Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Curtis Cooper University of Central Missouri

July 22, 2014

Outline

(1) Introduction

First Algebraic StatementSecond Algebraic StatementThird Algehraic StatementSecond and Third Algebraic StatementsFourth Algebraic StatementFifth Algehraic StatementSixth Algebraic StatementMore Algebraic StatementCurtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

In his "lost notebook", Ramanujan gave twelve algebraic statements. Here are some of these statements.

In his "lost notebook", Ramanujan gave twelve algebraic statements. Here are some of these statements.
If $g^{5}=3$, then

$$
\begin{equation*}
\frac{\sqrt{g^{2}+1}+\sqrt{5 g-5}}{\sqrt{g^{2}+1}-\sqrt{5 g-5}}=\frac{1}{g}+g+g^{2}+g^{3} \tag{1}
\end{equation*}
$$

In his "lost notebook", Ramanujan gave twelve algebraic statements. Here are some of these statements.
If $g^{5}=3$, then

$$
\begin{equation*}
\frac{\sqrt{g^{2}+1}+\sqrt{5 g-5}}{\sqrt{g^{2}+1}-\sqrt{5 g-5}}=\frac{1}{g}+g+g^{2}+g^{3} \tag{1}
\end{equation*}
$$

If $g^{5}=2$, then

$$
\begin{equation*}
\sqrt{1+g^{2}}=\frac{g^{4}+g^{3}+g-1}{\sqrt{5}} \tag{2}
\end{equation*}
$$

If $g^{5}=2$, then

$$
\begin{equation*}
\sqrt{4 g-3}=\frac{g^{9}+g^{7}-g^{6}-1}{\sqrt{5}} \tag{3}
\end{equation*}
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

If $g^{5}=2$, then

$$
\begin{equation*}
\sqrt{4 g-3}=\frac{g^{9}+g^{7}-g^{6}-1}{\sqrt{5}} \tag{3}
\end{equation*}
$$

If $g^{5}=3$, then

$$
\begin{equation*}
\sqrt[3]{2-g^{3}}=\frac{1+g-g^{2}}{\sqrt[3]{5}} \tag{4}
\end{equation*}
$$

If $g^{5}=2$, then

$$
\begin{equation*}
\sqrt[5]{1+g+g^{3}}=\frac{\sqrt{1+g^{2}}}{\sqrt[10]{5}} \tag{5}
\end{equation*}
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

If $g^{5}=2$, then

$$
\begin{equation*}
\sqrt[5]{1+g+g^{3}}=\frac{\sqrt{1+g^{2}}}{\sqrt[10]{5}} \tag{5}
\end{equation*}
$$

If $g^{4}=5$, then

$$
\begin{equation*}
\frac{\sqrt[5]{3+2 g}-\sqrt[5]{4-4 g}}{\sqrt[5]{3+2 g}+\sqrt[5]{4-4 g}}=2+g+g^{2}+g^{3} \tag{6}
\end{equation*}
$$

Recently, Hirschhorn gave some simple proofs of these statements.

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Recently, Hirschhorn gave some simple proofs of these statements.

One technique he used and we will use throughout the paper is componendo et dividendo, which states that

$$
\frac{a+b}{a-b}=\frac{c+d}{c-d} \text { if and only if } \frac{a}{b}=\frac{c}{d} .
$$

Recently, Hirschhorn gave some simple proofs of these statements.

One technique he used and we will use throughout the paper is componendo et dividendo, which states that

$$
\frac{a+b}{a-b}=\frac{c+d}{c-d} \text { if and only if } \frac{a}{b}=\frac{c}{d} \text {. }
$$

We will give some similar algebraic statements to Ramanujan's statements and provide some proofs.

Outline

Introduction(2) First Algebraic Statement
(3) Second Algebraic Statement

4 Third Algebraic StatementSecond and Third Algebraic StatementsFourth Algebraic StatementFifth Algebraic StatementSixth Algehraic StatementMore Algebraic Statement

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Here is Ramanujan's algebraic statement (1).
If $g^{5}=3$, then

$$
\frac{\sqrt{g^{2}+1}+\sqrt{5 g-5}}{\sqrt{g^{2}+1}-\sqrt{5 g-5}}=\frac{1}{g}+g+g^{2}+g^{3}
$$

Here is Ramanujan's algebraic statement (1).
If $g^{5}=3$, then

$$
\frac{\sqrt{g^{2}+1}+\sqrt{5 g-5}}{\sqrt{g^{2}+1}-\sqrt{5 g-5}}=\frac{1}{g}+g+g^{2}+g^{3}
$$

Here is a similar statement.

