Identities in the Spirit of Ramanujan's Amazing Identity

Curtis Cooper University of Central Missouri

June 25, 2012

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Curtis Cooper University of Central Missouri

Outline

Introduction

- 2 Third Power Algebraic Identity to Ramanujan-like Identity
- Search for Third Power Algebraic Identities
- 4 Third Power Results
- 5 Fourth Power Algebraic Identity to Ramanujan-like Identity
- **6** Search for Fourth Power Algebraic Identities
- Fourth Power Results

8 Questions

In his "lost notebook", Ramanujan stated the following amazing identity.

Ramanujan

lf

$$\sum_{n\geq 0} a_n x^n = \frac{1+53x+9x^2}{1-82x-82x^2+x^3},$$
$$\sum_{n\geq 0} b_n x^n = \frac{2-26x-12x^2}{1-82x-82x^2+x^3},$$
$$\sum_{n\geq 0} c_n x^n = \frac{2+8x-10x^2}{1-82x-82x^2+x^3},$$

then

$$a_n^3 + b_n^3 = c_n^3 + (-1)^n$$
.

Curtis Cooper University of Central Missouri

Identities in the Spirit of Ramanujan's Amazing Identity

590

Hirschhorn demonstrated that using the algebraic identity from the "lost notebook",

$$(x^{2} + 7xy - 9y^{2})^{3} + (2x^{2} - 4xy + 12y^{2})^{3}$$

=(2x² + 10y²)³ + (x² - 9xy - y^{2})³,

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

э.

Ramanujan could have proved his amazing identity.

Curtis Cooper University of Central Missouri

Hirschhorn demonstrated that using the algebraic identity from the "lost notebook",

$$(x^2 + 7xy - 9y^2)^3 + (2x^2 - 4xy + 12y^2)^3 = (2x^2 + 10y^2)^3 + (x^2 - 9xy - y^2)^3,$$

Ramanujan could have proved his amazing identity.

Chen gave an algorithm to produce similar algebraic identities and Ramanujan-like identities.

э.

Hirschhorn demonstrated that using the algebraic identity from the "lost notebook",

$$(x^2 + 7xy - 9y^2)^3 + (2x^2 - 4xy + 12y^2)^3 = (2x^2 + 10y^2)^3 + (x^2 - 9xy - y^2)^3,$$

Ramanujan could have proved his amazing identity.

Chen gave an algorithm to produce similar algebraic identities and Ramanujan-like identities.

< ロ > < 同 > < 回 > < 回 > .

Our goal is to use this procedure to find explicit algebraic identities and Ramanujan-like identities.

For example, using the algebraic identity

$$(9x^2 + 45xy - 135y^2)^3 + (10x^2 - 20xy + 172y^2)^3 = (12x^2 + 12xy + 138y^2)^3 + (x^2 - 83xy + y^2)^3,$$

э

we can prove the following Ramanujan-like identity.

Curtis Cooper University of Central Missouri

Ramanujan-like Identity

lf

$$\sum_{n\geq 0} a_n x^n = \frac{9+3609x-135x^2}{1-6888x+6888x^2-x^3},$$
$$\sum_{n\geq 0} b_n x^n = \frac{10-1478x+172x^2}{1-6888x+6888x^2-x^3},$$
$$\sum_{n\geq 0} c_n x^n = \frac{12+1146x+138x^2}{1-6888x+6888x^2-x^3},$$

then

$$a_n^3 + b_n^3 = c_n^3 + 1.$$

Curtis Cooper University of Central Missouri

Identities in the Spirit of Ramanujan's Amazing Identity

Outline

Introduction

2 Third Power Algebraic Identity to Ramanujan-like Identity

- 3 Search for Third Power Algebraic Identities
- 4 Third Power Results
- 5 Fourth Power Algebraic Identity to Ramanujan-like Identity
- **6** Search for Fourth Power Algebraic Identities
- Fourth Power Results

8 Questions

Curtis Cooper University of Central Missouri

Identities in the Spirit of Ramanujan's Amazing Identity

・ロト・西・・田・・田・・日・今々で

The following theorem and proof were suggested by Hirschhorn. The form of the identity was suggested by Chen.

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲

Curtis Cooper University of Central Missouri

The following theorem and proof were suggested by Hirschhorn. The form of the identity was suggested by Chen.

Ramanujan-like Identity

Let

$$(r_1x^2 + s_1xy + t_1y^2)^3 + (r_2x^2 + s_2xy + t_2y^2)^3 = (r_3x^2 + s_3xy + t_3y^2)^3 + (x^2 - s_4xy - t_4y^2)^3,$$

be an algebraic identity in variables x and y and fixed integers for the r's, s's, and t's.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Curtis Cooper University of Central Missouri

Ramanujan-like Identity

Then, if

$$\sum_{n\geq 0} a_n x^n = \frac{r_1 + (s_1 s_4 + t_1 - r_1 t_4) x - t_1 t_4 x^2}{1 - (s_4^2 + t_4) x - (s_4^2 t_4 + t_4^2) x^2 + t_4^3 x^3},$$

$$\sum_{n\geq 0} b_n x^n = \frac{r_2 + (s_2 s_4 + t_2 - r_2 t_4) x - t_2 t_4 x^2}{1 - (s_4^2 + t_4) x - (s_4^2 t_4 + t_4^2) x^2 + t_4^3 x^3},$$

$$\sum_{n\geq 0} c_n x^n = \frac{r_3 + (s_3 s_4 + t_3 - r_3 t_4) x - t_3 t_4 x^2}{1 - (s_4^2 + t_4) x - (s_4^2 t_4 + t_4^2) x^2 + t_4^3 x^3}$$

then

$$a_n^3 + b_n^3 = c_n^3 + (-t_4)^{3n}$$
.

