been a great help to me, giving me administrator access to many computers in UCM's labs.
- In recent years, I have been able to access these lab computers from home.
- Because of our 17 years of work in GIMPS and the 3 Mersenne primes we have discovered, there is great interest in GIMPS at UCM and a level of support and trust by our IT department and UCM administrators.

```
Mersenne Primes
          History of Mersenne Primes
                        GIMPS
                              M57885161
                                     Lucas-Lehmer Test
                                                Reasons
   [Tue Dec 11 02:00:14 2012]
    Iteration 44973837 / 54575267
    Iteration 37543183 / 58588867
    [Mon Dec 17 08:16:13 2012]
    UID: curtisc/wd-210--221, M54575267 is not prime.
    Res64: FFF410C4C187CF11.
    We5: 945B96CB, 3369298, 0000000,
    AID: 63EFFFA1029B57A64A682FFA291D53A6
    [Tue Dec 18 02:00:16 2012]
    Iteration 1089622 / 57885161
    Iteration 48128946 / 58588867
    [Tue Dec 25 03:16:34 2012]
    UID: curtisc/wd-210--221, M58588867 is not prime.
    Res64: 3CFF03A4A83FADD3.
```

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reason
	00 00000000000000000000000000000000000	00 0 0			

```
AID: C46BE4ABC4961A1321154AC11BD4FCC8
[Tue Jan 15 10:58:07 2013]
Iteration 31953531 / 56419513
Iteration 42813818 / 57885161
[Thu Jan 17 02:00:15 2013]
Iteration 34393427 / 56419513
Iteration 45189954 / 57885161
[Thu Jan 17 06:27:33 2013]
Iteration 45461248 / 57885161
Iteration 34661902 / 56419513
[Fri Jan 25 17:30:25 2013]
UID: curtisc/wd-210--221, M57885161 is prime!
We5: 58BF09CF,0000000,
AID: CC2B2E16DC6B11B028899C3088AB7745
```

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			

• Email from George Woltman

▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● ○ ○ ○

Curtis Cooper University of Central Missouri

- 1	Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	C	00	00		0000000	
	00	000000000000000000000000000000000000000				

- Email from George Woltman
- Stephen Colbert

▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● ○ ○ ○

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00	00		0000000	
	0000				

< < >> < <</>

(*) * (*) *)

э.

News About M57885161

 Official Press Release http://www.mersenne.org/various/57885161.htm

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			

News About M57885161

- Official Press Release http://www.mersenne.org/various/57885161.htm
- Huffington Post Story http://www.math-cs.ucmo.edu/~curtisc/M57885161.html

A B > A B >

э.

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			

News About M57885161

- Official Press Release http://www.mersenne.org/various/57885161.htm
- Huffington Post Story http://www.math-cs.ucmo.edu/~curtisc/M57885161.html
- New York Times Story http://www.math-cs.ucmo.edu/~curtisc/M57885161.html

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			

More About M57885161

 Fox 4 Kansas City News Story http://fox4kc.com/2013/02/08/ucm-professors-big-primenumber-discovery-has-bragging-rights/

< ロ > < 同 > < 回 > < 回 > :

э.

Ν	lersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00	00 00000000000000000000000000000000000	00 0 0			

More About M57885161

- Fox 4 Kansas City News Story http://fox4kc.com/2013/02/08/ucm-professors-big-primenumber-discovery-has-bragging-rights/
- Lee Judge Cartoon

э

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00	00		0000000	
	0000				

∃ ► < ∃ ►</p>

э

Mersenne Buttons

 M30402457 Button http://www.mathcs.ucmo.edu/~curtisc/photos/M30402457.jpg

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00	00		0000000	
	0000				

Mersenne Buttons

- M30402457 Button http://www.mathcs.ucmo.edu/~curtisc/photos/M30402457.jpg
- M32582657 Button http://www.mathcs.ucmo.edu/~curtisc/photos/M32582657.jpg

3 D A 3 D D

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
00					
	0000				

Mersenne Buttons

- M30402457 Button http://www.mathcs.ucmo.edu/~curtisc/photos/M30402457.jpg
- M32582657 Button http://www.mathcs.ucmo.edu/~curtisc/photos/M32582657.jpg
- M57885161 Button http://www.math-cs.ucmo.edu/~curtisc/images/1.jpg