Theorem

If $g^{5}=2$, then

$$
\frac{\sqrt{4 g^{2}+g+2}+\sqrt{8 g^{2}+41 g-54}}{\sqrt{4 g^{2}+g+2}-\sqrt{8 g^{2}+41 g-54}}=\frac{1}{g}+g+g^{2}+g^{3} .
$$

Theorem

$$
\text { If } g^{5}=2, \text { then }
$$

$$
\frac{\sqrt{4 g^{2}+g+2}+\sqrt{8 g^{2}+41 g-54}}{\sqrt{4 g^{2}+g+2}-\sqrt{8 g^{2}+41 g-54}}=\frac{1}{g}+g+g^{2}+g^{3} .
$$

Theorem

If $g^{5}=2$, then

$$
\frac{\sqrt{4 g^{2}+g+2}+\sqrt{8 g^{2}+41 g-54}}{\sqrt{4 g^{2}+g+2}-\sqrt{8 g^{2}+41 g-54}}=\frac{1}{g}+g+g^{2}+g^{3} .
$$

Proof.

The algebraic statement is equivalent to

$$
\frac{\sqrt{4 g^{2}+g+2}+\sqrt{8 g^{2}+41 g-54}}{\sqrt{4 g^{2}+g+2}-\sqrt{8 g^{2}+41 g-54}}=\frac{1+g^{2}+g^{3}+g^{4}}{g}
$$

Theorem

If $g^{5}=2$, then

$$
\frac{\sqrt{4 g^{2}+g+2}+\sqrt{8 g^{2}+41 g-54}}{\sqrt{4 g^{2}+g+2}-\sqrt{8 g^{2}+41 g-54}}=\frac{1}{g}+g+g^{2}+g^{3} .
$$

Proof.

The algebraic statement is equivalent to

$$
\frac{\sqrt{4 g^{2}+g+2}+\sqrt{8 g^{2}+41 g-54}}{\sqrt{4 g^{2}+g+2}-\sqrt{8 g^{2}+41 g-54}}=\frac{1+g^{2}+g^{3}+g^{4}}{g} .
$$

Thus, by componendo et dividendo, we need to show that

$$
\sqrt{\frac{4 g^{2}+g+2}{8 g^{2}+41 g-54}}=\frac{1+g+g^{2}+g^{3}+g^{4}}{1-g+g^{2}+g^{3}+g^{4}}
$$

This is equivalent to showing that

$$
\begin{aligned}
& \left(1+g+g^{2}+g^{3}+g^{4}\right)^{2}\left(8 g^{2}+41 g-54\right) \\
& \quad=\left(1-g+g^{2}+g^{3}+g^{4}\right)^{2}\left(4 g^{2}+g+2\right)
\end{aligned}
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

This is equivalent to showing that

$$
\begin{aligned}
& \left(1+g+g^{2}+g^{3}+g^{4}\right)^{2}\left(8 g^{2}+41 g-54\right) \\
& \quad=\left(1-g+g^{2}+g^{3}+g^{4}\right)^{2}\left(4 g^{2}+g+2\right) .
\end{aligned}
$$

Expanding both sides of the above equation and using the fact that $g^{5}=2$, the left- and right-hand sides of the equation are equal and the theorem is proved.

Outline

IntroductionFirst Algebraic Statement
3 Second Algebraic Statement

Third Algebraic StatementSecond and Third Algebraic StatementsFourth Algehraic StatementFifth Algebraic StatementSixth Algebraic StatementMore Algebraic StatementCurtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Here is Ramanujan's algebraic statement (2).
If $g^{5}=2$, then

$$
\sqrt{1+g^{2}}=\frac{g^{4}+g^{3}+g-1}{\sqrt{5}}
$$

Here is Ramanujan's algebraic statement (2).
If $g^{5}=2$, then

$$
\sqrt{1+g^{2}}=\frac{g^{4}+g^{3}+g-1}{\sqrt{5}}
$$

Here is a similar statement.