Curtis Cooper University of Central Missouri

Identities in the Spirit of Ramanujan's Amazing Identity

▲口▶▲御▶▲臣▶▲臣▶ 臣 のへで

Proof. Let $w_0 = 0$, $w_1 = 1$, and for $n \ge 0$,

$$w_{n+2} = s_4 w_{n+1} + t_4 w_n.$$

イロン イヨン イヨン

= 990

Curtis Cooper University of Central Missouri

Proof. Let
$$w_0 = 0$$
, $w_1 = 1$, and for $n \ge 0$,

$$w_{n+2} = s_4 w_{n+1} + t_4 w_n.$$

The generating function for the sequence $\{w_n\}$ is given by

$$w(x) = \sum_{n\geq 0} w_n x^n = \frac{x}{1-s_4 x-t_4 x^2}.$$

э.

Curtis Cooper University of Central Missouri

Now, if $x = w_{n+1}$ and $y = w_n$, then

$$\begin{aligned} x^2 - s_4 x y - t_4 y^2 &= w_{n+1}^2 - s_4 w_{n+1} w_n - t_4 w_n^2 \\ &= w_{n+1}^2 - w_n (s_4 w_{n+1} + t_4 w_n) \\ &= w_{n+1}^2 - w_n w_{n+2} = (-t_4)^n. \end{aligned}$$

▲日▼▲□▼▲目▼▲目▼ 回 ろく⊙

Curtis Cooper University of Central Missouri

Now, if $x = w_{n+1}$ and $y = w_n$, then

$$\begin{aligned} x^2 - s_4 x y - t_4 y^2 &= w_{n+1}^2 - s_4 w_{n+1} w_n - t_4 w_n^2 \\ &= w_{n+1}^2 - w_n (s_4 w_{n+1} + t_4 w_n) \\ &= w_{n+1}^2 - w_n w_{n+2} = (-t_4)^n. \end{aligned}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

The last equality can be proved by induction on *n*.

Curtis Cooper University of Central Missouri

Now, let

$$a_n = r_1 x^2 + s_1 xy + t_1 y^2 = r_1 w_{n+1}^2 + s_1 w_{n+1} w_n + t_1 w_n^2,$$

$$b_n = r_2 x^2 + s_2 xy + t_2 y^2 = r_2 w_{n+1}^2 + s_2 w_{n+1} w_n + t_2 w_n^2,$$

$$c_n = r_3 x^2 + s_3 xy + t_3 y^2 = r_3 w_{n+1}^2 + s_3 w_{n+1} w_n + t_3 w_n^2.$$

Curtis Cooper University of Central Missouri

Now, let

$$a_n = r_1 x^2 + s_1 xy + t_1 y^2 = r_1 w_{n+1}^2 + s_1 w_{n+1} w_n + t_1 w_n^2,$$

$$b_n = r_2 x^2 + s_2 xy + t_2 y^2 = r_2 w_{n+1}^2 + s_2 w_{n+1} w_n + t_2 w_n^2,$$

$$c_n = r_3 x^2 + s_3 xy + t_3 y^2 = r_3 w_{n+1}^2 + s_3 w_{n+1} w_n + t_3 w_n^2.$$

We can show that

$$a_n^3 + b_n^3 = c_n^3 + (-t_4)^{3n}$$
.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

3

Curtis Cooper University of Central Missouri

But, using generating function techniques, we can show that

$$\sum_{n\geq 0} w_n^2 x^n = \frac{x - t_4 x^2}{1 - (s_4^2 + t_4)x - (s_4^2 t_4 + t_4^2)x^2 + t_4^3 x^3},$$
$$\sum_{n\geq 0} w_{n+1}^2 x^n = \frac{1 - t_4 x}{1 - (s_4^2 + t_4)x - (s_4^2 t_4 + t_4^2)x^2 + t_4^3 x^3},$$
$$\sum_{n\geq 0} w_n w_{n+1} x^n = \frac{s_4 x}{1 - (s_4^2 + t_4)x - (s_4^2 t_4 + t_4^2)x^2 + t_4^3 x^3}.$$

Curtis Cooper University of Central Missouri

Hence,

$$\begin{split} \sum_{n\geq 0} a_n x^n &= \frac{r_1 + (s_1 s_4 + t_1 - r_1 t_4) x - t_1 t_4 x^2}{1 - (s_4^2 + t_4) x - (s_4^2 t_4 + t_4^2) x^2 + t_4 x^3},\\ \sum_{n\geq 0} b_n x^n &= \frac{r_2 + (s_2 s_4 + t_2 - r_2 t_4) x - t_2 t_4 x^2}{1 - (s_4^2 + t_4) x - (s_4^2 t_4 + t_4^2) x^2 + t_4^3 x^3},\\ \sum_{n\geq 0} c_n x^n &= \frac{r_3 + (s_3 s_4 + t_3 - r_3 t_4) x - t_3 t_4 x^2}{1 - (s_4^2 + t_4) x - (s_4^2 t_4 + t_4^2) x^2 + t_4^3 x^3}, \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 >

3

and the proof is complete.