I	Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	C	00	00		0000000	
	00	000000000000000000000000000000000000000				

3 Primes GIF http://www.math-cs.ucmo.edu/~curtisc/images/6.gif

= 900

イロン 人間 とくほ とくほとう

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
00					
	0000				

- 3 Primes GIF http://www.math-cs.ucmo.edu/~curtisc/images/6.gif
- UCM GIF http://www.math-cs.ucmo.edu/~curtisc/images/14.gif

Mersenne Primes o oo	History of Mersenne Primes		M57885161	Lucas-Lehmer Test	Reasons
	0000				
1 Mers	senne Primes				
• P	rimes				
• M	ersenne Primes				
2 Hist	ory of Mersenne Pri	mes			
• M	arin Mersenne				
• E	douard Lucas				
• C	omputer Era				
3 GIM	PS				
• G	IMPS				
• G	IMPS People				
	IMPS Links				
4 M57	885161				
	as-Lehmer Test				
• Li	ucas-Lehmer Test				
	$2^{11} - 1$ is not prime				
•	$2^{31} - 1$ is prime		< □		E 990
Curtis Cooper Univ	ersity of Central Missouri				

Mersenne Primes ○ ○○	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ●ooooooo	Reasons
Lucas-Lehmer Test					

• The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ●০০০০০০০	Reasons
Lucas-Lehmer Test					

• The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

Definition

Let $S_1 = 4$ and

$$S_{n+1} = S_n^2 - 2$$
 for $n \ge 1$.

= nav

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ●০০০০০০০	Reasons
Lucas-Lehmer Test					

• The Lucas-Lehmer Test is one way to test whether or not Mersenne numbers are Mersenne primes.

Definition

Let $S_1 = 4$ and

$$S_{n+1} = S_n^2 - 2$$
 for $n \ge 1$.

• The first few terms of the *S* sequence are:

4, 14, 194, 37634, 1416317954, 2005956546822746114, 4023861667741036022825635656102100994,...

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00	00		0000000	
	0000				
Lucas-Lehmer Test					

Lucas-Lehmer Test

Let *p* be a prime number. Then

 $M_p = 2^p - 1$ is prime if and only if $S_{p-1} \mod M_p = 0.$

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons	
	00	00		0000000		
00	000000000000000000000000000000000000000					
Lucas-Lehmer Te	st					

Lucas

Lehmer

<ロ> <四> <四> <日> <日> <日> <日> <日</p> Ξ.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ୦୦୦●୦୦୦୦	Reasons
Lucas-Lehmer Test					

 $M_{11} = 2^{11} - 1 = 2047$ is not prime.

▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● ○ ○ ○

Curtis Cooper University of Central Missouri

Mersenne Primes ° °	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ooo●oooo	Reasons
Lucas-Lehmer Test					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ooo●oooo	Reasons
Lucas-Lehmer Test					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

S_i mod 2047 4

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ୦୦୦●୦୦୦୦	Reasons
Lucas-Lehmer Test					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ooo●oooo	Reasons
Lucas-Lehmer Test					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$
3 $(14^2 - 2) = 194 \mod 2047 = 194$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ooo●oooo	Reasons
Lucas-Lehmer Test					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$
3 $(14^2 - 2) = 194 \mod 2047 = 194$
4 $(194^2 - 2) = 37634 \mod 2047 = 788$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ooo●oooo	Reasons
Lucas-Lehmer Test					

$$M_{11} = 2^{11} - 1 = 2047$$
 is not prime.

Proof

i
$$S_i \mod 2047$$

1 4
2 $(4^2 - 2) = 14 \mod 2047 = 14$
3 $(14^2 - 2) = 194 \mod 2047 = 194$
4 $(194^2 - 2) = 37634 \mod 2047 = 788$
5 $(788^2 - 2) = 620942 \mod 2047 = 701$

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	GIMPS 00 0 0	M57885161	Lucas-Lehmer Test oooo●ooo	Reasons
Lucas-Lehmer Test					
2 ¹¹ – 1 is	not prime				

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0 0	M57885161	Lucas-Lehmer Test oooo●ooo	Reasons	
Lucas-Lehmer Test						
0 11 1						

Proof cont.