Theorem

If $g^{5}=8$, then

$$
\sqrt{2 g^{2}-3}=\frac{g^{4}+2 g^{3}-2 g^{2}-2}{2 \sqrt{5}}
$$

Theorem

If $g^{5}=8$, then

$$
\sqrt{2 g^{2}-3}=\frac{g^{4}+2 g^{3}-2 g^{2}-2}{2 \sqrt{5}} .
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Theorem

If $g^{5}=8$, then

$$
\sqrt{2 g^{2}-3}=\frac{g^{4}+2 g^{3}-2 g^{2}-2}{2 \sqrt{5}} .
$$

Proof.

Using the fact that $g^{5}=8$, we have the following equalities.

$$
\begin{aligned}
\left(g^{4}+2 g^{3}-2 g^{2}-2\right)^{2} & =g^{8}+4 g^{7}-8 g^{5}-8 g^{3}+8 g^{2}+4 \\
& =8 g^{3}+32 g^{2}-64-8 g^{3}+8 g^{2}+4 \\
& =40 g^{2}-60=20\left(2 g^{2}-3\right) .
\end{aligned}
$$

Theorem

If $g^{5}=8$, then

$$
\sqrt{2 g^{2}-3}=\frac{g^{4}+2 g^{3}-2 g^{2}-2}{2 \sqrt{5}}
$$

Proof.

Using the fact that $g^{5}=8$, we have the following equalities.

$$
\begin{aligned}
\left(g^{4}+2 g^{3}-2 g^{2}-2\right)^{2} & =g^{8}+4 g^{7}-8 g^{5}-8 g^{3}+8 g^{2}+4 \\
& =8 g^{3}+32 g^{2}-64-8 g^{3}+8 g^{2}+4 \\
& =40 g^{2}-60=20\left(2 g^{2}-3\right)
\end{aligned}
$$

This proves the theorem.

To find some more algebraic identities similar to (2), we used a C++ program to search for solutions to

$$
\left(R+S g+T g^{2}+U g^{3}+V g^{4}\right)^{2}=C g^{2}+E
$$

where $g^{5}=h+1$.

To find some more algebraic identities similar to (2), we used a C++ program to search for solutions to

$$
\left(R+S g+T g^{2}+U g^{3}+V g^{4}\right)^{2}=C g^{2}+E
$$

where $g^{5}=h+1$.
Here is the C++ program.

\#include <iostream> \#include <fstream>

using namespace std;
// This program searches for integers R, S, T, // U, V, and h
// such that if $g^{\wedge} 5=h+1$, then
// $\left(R+S g+T g^{\wedge} 2+U g^{\wedge} 3+V g^{\wedge} 4\right)^{\wedge} 2=C g^{\wedge} 2+E$
// Bounds for R, S, T, U, V, and h
// will be input from the keyboard.

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

```
long long gcd(long long a, long long b) \{
    long long \(r=a \%\);
    while ( \(r>0\) ) \{
        \(\mathrm{a}=\mathrm{b}\);
        b = r;
        r \(=a \% b ;\)
    \}
    return b;
\}
```

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"
int main()
$\{$

```
long long upperR, upperS, upperT, upperU;
long long upperV, upperh;
long long R, S, T, U, V, A, B, C, D, E, G, h;
ofstream outfile("outputproggen1_5");
```



```
cin >> upperR;
cout << "Input_upper_limit_for_Ч:_";
cin >> upperS;
cout << "Input_upper_limit_for,T:s";
cin >> upperT;
```

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

```
cout << "Input_upper_limit_for_U: " ;
cin >> upperU;
cout << "Input」upper_limit_for⿶V:」";
cin >> upperV;
cout << "Input」upper」limit_for」h:七";
cin >> upperh;
```


Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

$$
\begin{aligned}
& \text { for (} \mathrm{R}=- \text { upperR; } \mathrm{R}<=\text { upperR; } \mathrm{R}++ \text {) \{ } \\
& \text { for (S=-upperS; S<=upperS; S++) \{ } \\
& \text { for (T=-upperT; } \mathrm{T}<=\text { upperT; } \mathrm{T}++ \text {) \{ } \\
& \text { for (U=-upperU; U<=upperU; U++) \{ } \\
& \text { for (V=1; V<=upperV; V++) \{ } \\
& \text { for (h=-upperh; } h<=u p p e r h ; h++ \text {) \{ }
\end{aligned}
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"
$A=2 * R * V+2 * S * U+T * T$;
$B=(h+1) * V * V+2 * S * T+2 * R * U$;
$C=2 *(h+1) * U * V+2 * R * T+S * S$;
$D=(h+1) *(U * U+2 * T * V)+2 * R * S$;
$\mathrm{E}=(\mathrm{h}+1) *(2 * \mathrm{~S} * \mathrm{~V}+2 * \mathrm{~T} * \mathrm{U})+\mathrm{R} * \mathrm{R}$;
if ($R!=0$ \&\& $A==0$ \&\& $B==0 \quad \& \& h!=-1 \quad \& \& h!=0 \quad \& \& D==0)$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

```
if \((R>0) G=R ;\)
else \(G=-R\);
if \((S>0) G=\operatorname{gcd}(G, S)\);
else if \((S<0) G=\operatorname{gcd}(G,-S) ;\)
if \((T>0) G=\operatorname{gcd}(G, T)\);
else if \((T<0) G=\operatorname{gcd}(G,-T) ;\)
if \((U>0) G=\operatorname{gcd}(G, U)\);
else if \((U<0) G=\operatorname{gcd}(G,-U) ;\)
\(G=\operatorname{gcd}(G, V)\);
if \((G==1)\) \{
```


 court \ll "If gn $_{ \pm}=$" $\ll(h+1) \ll "$, then" \ll end;

$$
\ll \mathrm{T} \ll \mathrm{Hg}^{\wedge} 2_{\square}^{+} \text {" } \ll \mathrm{U} \ll \mathrm{~g}^{\wedge} 3_{\square}^{+} \text {" }
$$

$$
\ll \mathrm{V} \ll \text { "g^4) " } \ll \text { endl; }
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"
outfile << "************************" << end;

out file << "I ffg^5ப= " \ll (h+1)
<< ", $t h e n " ~ \ll ~ e n d l ; ~$
 << "g^24+ப" << E << ")" << end;

<< V << " $\mathrm{g}^{\wedge} 4$) ${ }^{\text {" }}$ < $<$ end;

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

```
        }
            }
            }
        }
    }
}
}
}
    return 0;
}
```

Curtis Cooper University of Central Missouri

Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

```
\(R=20\)
\(S=20\)
\(\mathrm{T}=20\)
\(U=20\)
\(\mathrm{V}=20\)
\(h=20\)
\(\star \star \star\)
\(\mathrm{R}=-9 \mathrm{~S}=-3\)
\(\mathrm{T}=-6 \mathrm{U}=3\)
\(\mathrm{V}=1 \mathrm{~h}=17\)
If \(\mathrm{g}^{\wedge} 5=18\), then
The square root of \(\left(225 g^{\wedge} 2+-675\right)\)
\(=\left(-9+-3 g+-6 g^{\wedge} 2+3 g^{\wedge} 3+1 g^{\wedge} 4\right)\)
```

```
\(\star \star \star \star \star * * * * * * * * * * * * * * * * * * *\)
\(\mathrm{R}=-2 \mathrm{~S}=0\)
\(\mathrm{T}=-2 \mathrm{U}=2\)
\(\mathrm{V}=1 \mathrm{~h}=7\)
If \(\mathrm{g}^{\wedge} 5=8\), then
The square root of ( \(40 \mathrm{~g}^{\wedge} 2+-60\) )
\(=\left(-2+0 g+-2 g^{\wedge} 2+2 g^{\wedge} 3+1 g^{\wedge} 4\right)\)
************************
\(\mathrm{R}=-1 \mathrm{~S}=1\)
\(\mathrm{T}=0 \mathrm{U}=1\)
\(\mathrm{V}=1 \mathrm{~h}=1\)
If \(\mathrm{g}^{\wedge} 5=2\), then
The square root of \(\left(5 g^{\wedge} 2+5\right)\)
\(=\left(-1+1 g+0 g^{\wedge} 2+1 g^{\wedge} 3+1 g^{\wedge} 4\right)\)
```

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Using this program, we found the following theorems.