Curtis Cooper University of Central Missouri

Outline

1) Introduction

2 Third Power Algebraic Identity to Ramanujan-like Identity

Search for Third Power Algebraic Identities

- Third Power Results
- 5 Fourth Power Algebraic Identity to Ramanujan-like Identity
- 6 Search for Fourth Power Algebraic Identities
- Fourth Power Results

8 Questions

Curtis Cooper University of Central Missouri

(日)

Curtis Cooper University of Central Missouri

1. Pick one particular set of integers r_1 , r_2 , and r_3 such that

$$r_1^3 + r_2^3 = r_3^3 + 1.$$

< ロ > < 同 > < 回 > < 回 > .

э.

Curtis Cooper University of Central Missouri

1. Pick one particular set of integers r_1 , r_2 , and r_3 such that

$$r_1^3 + r_2^3 = r_3^3 + 1.$$

2. Select a collection of sets of integers t_1 , t_2 , t_3 , and t_4 such that

$$t_1^3 + t_2^3 = t_3^3 - t_4^3.$$

< ロ > < 同 > < 回 > < 回 > .

э.

Curtis Cooper University of Central Missouri

1. Pick one particular set of integers r_1 , r_2 , and r_3 such that

$$r_1^3 + r_2^3 = r_3^3 + 1.$$

2. Select a collection of sets of integers t_1 , t_2 , t_3 , and t_4 such that

$$t_1^3 + t_2^3 = t_3^3 - t_4^3.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Also, select a range of integer values for s_1 and s_2 to search.

Curtis Cooper University of Central Missouri

a. For each t_1 , t_2 , t_3 , t_4 , s_1 , and s_2 , compute s_3 and s_4 using the equations

$$\begin{split} s_3 &= \frac{s_1 t_1^2 + s_2 t_2^2 + r_1^2 s_1 t_4^2 + r_2^2 s_2 t_4^2}{r_3^2 t_4^2 + t_3^2},\\ s_4 &= r_3^2 s_3 - r_1^2 s_1 - r_2^2 s_2. \end{split}$$

Make sure these constants can be computed and that they are integers.

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Curtis Cooper University of Central Missouri

b. Check the following conditions.

$$3r_1t_1^2 + 3s_1^2t_1 + 3r_2t_2^2 + 3s_2^2t_2 = 3r_3t_3^2 + 3s_3^2t_3 + 3t_4^2 - 3s_4^2t_4,$$

$$6r_1s_1t_1 + s_1^3 + 6r_2s_2t_2 + s_2^3 = 6r_3s_3t_3 + s_3^3 + 6s_4t_4 - s_4^3,$$

$$3r_1^2t_1 + 3r_1s_1^2 + 3r_2^2t_2 + 3r_2s_2^2 = 3r_3^2t_3 + 3r_3s_3^2 - 3t_4 + 3s_4^2.$$

・ロ・・日・・日・・日・ うへの

Curtis Cooper University of Central Missouri

b. Check the following conditions.

$$\begin{aligned} &3r_1t_1^2 + 3s_1^2t_1 + 3r_2t_2^2 + 3s_2^2t_2 = 3r_3t_3^2 + 3s_3^2t_3 + 3t_4^2 - 3s_4^2t_4, \\ &6r_1s_1t_1 + s_1^3 + 6r_2s_2t_2 + s_2^3 = 6r_3s_3t_3 + s_3^3 + 6s_4t_4 - s_4^3, \\ &3r_1^2t_1 + 3r_1s_1^2 + 3r_2^2t_2 + 3r_2s_2^2 = 3r_3^2t_3 + 3r_3s_3^2 - 3t_4 + 3s_4^2. \end{aligned}$$

c. If all the above conditions are satisfied (every equation is true), the resulting collection of *r*'s, *s*'s, and *t*'s form an algebraic identity.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Curtis Cooper University of Central Missouri

$$r_1^3 + r_2^3 = r_3^3 + 1.$$

|▲□▶▲圖▶▲圖▶▲圖▶ | 圖|||の�?

Curtis Cooper University of Central Missouri

$$r_1^3 + r_2^3 = r_3^3 + 1.$$

For Ramanujan's algebraic identity

$$1^3 + 2^3 = 2^3 + 1.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Curtis Cooper University of Central Missouri

$$r_1^3 + r_2^3 = r_3^3 + 1.$$

For Ramanujan's algebraic identity

$$1^3 + 2^3 = 2^3 + 1.$$

Other trivial values of r_1 , r_2 , and r_3 are $r_1 = 1$ and $r_2 = r_3 = r$, where *r* is a positive integer.

< ロ > < 同 > < 回 > < 回 > .

$$r_1^3 + r_2^3 = r_3^3 + 1.$$

For Ramanujan's algebraic identity

$$1^3 + 2^3 = 2^3 + 1.$$

Other trivial values of r_1 , r_2 , and r_3 are $r_1 = 1$ and $r_2 = r_3 = r$, where *r* is a positive integer.

Other values of r_1 , r_2 , and r_3 ($r_1 < r_2$ and $r_2 \neq r_3$) can be found in the following table.

Curtis Cooper University of Central Missouri

$$r_1^3 + r_2^3 = r_3^3 + 1.$$

<i>r</i> ₁	<i>r</i> 2	<i>r</i> ₃	
9	10	12	
64	94	103	
73	144	150	
135	235	249	
244	729	738	
334	438	495	
368	1537	1544	
577	2304	2316	
1010	1897	1988	
1033	1738	1852	
1126	5625	5640	
1945	11664	11682	

<ロ> <回> <回> <回> <回> <回>

Ξ.

