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Introduction. A ring R with unity is called a duo ring if every

right ideal of R is a left ideal and conversely. This is equivalent

to the condition that aR = Ra for all a ∈ R . When R is

an integral domain, R has a (left and right) division ring D

of quotients, and xRx−1 = R for all nonzero x ∈ D . In this

sense R is an invariant subring of D . In this note we characterize

Noetherian, integrally closed duo domains [1] in terms of valuation

rings exactly as commutative Krull domains are characterized. We

continue in this manner to characterize duo domains which are

unique factorization domains [3] as Krull domains in which the

height 1 prime ideals are principal. We then show that when R

has an Abelian group of divisibility, then R is integrally closed if

and only if R is an intersection of valuation rings. Duo domains

which are Prüfer domains with Abelian group of divisibility are

characterized exactly as commutative Prüfer domains.

In what follows, R denotes a duo ring which is an integral

domain, D its division ring of quotients. Prime ideals in duo rings

have the same characterization as in the commutative case [10].

Thus P is a prime ideal of R if and only if S = R\P is a
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multiplicative system in R .

A subset T of R is called invariant if aT = Ta for all a ∈ R .

This is clearly equivalent to the condition that x−1Tx = T for

all x ∈ D∗ = D\{0} . Invariance is significant when studying

localization in duo rings. The following was show in [6].

Theorem 1. If S is a multiplicative system in R then RS is a

duo ring if and only if S is invariant.

Let U denote the multiplicative group of units of R . It was

shown in [3] that U is a normal subgroup of D∗ . As in the

commutative case, D∗/U is called the group of divisibility of R .

When R is Noetherian and integrally closed, it is shown in

[1] that for all a, b ∈ R , aRbR = bRaR . Since aRbR = abR , this

is equivalent to the condition that for all a, b ∈ R , ab = bau , for

some u ∈ U . We can now state the following.

Theorem 2. In a duo domain R , the following are equivalent.

(1) The multiplicative semigroup of ideals of R is Abelian.

(2) The multiplicative semigroup of principal ideals of R is

Abelian.

(3) The group of divisibility of R , D∗/U , is Abelian.

(4) Every ideal of R is invariant.

(5) Every principal ideal of R is invariant.

Proof . Since every ideal is a sum of principal ideals (1) ⇔ (2),

and (4) ⇔ (5). (2) ⇔ (3) follows from the remarks preceding
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Theorem 2. (5) ⇔ (3) is easy to show.

We say that R satisfies property (A) if it satisfies the equiv-

alent conditions of Theorem 2.

Corollary 3 [1]. If R satisfies property (A) then every overring

T of R (R ⊆ T ⊆ D) is a duo ring. In particular RS is a duo

ring for every multiplicative system S in R .

When R is Noetherian and integrally closed, in addition to

satisfying property (A), the following was shown in [1]: If {Pλ}

denotes the collection of height 1 prime ideals of R then

(a) R =
⋂

λ RPλ
.

(b) PλRPλ
= pλRPλ

for some pλ ∈ Pλ .

(c) The only nonzero ideals of pλRPλ
are the ideals of pnλRPλ

.

If we define vλ : RPλ
→ (Z,+) ∪ {∞} by vλ(x) = n where

n is the unique integer such that x ∈ pnλRPλ
− pn+1

λ RPλ
then vλ

satisfies the following: (I) vλ(0) = ∞ , (II) vλ(xy) = vλ(x + y)

for all x , y ∈ RPλ
, (III) vλ(x + y) ≥ min(v(x) , v(y)) for x ,

y ∈ RPλ
.

Non-commutative valuations and noncommutative valuation

rings were studied in [7] and [8].

Let (G, •) be a totally ordered group. Let ∞ be a symbol

not in G . Let v : D → G∪ {∞} . We define x ∗∞ = ∞ = ∞∗ x

for any x ∈ G and x < ∞ for all x ∈ G .
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Definition 4 [8]. v is called a valuation on D if

(1) v(0) = ∞ .

(2) v(xy) = v(x)v(y) for any x , y ∈ D .

(3) v(x + y) ≥ min(v(x) , v(y)) .

(Here the operation in G is denoted by juxtaposition.)

Theorem 5 [12]. Let v : R → G∪{∞} satisfy (1), (2), (3) above.

There is a unique extension v′ of v to a valuation on D .

Proof . For x = b−1a ∈ D∗ , define v′(x) = v(b)−1v(a). Clearly (1)

is satisfied. To see (2), let x = b−1a , y = d−1c . If x = 0 or y = 0,

(2) is clear. Suppose x , y 6= 0 . Then v′(xy) = v′(b−1ad−1c) .