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Using this program, we found the following theorems.

Theorem

If $g^{5}=18$, then

$$
\sqrt{g^{2}-3}=\frac{g^{4}+3 g^{3}-6 g^{2}-3 g-9}{15}
$$

Using this program, we found the following theorems.

Theorem

If $g^{5}=18$, then

$$
\sqrt{g^{2}-3}=\frac{g^{4}+3 g^{3}-6 g^{2}-3 g-9}{15}
$$

Theorem

If $g^{5}=49$, then

$$
\sqrt{392 g^{2}-343}=\frac{6 g^{4}+14 g^{3}-14 g^{2}+14 g-49}{5}
$$

Outline

IntroductionFirst Algebraic StatementSecond Algebraic Statement4 Third Algebraic StatementSecond and Third Algebraic StatementsFourth Algebraic StatementFifth Algehraic StatementSixth Algebraic StatementMore Algebraic Statement

Here is Ramanujan's algebraic statement (3).
If $g^{5}=2$, then

$$
\sqrt{4 g-3}=\frac{g^{9}+g^{7}-g^{6}-1}{\sqrt{5}}
$$

Here is Ramanujan's algebraic statement (3).
If $g^{5}=2$, then

$$
\sqrt{4 g-3}=\frac{g^{9}+g^{7}-g^{6}-1}{\sqrt{5}}
$$

Here is a similar statement.

Theorem

If $g^{5}=8$, then

$$
\sqrt{g+2}=\frac{g^{4}-g^{3}+4 g+4}{2 \sqrt{10}}
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

To find some more algebraic identities similar to (3), we used a C++ program to search for solutions to

$$
\left(R+S g+T g^{2}+U g^{3}+V g^{4}\right)^{2}=D g+E
$$

where $g^{5}=h+1$. We found the following theorems.

To find some more algebraic identities similar to (3), we used a C++ program to search for solutions to

$$
\left(R+S g+T g^{2}+U g^{3}+V g^{4}\right)^{2}=D g+E,
$$

where $g^{5}=h+1$. We found the following theorems.

Theorem

If $g^{5}=12$, then

$$
\sqrt{11 g-7}=\frac{g^{4}-g^{3}+2 g^{2}-8 g-10}{2 \sqrt{5}}
$$

Theorem

If $g^{5}=4$, then

$$
\sqrt{g+1}=\frac{g^{4}+g^{3}+2 g^{2}-2}{2 \sqrt{5}}
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Theorem

If $g^{5}=4$, then

$$
\sqrt{g+1}=\frac{g^{4}+g^{3}+2 g^{2}-2}{2 \sqrt{5}}
$$

Theorem
If $g^{5}=7$, then

$$
\sqrt{-g+8}=\frac{2 g^{4}-g^{3}-2 g^{2}+6 g+2}{5}
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Outline

IntroductionFirst Algebraic StatementSecond Algebraic StatementThird Algebraic Statement
(5) Second and Third Algebraic Statements

Fourth Algebraic StatementFifth Algebraic StatementSixth Algehraic StatementMore Algebraic StatementCurtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Here is Ramanujan's algebraic statement (2). If $g^{5}=2$, then

$$
\sqrt{1+g^{2}}=\frac{g^{4}+g^{3}+g-1}{\sqrt{5}}
$$

Here is Ramanujan's algebraic statement (2).
If $g^{5}=2$, then

$$
\sqrt{1+g^{2}}=\frac{g^{4}+g^{3}+g-1}{\sqrt{5}}
$$

Here is Ramanujan's algebraic statement (3).
If $g^{5}=2$, then

$$
\sqrt{4 g-3}=\frac{g^{9}+g^{7}-g^{6}-1}{\sqrt{5}}
$$

Here are two similar statements.