Curtis Cooper University of Central Missouri

For Step 2, we want integers t_1 , t_2 , t_3 , and t_4 such that

$$t_1^3 + t_2^3 = t_3^3 - t_4^3.$$

・ロ・・ (型・・ (目・・)

э.

Curtis Cooper University of Central Missouri

For Step 2, we want integers t_1 , t_2 , t_3 , and t_4 such that

$$t_1^3 + t_2^3 = t_3^3 - t_4^3.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

In the spirit of Ramanujan, we assume $t_4 = \pm 1$. We also wanted to find nontrivial *t*'s. Some values of the *t*'s can be found in the following table.

$$t_1^3 + t_2^3 = t_3^3 - t_4^3.$$

<i>t</i> ₁	t ₂	t ₃	<i>t</i> 4
-9	6	-8	1
6	-9	-8	1
-9	8	-6	1
8	-9	-6	1
-8	-6	-9	-1
-6	-8	-9	-1
-8	9	6	-1
9	-8	6	-1
-6	9	8	-1
9	-6	8	-1
6	8	9	1
8	6	9	1

<ロ> <四> <四> <日> <日> <日> <日</p>

Ξ.

Curtis Cooper University of Central Missouri
$$t_1^3 + t_2^3 = t_3^3 - t_4^3.$$

t ₁	t ₂	t ₃	<i>t</i> 4
-12	9	-10	-1
9	-12	-10	-1
-12	10	-9	-1
10	-12	-9	-1
-10	-9	-12	1
-9	-10	-12	1
-10	12	9	1
12	-10	9	1
-9	12	10	1
12	-9	10	1
9	10	12	-1
10	9	12	-1

<ロ> <回> <回> <回> <回> <回>

Ξ.

Curtis Cooper University of Central Missouri

$$t_1^3 + t_2^3 = t_3^3 - t_4^3.$$

<i>t</i> ₁	t ₂	t ₃	<i>t</i> ₄
-103	64	-94	-1
64	-103	-94	-1
-103	94	-64	-1
94	-103	-64	-1
-94	-64	-103	1
-64	-94	-103	1
-94	103	64	1
103	-94	64	1
-64	103	94	1
103	-64	94	1
64	94	103	-1
94	64	103	-1

<ロ> <回> <回> <回> <回> <回>

Ξ.

Curtis Cooper University of Central Missouri

Also, for step 2, we determined some range to search in for s_1 and s_2 . For these we typically would try something like integers between -1500 and 1500. The bounds on s_1 and s_2 vary depending on the speed of the search.

Outline

1 Introduction

- 2 Third Power Algebraic Identity to Ramanujan-like Identity
- Search for Third Power Algebraic Identities

4 Third Power Results

- 5 Fourth Power Algebraic Identity to Ramanujan-like Identity
- **6** Search for Fourth Power Algebraic Identities
- Fourth Power Results

8 Questions

Curtis Cooper University of Central Missouri

$$(r_1x^2 + s_1xy + t_1y^2)^3 + (r_2x^2 + s_2xy + t_2y^2)^3 = (r_3x^2 + s_3xy + t_3y^2)^3 + (x^2 - s_4xy - t_4y^2)^3,$$

<ロ> <回> <回> <回> <回> <回>

Ξ.

Curtis Cooper University of Central Missouri

$$(r_1x^2 + s_1xy + t_1y^2)^3 + (r_2x^2 + s_2xy + t_2y^2)^3 = (r_3x^2 + s_3xy + t_3y^2)^3 + (x^2 - s_4xy - t_4y^2)^3,$$

We found the following results. The constants in each row of the following table satisfy the equation. We include the leading coefficient of 1 in the last trinomial. Recall that the form of the last trinomial is $x^2 - s_4 xy - t_4 y^2$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Curtis Cooper University of Central Missouri

r_1, s_1, t_1	<i>r</i> ₂ , <i>s</i> ₂ , <i>t</i> ₂	<i>r</i> ₃ , <i>s</i> ₃ , <i>t</i> ₃	1, <i>s</i> ₄ , <i>t</i> ₄
1,556,-65601	2,-364,83802	2,-36,67402	1,756,1
1,61,-791	2,-40,1010	2,-4,812	1,83,-1
1,7,-9	2,-4,12	2,0,10	1,9,1
1,-25,135	2,-32,138	2,-36,172	1,9,1
1,-227,11161	2,-292,11468	2,-328,14258	1,83,-1
9,412,-11161	10,-180,14258	12,112,11468	1,756,1
9,-126,3753	10,236,-3230	12,96,2676	1,430,-1
9,45,-135	10,-20,172	12,12,138	1,83,-1
9,-169,791	10,-180,812	12,-220,1010	1,9,1
9,-1539,65601	10,-1640,67402	12,-2004,83802	1,83,-1
3753,-126,9	4528,200,-8	5262,84,6	1,430,-1
11161,3481,-791	11468,-1300,1010	14258,1292,812	1,6887,-
11161,412,-9	11468,-112,12	14258,180,10	1,756,1
		・ ロ と く 聞 と く 回 と く 回	> E 990

Curtis Cooper University of Central Missouri

< < >> < <</>

★ ∃ > < ∃ >

The third row is the algebraic identity discovered by Ramanujan. This gives Ramanujan's amazing identity.