i $S_i \mod 2047$ 6 $(701^2 - 2) = 491399 \mod 2047 = 119$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0 0	M57885161	Lucas-Lehmer Test oooo●ooo	Reasons
Lucas-Lehmer Test					
2 ¹¹ – 1 is	not prime				

Proof cont.

i $S_i \mod 2047$ 6 $(701^2 - 2) = 491399 \mod 2047 = 119$ 7 $(119^2 - 2) = 14159 \mod 2047 = 1877$

イロト イ団ト イヨト イヨト

= nav

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0 0	M57885161	Lucas-Lehmer Test oooo●ooo	Reasons	
Lucas-Lehmer Test						
o11						

Proof cont.

i $S_i \mod 2047$ 6 $(701^2 - 2) = 491399 \mod 2047 = 119$ 7 $(119^2 - 2) = 14159 \mod 2047 = 1877$ 8 $(1877^2 - 2) = 3523127 \mod 2047 = 240$

= nar

Curtis Cooper University of Central Missouri

Mersenne Primes oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test oooo●ooo	Reasons	
Lucas-Lehmer Test						
o11						

i $S_i \mod 2047$ 6 $(701^2 - 2) = 491399 \mod 2047 = 119$ 7 $(119^2 - 2) = 14159 \mod 2047 = 1877$ 8 $(1877^2 - 2) = 3523127 \mod 2047 = 240$ 9 $(240^2 - 2) = 57598 \mod 2047 = 282$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test oooo●ooo	Reasons	
Lucas-Lehmer Test						
- 11						

Proof cont.		
	i	<i>S_i</i> mod 2047
	6	$(701^2 - 2) = 491399 \mod 2047 = 119$
	7	$(119^2 - 2) = 14159 \mod 2047 = 1877$
	8	$(1877^2 - 2) = 3523127 \mod 2047 = 240$
	9	$(240^2 - 2) = 57598 \mod 2047 = 282$
	10	$(282^2 - 2) = 79522 \mod 2047 = 1736$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test oooooo●oo	Reasons
Lucas-Lehmer Test					

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● ○ ○ ○

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test oooooo●oo	Reasons
Lucas-Lehmer Test					

i

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

 $S_i \mod 2^{31} - 1$

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ୦୦୦୦୦●୦୦	Reasons	
Lucas-Lehmer Test						

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

 $S_i \mod 2^{31} - 1$ 4

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test oooooo●oo	Reasons	
Lucas-Lehmer Test						

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

Curtis Cooper University of Central Missouri

2

Mersenne Primes o oo	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test oooooo●oo	Reasons
Lucas-Lehmer Te	st				

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test oooooo●oo	Reasons	
Lucas-Lehmer Test						

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

i	$S_i \mod 2^{31} - 1$
1	4
2	14
3	194
4	37634

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test oooooo●oo	Reasons	
Lucas-Lehmer Test						

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

i	$S_i \mod 2^{31} - 1$
1	4
2	14
3	194
4	37634
5	1416317954

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test oooooo●oo	Reasons	
Lucas-Lehmer Test						

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

i	$S_i \mod 2^{31} - 1$
1	4
2	14
3	194
4	37634
5	1416317954
6	669670838

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test oooooo●oo	Reasons	
Lucas-Lehmer Test						

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

i	$S_i \mod 2^{31} - 1$
1	4
2	14
3	194
4	37634
5	1416317954
6	669670838
7	1937259419

・ロト・西ト・西ト・西・ つくぐ

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test oooooo●oo	Reasons	
Lucas-Lehmer Test						

Theorem

 $M_{31} = 2^{31} - 1 = 2147483647$ is prime.

Proof.

i	$S_i \mod 2^{31} - 1$
1	4
2	14
3	194
4	37634
5	1416317954
6	669670838
7	1937259419
8	425413602

Curtis Cooper University of Central Missouri

Mersenne Primes oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ೦೦೦೦೦೦●೦	Reasons
Lucas-Lehmer Test					
031 4	-				

イロン イヨン イヨン

$2^{31} - 1$ is prime

i	$S_i \mod 2^{31} - 1$
9	842014276
10	12692426
11	2044502122
12	1119438707
13	1190075270
14	1450757861
15	877666528
16	630853853
17	940321271
18	512995887
19	692931217