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Here are two similar statements.
Theorem
If $g^{5}=2$, then

$$
\sqrt{8 g^{2}-20 g+17}=g^{9}-g^{7}+g^{6}-1
$$

Here are two similar statements.
Theorem

$$
\text { If } g^{5}=2, \text { then }
$$

$$
\sqrt{8 g^{2}-20 g+17}=g^{9}-g^{7}+g^{6}-1
$$

Theorem

$$
\text { If } g^{5}=2, \text { then }
$$

$$
\sqrt{-3 g^{2}+4 g+5}=g^{4}-g^{3}+g+1
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Outline

IntroductionFirst Algebraic StatementSecond Algebraic StatementThird Algebraic Statement5 Second and Third Algebraic Statements
6 Fourth Algebraic Statement
（7）Fifth Algebraic StatementSixth Algebraic StatementMore Algebraic Statement

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan＇s＂Lost Notebook＂

Here is Ramanujan's algebraic statement (4).
If $g^{5}=3$, then

$$
\sqrt[3]{2-g^{3}}=\frac{1+g-g^{2}}{\sqrt[3]{5}}
$$

Here is Ramanujan's algebraic statement (4).
If $g^{5}=3$, then

$$
\sqrt[3]{2-g^{3}}=\frac{1+g-g^{2}}{\sqrt[3]{5}}
$$

Here is a similar statement.

Theorem

If $g^{5}=96$, then

$$
\sqrt[3]{16-g^{3}}=\frac{4+2 g-g^{2}}{2 \sqrt[3]{5}}
$$

Here is another similar statement.

Theorem

$$
\text { If } g^{5}=3072, \text { then }
$$

$$
\sqrt[3]{128-g^{3}}=\frac{16+4 g-g^{2}}{4 \sqrt[3]{5}}
$$

Here is another similar statement.

Theorem

If $g^{5}=3072$, then

$$
\sqrt[3]{128-g^{3}}=\frac{16+4 g-g^{2}}{4 \sqrt[3]{5}}
$$

We were then able to generalize the above results.

Theorem

Let k be a nonnegative integer. If $g^{5}=3 \cdot 32^{k}$, then

$$
\sqrt[3]{2 \cdot 8^{k}-g^{3}}=\frac{4^{k}+2^{k} g-g^{2}}{2^{k} \sqrt[3]{5}}
$$

Outline

IntroductionFirst Algebraic StatementSecond Algebraic StatementThird Algebraic StatementSecond and Third Algebraic StatementsFourth Algebraic Statement（7）Fifth Algebraic StatementSixth Algebraic StatementMore Algebraic Statement

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan＇s＂Lost Notebook＂

Here is Ramanujan's algebraic statement (5).
If $g^{5}=2$, then

$$
\sqrt[5]{1+g+g^{3}}=\frac{\sqrt{1+g^{2}}}{\sqrt[10]{5}}
$$

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Here is Ramanujan's algebraic statement (5).
If $g^{5}=2$, then

$$
\sqrt[5]{1+g+g^{3}}=\frac{\sqrt{1+g^{2}}}{\sqrt[10]{5}}
$$

Here is a similar statement.

Theorem

If $g^{5}=8$, then

$$
\sqrt[5]{2+2 g+g^{2}}=\frac{\sqrt{2+g}}{\sqrt[10]{10}}
$$

To find more algebraic identities similar to (5), we used a C++ program to search for solutions to

$$
\left(R+S g+T g^{2}\right)^{5}=\left(A+B g+C g^{2}+D g^{3}\right)^{2}
$$

where $g^{5}=h+1$. If we have this result, we have more theorems. The next theorem is one that we discovered. The proof is similar to the proof above.

To find more algebraic identities similar to (5), we used a C++ program to search for solutions to

$$
\left(R+S g+T g^{2}\right)^{5}=\left(A+B g+C g^{2}+D g^{3}\right)^{2}
$$

where $g^{5}=h+1$. If we have this result, we have more theorems. The next theorem is one that we discovered. The proof is similar to the proof above.