Curtis Cooper University of Central Missouri

The third row is the algebraic identity discovered by Ramanujan. This gives Ramanujan's amazing identity.

The seventh row gives the algebraic identity

$$(9x^2 - 126xy + 3753y^2)^3 + (10x^2 + 236xy - 3230y^2)^3 = (12x^2 + 96xy + 2676y^2)^3 + (x^2 - 430y + y^2)^3.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

This produces the following Ramanujan-like identity.

Ramanujan-like Identity

lf

$$\sum_{n\geq 0} a_n x^n = \frac{9 - 54172x + 3753x^2}{1 - 184899x + 184899x^2 - x^3},$$
$$\sum_{n\geq 0} b_n x^n = \frac{10 + 98260x - 3230x^2}{1 - 184899x + 184899x^2 - x^3},$$
$$\sum_{n\geq 0} c_n x^n = \frac{12 + 43968x + 2676x^2}{1 - 184899x + 184899x^2 - x^3},$$

then

$$a_n^3 + b_n^3 = c_n^3 + 1.$$

Curtis Cooper University of Central Missouri

Identities in the Spirit of Ramanujan's Amazing Identity

Outline

Introduction

- 2 Third Power Algebraic Identity to Ramanujan-like Identity
- Search for Third Power Algebraic Identities
 - Third Power Results
- 5 Fourth Power Algebraic Identity to Ramanujan-like Identity

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

- **6** Search for Fourth Power Algebraic Identities
- Fourth Power Results

8 Questions

Curtis Cooper University of Central Missouri

Let

$$(x^{2} + s_{1}xy + t_{1}y^{2})^{4} + (mx^{2} + s_{2}xy + t_{2}y^{2})^{4} + (nx^{2} + s_{3}xy + t_{3}y^{2})^{4}$$

= $(mx^{2} + s_{4}xy + t_{4}y^{2})^{4} + (nx^{2} + s_{5}xy + t_{5}y^{2})^{4} + (x^{2} - s_{6}xy - t_{6}y^{2})^{4},$

be an algebraic identity in variables x and y and integer constants m, n, s_1 , s_2 , s_3 , s_4 , s_5 , s_6 , t_1 , t_2 , t_3 , t_4 , t_5 , and t_6 .

Curtis Cooper University of Central Missouri

Then, if

$$\sum_{n\geq 0} a_n x^n = \frac{1 + (s_1 s_6 + t_1 - t_6) x - t_1 t_6 x^2}{1 - (s_6^2 + t_6) x - (s_6^2 t_6 + t_6^2) x^2 + t_6^3 x^3},$$

$$\sum_{n\geq 0} b_n x^n = \frac{m + (s_2 s_6 + t_2 - mt_6) x - t_2 t_6 x^2}{1 - (s_6^2 + t_6) x - (s_6^2 t_6 + t_6^2) x^2 + t_6^3 x^3},$$

$$\sum_{n\geq 0} c_n x^n = \frac{n + (s_3 s_6 + t_3 - nt_6) x - t_3 t_6 x^2}{1 - (s_6^2 + t_6) x - (s_6^2 t_6 + t_6^2) x^2 + t_6^3 x^3},$$

$$\sum_{n\geq 0} d_n x^n = \frac{m + (s_4 s_6 + t_4 - mt_6) x - t_4 t_6 x^2}{1 - (s_6^2 + t_6) x - (s_6^2 t_6 + t_6^2) x^2 + t_6^3 x^3},$$

$$\sum_{n\geq 0} e_n x^n = \frac{n + (s_5 s_6 + t_5 - nt_6) x - t_5 t_6 x^2}{1 - (s_6^2 + t_6) x - (s_6^2 t_6 + t_6^2) x^2 + t_6^3 x^3},$$

<ロ> <四> <四> <日> <日> <日> <日</p>

Ξ.

Curtis Cooper University of Central Missouri

then

$$a_n^4 + b_n^4 + c_n^4 = d_n^4 + e_n^4 + (-t_6)^{4n}$$
.

<ロ> <同> <同> < 同> < 同> 、

Ξ.

Curtis Cooper University of Central Missouri

Outline

Introduction

- 2 Third Power Algebraic Identity to Ramanujan-like Identity
- Search for Third Power Algebraic Identities
- 4 Third Power Results
- 5 Fourth Power Algebraic Identity to Ramanujan-like Identity

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

- **6** Search for Fourth Power Algebraic Identities
 - 7 Fourth Power Results

8 Questions

Curtis Cooper University of Central Missouri

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Curtis Cooper University of Central Missouri

э.

1. Pick one particular set of integers *m* and *n*.

Curtis Cooper University of Central Missouri

- 1. Pick one particular set of integers *m* and *n*.
- **2.** Select a collection of sets of integers t_1 , t_2 , t_3 , t_4 , t_5 , and $t_6 = \pm 1$ such that

$$t_1^4 + t_2^4 + t_3^4 = t_4^4 + t_5^4 + 1.$$

э.

Curtis Cooper University of Central Missouri

- 1. Pick one particular set of integers *m* and *n*.
- **2.** Select a collection of sets of integers t_1 , t_2 , t_3 , t_4 , t_5 , and $t_6 = \pm 1$ such that

$$t_1^4 + t_2^4 + t_3^4 = t_4^4 + t_5^4 + 1.$$

Also, select a range of integer values for s_1 , s_2 , s_3 , and s_4 to search.