Curtis Cooper University of Central Missouri

O ○ ○○	History of Mersenne Primes	GIMPS 00 0 0	M57885161	Lucas-Lehmer Test oooooooo●	Reasons
Lucas-Lehmer Test					
2 ³¹ – 1 is	prime				

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�() ◆

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ooooooo●	Reasons
Lucas-Lehmer Test					
2 ³¹ – 1 is	prime				

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�() ◆

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes 00 000000000000000000000000000000000000	GIMPS 00 0	M57885161	Lucas-Lehmer Test ooooooo●	Reasons
Lucas-Lehmer Test					
2 ³¹ – 1 is	prime				

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665

・ロト・西ト・モン・モー うえぐ

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	GIMPS 00 0 0	M57885161	Lucas-Lehmer Test oooooooo●	Reasons
Lucas-Lehmer Test					
2 ³¹ – 1 is	prime				

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ooooooo●	Reasons
Lucas-Lehmer Test					
2 ³¹ – 1 is	prime				

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708
29	65536

Curtis Cooper University of Central Missouri

Mersenne Primes ○ ○○	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test ooooooo●	Reasons
Lucas-Lehmer Test					
2 ³¹ – 1 is	prime				

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�() ◆

i	$S_i \mod 2^{31} - 1$
20	1883625615
21	1992425718
22	721929267
23	27220594
24	1570086542
25	1676390412
26	1159251674
27	211987665
28	1181536708
29	65536
30	0

Curtis Cooper University of Central Missouri

Mersenne Primes o oo	History of Mersenne Primes	GIMPS 00 0	M57885161	Lucas-Lehmer Test	Reasons
_	0000				
1 Mer	senne Primes				
• P	rimes				
• N	ersenne Primes				
2 Hist	ory of Mersenne Pri	mes			
• N	arin Mersenne				
• E	douard Lucas				
• C	omputer Era				
3 GIM	PS				
• G	IMPS				
• G	IMPS People				
• G	IMPS Links				
4 M57	885161				
5 Luc	as-Lehmer Test				
• Li	ucas-Lehmer Test				
	2^{11}_{21} – 1 is not prime				
•	$2^{31} - 1$ is prime		∢ (E
Curtis Cooper Univ	ersity of Central Missouri				

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
00					
	0000				

ъ.

イロト イヨト イヨト イヨト

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00	00		0000000	
00	000000000000000000000000000000000000000				

< < >> < <</>

A B > A B >

э.

1. To help in the discovery of new Mersenne primes.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00	00		0000000	
	0000				

1. To help in the discovery of new Mersenne primes.

2. To put to good use the idle CPU cycles of hundreds of computers in labs and offices across UCM's campus.

Curtis Cooper University of Central Missouri

Mersenne Primes o	History of Mersenne Primes	GIMPS 00	M57885161	Lucas-Lehmer Test	Reasons
00	000000000000000000000000000000000000000				

1. To help in the discovery of new Mersenne primes.

2. To put to good use the idle CPU cycles of hundreds of computers in labs and offices across UCM's campus.

3. To help detect hardware problems (fan and CPU/bus problems) on individual computers at UCM.

Curtis Cooper University of Central Missouri

Mersei	ne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
		00	00		0000000	
00		000000000000000000000000000000000000000				

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			

3 D A 3 D D

4. To obtain favorable press for UCM for their support of our efforts to discover new Mersenne primes.

Curtis Cooper University of Central Missouri

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
00	000000000000000000000000000000000000000				
	0000				

4. To obtain favorable press for UCM for their support of our efforts to discover new Mersenne primes.

5. To win the \$150,000 offered by the Electronic Frontier Foundation (EFF) for the discovery of the first one-hundred million digit prime number. EFF's motivation is to encourage research in computational number theory related to large primes.

Mersenne Primes	History of Mersenne Primes	GIMPS	M57885161	Lucas-Lehmer Test	Reasons
	00 00000000000000000000000000000000000	00 0 0			

Email Address and Talk URL

Curtis Cooper's Email: cooper@ucmo.edu

Talk: http://www.mathcs.ucmo.edu/~curtisc/talks/mersennegimps/mersennegimps.pdf

▲□▶▲□▶▲□▶▲□▶ □ シッペ

Curtis Cooper University of Central Missouri