Theorem

If $g^{5}=8$, then

$$
\sqrt[5]{1+g}=\frac{\sqrt{2+g}}{\sqrt[10]{40}}
$$

Outline

IntroductionFirst Algebraic StatementSecond Algebraic StatementThird Algebraic StatementSecond and Third Algebraic StatementsFourth Algebraic StatementFifth Algebraic Statement(8) Sixth Algebraic StatementMore Algebraic Statement

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

We next set out to find algebraic statements similar to (6). If $g^{4}=5$, then

$$
\frac{\sqrt[5]{3+2 g}-\sqrt[5]{4-4 g}}{\sqrt[5]{3+2 g}+\sqrt[5]{4-4 g}}=2+g+g^{2}+g^{3}
$$

We next set out to find algebraic statements similar to (6).
If $g^{4}=5$, then

$$
\frac{\sqrt[5]{3+2 g}-\sqrt[5]{4-4 g}}{\sqrt[5]{3+2 g}+\sqrt[5]{4-4 g}}=2+g+g^{2}+g^{3}
$$

To construct such a result, we want to find integers h, A, B, C, D, and E so that if $g^{4}=h+1$, then

$$
\sqrt[5]{\frac{A g+B}{C g+D}}=\frac{E+1+g+g^{2}+g^{3}}{1+g+g^{2}+g^{3}}
$$

We next set out to find algebraic statements similar to (6).
If $g^{4}=5$, then

$$
\frac{\sqrt[5]{3+2 g}-\sqrt[5]{4-4 g}}{\sqrt[5]{3+2 g}+\sqrt[5]{4-4 g}}=2+g+g^{2}+g^{3}
$$

To construct such a result, we want to find integers h, A, B, C, D, and E so that if $g^{4}=h+1$, then

$$
\sqrt[5]{\frac{A g+B}{C g+D}}=\frac{E+1+g+g^{2}+g^{3}}{1+g+g^{2}+g^{3}} .
$$

We found the following solutions.

C	D	E	h	A	B
4	-4	2	4	2	3
1	2	-79	79	512	-1536
4	12	-202	404	486	-2187

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

The first line is Ramanujan's (6). Here are the other theorems.

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

The first line is Ramanujan's (6). Here are the other theorems.

Theorem

If $g^{4}=80$, then

$$
\frac{\sqrt[5]{512 g-1536}+\sqrt[5]{g+2}}{\sqrt[5]{512 g-1536}-\sqrt[5]{g+2}}=\frac{-77+2 g+2 g^{2}+2 g^{3}}{-79}
$$

The first line is Ramanujan's (6). Here are the other theorems.

Theorem

If $g^{4}=80$, then

$$
\frac{\sqrt[5]{512 g-1536}+\sqrt[5]{g+2}}{\sqrt[5]{512 g-1536}-\sqrt[5]{g+2}}=\frac{-77+2 g+2 g^{2}+2 g^{3}}{-79}
$$

Theorem

If $g^{4}=405$, then

$$
\frac{\sqrt[5]{486 g-2187}+\sqrt[5]{4 g+12}}{\sqrt[5]{486 g-2187}-\sqrt[5]{4 g+12}}=\frac{-200+2 g+2 g^{2}+2 g^{3}}{-202}
$$

Outline

IntroductionFirst Algebraic StatementSecond Algebraic StatementThird Algebraic StatementSecond and Third Algebraic StatementsFourth Algebraic StatementFifth Algebraic StatementSixth Algebraic Statement(9) More Algebraic Statement

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

We next state some theorems similar to some of Ramanujan's algebraic statements.

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

We next state some theorems similar to some of Ramanujan's algebraic statements.

Theorem

If $g^{3}=2$, then

$$
\frac{\sqrt[4]{111-87 g}+\sqrt[4]{g-1}}{\sqrt[4]{111-87 g}-\sqrt[4]{g-1}}=2+g+g^{2}
$$

We next give another algebraic statement theorem and proof.

We next give another algebraic statement theorem and proof.

Theorem

If $g^{5}=4$, then

$$
\frac{3 \sqrt{3 g^{2}+4 g+6}+\sqrt{55 g^{2}+40 g-50}}{3 \sqrt{3 g^{2}+4 g+6}-\sqrt{55 g^{2}+40 g-50}}=\frac{2+2 g+g^{2}+2 g^{3}+2 g^{4}}{g^{2}}
$$

Here is another algebraic statement.

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Here is another algebraic statement.