э.

Curtis Cooper University of Central Missouri

a. For each t_1 , t_2 , t_3 , t_4 , t_5 , t_6 , s_1 , s_2 , s_3 , and s_4 , compute s_5 and s_6 using the equations

$$s_5 = \frac{s_1 t_1^3 + s_2 t_2^3 + s_3 t_3^3 - s_4 t_4^3 - s_1 t_6^3 - m^3 s_2 t_6^3 - n^3 s_3 t_6^3 + m^3 s_4 t_6^3}{n^3 t_6^3 + t_5^3}$$

$$s_6 = -s_1 - m^3 s_2 - n^3 s_3 + m^3 s_4 + n^3 s_5.$$

A B > A B >

Make sure these constants can be computed and that they are integers.

Curtis Cooper University of Central Missouri

b. Check the following conditions.

$$\begin{aligned} 4t_1^3 + 6s_1^2t_1^2 + 4mt_2^3 + 6s_2^2t_2^2 + 4nt_3^3 + 6s_3^2t_3^2 \\ &= 4mt_4^3 + 6s_4^2t_4^2 + 4nt_5^3 + 6s_5^2t_5^2 - 4t_6^3 + 6s_6^2t_6^2, \\ 12s_1t_1^2 + 4s_1^3t_1 + 12ms_2t_2^2 + 4s_2^3t_2 + 12ns_3t_3^2 + 4s_3^3t_3 \\ &= 12ms_4t_4^2 + 4s_4^3t_4 + 12ns_5t_5^2 + 4s_5^3t_5 - 12s_6t_6^2 + 4s_6^3t_6, \\ 6t_1^2 + 12s_1^2t_1 + s_1^4 + 6m^2t_2^2 + 12ms_2^2t_2 + s_2^4 + 6n^2t_3^2 + 12ns_3^2t_3 + s_4 \\ &= 6m^2t_4^2 + 12ms_4^2t_4 + s_4^4 + 6n^2t_5^2 + 12ns_5^2t_5 + s_5^4 + 6t_6^2 - 12s_6^2t_6 + \\ 12s_1t_1 + 4s_1^3 + 12m^2s_2t_2 + 4ms_2^3 + 12n^2s_3t_3 + 4ns_3^3 \\ &= 12m^2s_4t_4 + 4ms_4^3 + 12n^2s_5t_5 + 4ns_5^3 + 12s_6t_6 - 4s_6^3, \\ 4t_1 + 6s_1^2 + 4m^3t_2 + 6m^2s_2^2 + 4n^3t_3 + 6n^2s_3^2 \\ &= 4m^3t_4 + 6m^2s_4^2 + 4n^3t_5 + 6n^2s_5^2 - 4t_6 + 6s_6^2. \end{aligned}$$

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

3

Curtis Cooper University of Central Missouri

c. If all the above conditions are satisfied (every equation is true), the resulting collection of *m*, *n*, *s*'s, and *t*'s form an algebraic identity.

★ ∃ > < ∃ >

Curtis Cooper University of Central Missouri

•1	1 2	-3 -	4 ' ° 5	
<i>t</i> ₁	t ₂	t ₃	<i>t</i> ₄	t ₅
2	31	47	14	49
2	31	47	49	14
2	35	47	19	50
2	35	47	50	19
2	47	173	71	172
2	47	173	172	71
2	148	191	56	206
2	148	191	206	56
3	6	21	16	19
3	6	21	19	16
3	7	8	2	9
3	7	8	9	2
3	7	44	24	43

Ξ.

$$t_1^4 + t_2^4 + t_3^4 = t_4^4 + t_5^4 + 1$$
.

Curtis Cooper University of Central Missouri

Outline

Introduction

- 2 Third Power Algebraic Identity to Ramanujan-like Identity
- Search for Third Power Algebraic Identities
- 4 Third Power Results
- 5 Fourth Power Algebraic Identity to Ramanujan-like Identity

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

- **6** Search for Fourth Power Algebraic Identities
- Fourth Power Results
 - Questions

Curtis Cooper University of Central Missouri

$$(x^{2} + s_{1}xy + t_{1}y^{2})^{4} + (mx^{2} + s_{2}xy + t_{2}y^{2})^{4} + (nx^{2} + s_{3}xy + t_{3}y^{2})^{4}$$

= $(mx^{2} + s_{4}xy + t_{4}y^{2})^{4} + (nx^{2} + s_{5}xy + t_{5}y^{2})^{4} + (x^{2} - s_{6}xy - t_{6}y^{2})^{4},$

Curtis Cooper University of Central Missouri

$$(x^{2} + s_{1}xy + t_{1}y^{2})^{4} + (mx^{2} + s_{2}xy + t_{2}y^{2})^{4} + (nx^{2} + s_{3}xy + t_{3}y^{2})^{4}$$

= $(mx^{2} + s_{4}xy + t_{4}y^{2})^{4} + (nx^{2} + s_{5}xy + t_{5}y^{2})^{4} + (x^{2} - s_{6}xy - t_{6}y^{2})^{4},$

< ロ > < 同 > < 回 > < 回 >

We found the following results. The constants in each row of the following table satisfy the equation. Again, we include the leading coefficient of 1 in the last trinomial. Recall that the form of the last trinomial is $x^2 - s_6 xy - t_6 y^2$.

Curtis Cooper University of Central Missouri

m = 1 and n = 2

1, <i>s</i> ₁ , <i>t</i> ₁	1, <i>s</i> ₂ , <i>t</i> ₂	2, <i>s</i> ₃ , <i>t</i> ₃	1, <i>s</i> ₄ , <i>t</i> ₄	2, <i>s</i> ₅ , <i>t</i> ₅	1, <i>s</i> ₆ , <i>t</i> ₆
1,-4,4	1,-6,9	2,-10,13	1,-7,11	2,-10,12	1,3,-1
1,-3,4	18,9	2,-11,13	1,-9,12	2,-11,11	1,2,1
1,-1,4	1,-2,9	2,-3,13	1,7,-12	2,-3,-11	1,10,-1
1,-4,5	1,-6,6	2,-10,11	1,-7,9	2,-10,10	1,3,-1
1,0,5	1,-2,6	2,-2,11	1,7,-9	2,-2,-10	1,9,1
1,-4,5	1,-5,6	2,-9,11	1,-7,10	2,-9,9	1,2,1
1,-5,6	1,-10,23	2,-15,29	1,-11,26	2,-15,27	1,4,-1
1,-4,6	1,-12,23	2,-16,29	1,-13,27	2,-16,26	1,3,1
1,0,6	1,-4,23	2,-4,29	1,11,-27	2,-4,-26	1,15,-1
1,-6,7	1,-7,14	2,-13,21	1,-9,18	2,-13,19	1,4,-1
1,-4,7	1,-12,14	2,-16,21	1,-13,19	2,-16,18	1,3,1
1,-4,7	1,0,14	2,-4,21	1,9,-19	2,-4,-18	1,13,-1
1,-7,8	1,-6,11	2,-13,19	1,-9,16	2,-13,17	1,4,-1

Curtis Cooper University of Central Missouri

m = 2 and n = 3

1, <i>s</i> ₁ , <i>t</i> ₁	2, <i>s</i> ₂ , <i>t</i> ₂	3, <i>s</i> ₃ , <i>t</i> ₃	2, <i>s</i> ₄ , <i>t</i> ₄	3, <i>s</i> ₅ , <i>t</i> ₅	1, <i>s</i> ₆ , <i>t</i> ₆
1,-1,7	2,-2,14	3,-3,21	2,10,-19	3,-6,-18	1,16,-1
1,-8,8	2,-10,11	3,-18,19	2,-14,16	3,-17,17	1,3,-1
1,0,8	2,-2,11	3,-2,19	2,10,-16	3,-5,-17	1,15,1
1,-7,8	2,-9,11	3,-16,19	2,-13,17	3,-15,16	1,2,1
1,-8,10	2,-12,19	3,-20,29	2,-16,26	3,-19,25	1,3,1
1,-4,10	2,0,19	3,-4,29	2,12,-26	3,-7,-25	1,19,-1
1,-3,11	2,0,16	3,-3,27	2,12,-23	3,-6,-24	1,18,1
1,0,11	2,-4,39	3,-4,50	2,16,-46	3,-9,-45	1,25,-1
1,-8,13	2,-10,13	3,-18,26	2,-14,22	3,-17,23	1,3,-1
1,4,-13	2,0,-13	3,4,-26	2,4,-22	3,3,-23	1,1,1
1,-1,14	2,-3,41	3,-4,55	2,17,-49	3,-9,-50	1,26,1
1,-8,15	2,-12,19	3,-20,34	2,-16,30	3,-19,29	1,3,1

Curtis Cooper University of Central Missouri

m = 3 and n = 5

1, <i>s</i> ₁ , <i>t</i> ₁	3, <i>s</i> ₂ , <i>t</i> ₂	5, <i>s</i> ₃ , <i>t</i> ₃	3, <i>s</i> ₄ , <i>t</i> ₄	5, <i>s</i> ₅ , <i>t</i> ₅	1, <i>s</i> ₆ , <i>t</i> ₆
1,-2,21	3,-4,41	5,6,-71	3,6,-69	5,4,-49	1,22,-1

<ロ> <同> <同> < 同> < 同> < 同> <

Ξ.

Curtis Cooper University of Central Missouri

The first row of the table for m = 1 and n = 2 gives the algebraic identity

$$(x^{2} - 4xy + 4y^{2})^{4} + (x^{2} - 6xy + 9y^{2})^{4} + (2x^{2} - 10xy + 13y^{2})^{4}$$

= $(x^{2} - 7xy + 11y^{2})^{4} + (2x^{2} - 10xy + 12y^{2})^{4} + (x^{2} - 3xy + y^{2})^{4}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Curtis Cooper University of Central Missouri

The first row of the table for m = 1 and n = 2 gives the algebraic identity

$$(x^2 - 4xy + 4y^2)^4 + (x^2 - 6xy + 9y^2)^4 + (2x^2 - 10xy + 13y^2)^4 = (x^2 - 7xy + 11y^2)^4 + (2x^2 - 10xy + 12y^2)^4 + (x^2 - 3xy + y^2)^4.$$

This produces the following Ramanujan-like identity.