Theorem

If $g^{5}=2$, then

$$
\frac{\sqrt[3]{5 g^{2}+1}+\sqrt[3]{35 g^{2}+g-43}}{\sqrt[3]{5 g^{2}+1}-\sqrt[3]{35 g^{2}+g-43}}=\frac{2+g+2 g^{2}+2 g^{3}+2 g^{4}}{g}
$$

Here is another algebraic statement.

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

Here is another algebraic statement.

Theorem

If $g^{7}=2$, then

$$
\begin{aligned}
& \frac{\sqrt[5]{12+15 g+11 g^{2}+15 g^{3}}+\sqrt[5]{14+315 g+346 g^{2}-259 g^{3}-270 g^{4}}}{\sqrt[5]{12+15 g+11 g^{2}+15 g^{3}}-\sqrt[5]{14+315 g+346 g^{2}-259 g^{3}-270 g^{4}}} \\
& \quad=\frac{2+g+2 g^{2}+2 g^{3}+2 g^{4}+2 g^{5}+2 g^{6}}{g}
\end{aligned}
$$

Here is another algebraic statement.

Theorem

If $g^{7}=2$, then

$$
\begin{aligned}
& \frac{\sqrt[5]{12+15 g+11 g^{2}+15 g^{3}}+\sqrt[5]{14+315 g+346 g^{2}-259 g^{3}-270 g^{4}}}{\sqrt[5]{12+15 g+11 g^{2}+15 g^{3}}-\sqrt[5]{14+315 g+346 g^{2}-259 g^{3}-270 g^{4}}} \\
& \quad=\frac{2+g+2 g^{2}+2 g^{3}+2 g^{4}+2 g^{5}+2 g^{6}}{g}
\end{aligned}
$$

One open question is the following.
Can we generate theorems with the hypothesis that $g^{k}=2$, where $k \geq 9$ is an odd integer?

Here are some other theorems.
Theorem

$$
\text { If } 2 g^{3}-3 g^{2}-4=0, \text { then }
$$

$$
\frac{\sqrt{121 g^{2}+998 g+121}+5 g-5}{\sqrt{121 g^{2}+998 g+121}-5 g+5}=\frac{16+4 g+8 g^{2}}{14+8 g^{2}}
$$

Here are some other theorems.

Theorem

$$
\text { If } 2 g^{3}-3 g^{2}-4=0 \text {, then }
$$

$$
\frac{\sqrt{121 g^{2}+998 g+121}+5 g-5}{\sqrt{121 g^{2}+998 g+121}-5 g+5}=\frac{16+4 g+8 g^{2}}{14+8 g^{2}} .
$$

Theorem

$$
\text { If } 2 g^{3}-3 g^{2}+2=0 \text {, then }
$$

$$
\frac{\sqrt{1681 g^{2}-1882 g+1681}-g+1}{\sqrt{1681 g^{2}-1882 g+1681}+g-1}=\frac{202+144 g-200 g^{2}}{200+140 g-200 g^{2}} .
$$

Here are some other theorems.

Theorem

$$
\text { If } 2 g^{3}-3 g^{2}-4=0, \text { then }
$$

$$
\frac{\sqrt{121 g^{2}+998 g+121}+5 g-5}{\sqrt{121 g^{2}+998 g+121}-5 g+5}=\frac{16+4 g+8 g^{2}}{14+8 g^{2}}
$$

Theorem

$$
\text { If } 2 g^{3}-3 g^{2}+2=0, \text { then }
$$

$$
\frac{\sqrt{1681 g^{2}-1882 g+1681}-g+1}{\sqrt{1681 g^{2}-1882 g+1681}+g-1}=\frac{202+144 g-200 g^{2}}{200+140 g-200 g^{2}}
$$

Can we generate other similar theorems?

References

1. M. D. Hirschhorn and V. Sinescu, Elementary algebra in Ramanujan's lost notebook, The Fibonacci Quarterly, 51.2 (2013), 123-129.
2. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, New Delhi, Narosa, 1988, p. 344.

Email Address, Talk URL, and Article URL

Curtis Cooper's Email: cooper@ucmo.edu

Talk:
www.math-
cs.ucmo.edu/~curtisc/talks/ramanujan2/rochester14.pdf

Curtis Cooper University of Central Missouri
Algebraic Statements Similar to Those in Ramanujan's "Lost Notebook"