Curtis Cooper University of Central Missouri

$$\sum_{n\geq 0} a_n x^n = \frac{1 - 7x + 4x^2}{1 - 8x + 8x^2 - x^3},$$
$$\sum_{n\geq 0} b_n x^n = \frac{1 - 8x + 9x^2}{1 - 8x + 8x^2 - x^3},$$
$$\sum_{n\geq 0} c_n x^n = \frac{2 - 15x + 13x^2}{1 - 8x + 8x^2 - x^3},$$
$$\sum_{n\geq 0} d_n x^n = \frac{1 - 9x + 11x^2}{1 - 8x + 8x^2 - x^3},$$
$$\sum_{n\geq 0} e_n x^n = \frac{2 - 16x + 12x^2}{1 - 8x + 8x^2 - x^3},$$

<ロ> <四> <四> <日> <日> <日> <日</p>

Ξ.

Curtis Cooper University of Central Missouri

then

$$a_n^4 + b_n^4 + c_n^4 = d_n^4 + e_n^4 + 1.$$

<ロ> <同> <同> < 同> < 同> 、

Ξ.

Curtis Cooper University of Central Missouri

The row in the table for m = 3 and n = 5 gives the algebraic identity

$$(x^2 - 2xy + 21y^2)^4 + (3x^2 - 4xy + 41y^2)^4 + (5x^2 + 6xy - 71y^2)^4$$

= $(3x^2 + 6xy - 69y^2)^4 + (5x^2 + 4xy - 49y^2)^4 + (x^2 - 22xy + y^2)^4.$

Curtis Cooper University of Central Missouri

The row in the table for m = 3 and n = 5 gives the algebraic identity

$$(x^{2} - 2xy + 21y^{2})^{4} + (3x^{2} - 4xy + 41y^{2})^{4} + (5x^{2} + 6xy - 71y^{2})^{4}$$

= $(3x^{2} + 6xy - 69y^{2})^{4} + (5x^{2} + 4xy - 49y^{2})^{4} + (x^{2} - 22xy + y^{2})^{4}.$

This produces the following Ramanujan-like identity.

▲日と▲圖と▲語と▲語と「語」の

Curtis Cooper University of Central Missouri

$$\sum_{n\geq 0} a_n x^n = \frac{1-22x+21x^2}{1-483x+483x^2-x^3},$$

$$\sum_{n\geq 0} b_n x^n = \frac{3-44x+41x^2}{1-483x+483x^2-x^3},$$

$$\sum_{n\geq 0} c_n x^n = \frac{5+66x+71x^2}{1-483x+483x^2-x^3},$$

$$\sum_{n\geq 0} d_n x^n = \frac{3+66x+69x^2}{1-483x+483x^2-x^3},$$

$$\sum_{n\geq 0} e_n x^n = \frac{5+44x+49x^2}{1-483x+483x^2-x^3},$$

Curtis Cooper University of Central Missouri

Identities in the Spirit of Ramanujan's Amazing Identity

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで
then

$$a_n^4 + b_n^4 + c_n^4 = d_n^4 + e_n^4 + 1.$$

イロン イロン イヨン イヨン

Ξ.

Curtis Cooper University of Central Missouri

Outline

Introduction

- 2 Third Power Algebraic Identity to Ramanujan-like Identity
- Search for Third Power Algebraic Identities
- 4 Third Power Results
- 5 Fourth Power Algebraic Identity to Ramanujan-like Identity

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

- **6** Search for Fourth Power Algebraic Identities
- Fourth Power Results

8 Questions

Curtis Cooper University of Central Missouri

1. In the third power case, we were unable to find any nontrivial algebraic identities with $r_1 = 1$ and $r_2 = r_3 = r$ where $r \ge 3$ is an integer. We would like to know if any algebraic identities exist and if so, what are they?

Curtis Cooper University of Central Missouri

- 1. In the third power case, we were unable to find any nontrivial algebraic identities with $r_1 = 1$ and $r_2 = r_3 = r$ where $r \ge 3$ is an integer. We would like to know if any algebraic identities exist and if so, what are they?
- 2. We were unable to find any fourth power algebraic identities of the form

$$(r_1x^2 + s_1xy + t_1y^2)^4 + (r_2x^2 + s_2xy + t_2y^2)^4 + (r_3x^2 + s_3xy + t_3y^2)^4 = (r_4x^2 + s_4xy + t_4y^2)^4 + (x^2 - s_5xy - t_5y^2)^4,$$

where the *r*'s are positive integers and the *s*'s and *t*'s are nontrivial. Do such identities exist?

・ロト ・同ト ・ヨト ・ヨト

Curtis Cooper University of Central Missouri

3. In the fourth power case, we found algebraic identities for every pair we tried when *m* is a positive integer and n = m + 1. Is this always true? In addition, is there any other algebraic identity where $n \neq m + 1$ other than the one we found where m = 3 and n = 5?

References

- 1. K.-W. Chen, *Extensions of an amazing identity of Ramanujan*, The Fibonacci Quarterly, (to appear).
- 2. M. D. Hirschhorn, *An amazing identity of Ramanujan*, Mathematics Magazine, **68** (1995), 199–201.
- J. McLaughlin, An identity motivated by an amazing identity of Ramanujan, The Fibonacci Quarterly, 48.1 (2010), 34–38.
- 4. S. Ramanujan, *The Lost Notebook and Other Unpublished Papers*, New Delhi, Narosa, 1988, p. 341.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Email Address, Talk URL, and Article URL

Curtis Cooper's Email: cooper@ucmo.edu

Talk: www.mathcs.ucmo.edu/~curtisc/talks/ramanujan/hungary12.pdf

Article: www.mathcs.ucmo.edu/~curtisc/articles/ramanujan/cooperpaper.pdf

Curtis Cooper University of Central Missouri