Now ad = d1a for some d1 ∈ R , so ad−1 = d−1
1 a , so

v′(xy) = v′(b−1d−1
1 ac) = v′((d1b)

−1(ac)) = v(d1b)
−1v(ac)

= v(b)−1v(d1)
−1v(a)v(c) = [v(b)−1v(a)][v(d)−1v(c)]

= v′(x)v′(y) ,

and (2) is proved.

To see (3), let x = b−1a, y = d−1c. If x+y = 0 there is nothing

to show. So suppose x+ y 6= 0 . Then x+ y = (b1d)
−1(d1a+ b1c) ,

where d1b = b1d .

v′(x+ y) = v(b1d)
−1v(d1a+ b1c)

≥ v(b1d)
−1 min(v(d1a) , v(b1c))

= min(v(b1d)
−1v(d1a) , v(b1d)

−1v(b1d)) .
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Now d1b = b1d , so v(d1b) = v(b1d) , and hence

v(b1d)
−1 = v(b)−1v(d1)

−1 = v(d)−1v(b1)
−1 .

So v′(x+ y) ≥ min(v′(b−1a) , v′(d−1c)) , that is,

v′(x + y) ≥ min(v′(x) , v′(y)) .

Uniqueness is clear, since extension w of v satisfies w(b−1a) =

w(b−1)w(a) = w(b−1)v(a)v(b)−1v(a) . For w(b−1b) = w(1) = e ,

the identity of G , and w(b−1) = w(b)−1 = v(b)−1 .

We observe that the proof of Theorem 5 did not require that

R satisfy property (A).

It follows from Theorem 5 that each vλ can be extended to

a valuation vλ on D , and that each valuation ring Rvλ = RPλ

and is rank one, discrete.

So when R is Noetherian and integrally closed, the family

{Pλ} of height 1 prime ideals induces a family F of valuations

on D which has the following properties.

(i) R =
⋂

{Rv : v ∈ F} .

(ii) Each v ∈ F has rank one and is discrete.

(iii) F is of finite character, i.e., for a ∈ R , v(a) 6= 0 for only

finitely many v ∈ F .

(iv) Rv = RP (v) , where P (v) = {x ∈ R : v(x) > 0} .

So a Noetherian, integrally closed duo domain satisfies the classical

definition of a commutative Krull domain [12].
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Accordingly, we shall call a duo domain R a Krull domain

if there is a family F of valuations on the division ring D of

quotients of R satisfying (i), (ii), (iii), (iv) above. Clearly, if R is

a Krull domain then R satisfies property (A) since each Rv has

an Abelian group of divisibility. Thus every multiplicative system

S in a Krull domain is invariant.

We now state the following. The proof is like the commutative

case.

Theorem 6. Let R be a Krull domain with family F of essential

valuations. Let S be a multiplicative system in R . Let

H = {v ∈ F : P (v) ∩ S = ∅} .

Then RS is a Krull domain with H as family of essential valuations.

Duo rings which are unique factorization domains (UFD) were

first studied in [3, pg. 85]. We state definitions from [3].

Definition 7. Let R be a duo domain.

(1) x ∈ R is a prime if xR = Rx is a prime ideal of R .

(2) x , y ∈ R are associates if Rx = Ry . (Then xR = yR .)

(3) For a , b ∈ R , a divides b (a|b) if bR ⊆ aR .

(4) x ∈ R is irreducible if x = yz implies either y or z is a unit.

(5) R is called a UFD if the following are satisfied.

UF1. Every nonzero element is a product of a finite number of

irreducible elements.
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UF2. If a1a2 · · · as = b1b2 · · · bt where a1 , a2 , . . . , as , b1 ,

b2 , . . . , bt are nontrivial irreducibles, then s = t and for

a suitable ordering of the subscripts, ai is an associate

of bi .

It follows from [3] that if R is UFD then irreducible elements

are prime.

Proposition 8. If R is UFD and if x , y ∈ R are nonassociate

prime elements then (xR)(yR) = (yR)(xR) , i.e., xyR = yxR .

Proof . Since R is duo, xy = yx′ for some x′ ∈ R . Then

y−1xy = x′ , and y−1xyR = y−1(xR)y = x′R . Then x′R is the

conjugate of a prime ideal and so is a prime ideal. So x′ ∈ R is

prime and so by UF2, x′ is an associate of x , say x′ = xt where

t is a unit. Then xyR = yxtR = yxR .

The above proposition shows that if R is UFD then R satisfies

property (A), by UF1.

Let {xλ} denote a collection of primes of R such that

(a) xα is not an associate of xβ for α 6= β .

(b) If r ∈ R is not a unit, then xλ|r for some λ .

Let Pλ = xλR . Then as in [12], each xλRPλ
is a rank one

discrete valuation ring, and it is like the commutative case to show

that each Pλ induces a family F of valuations satisfying (i), (ii),

(iii), (iv).

Theorem 9. Let R be a duo domain with D as a division ring of
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quotients. D is UFD if and only if

(1) R is a Krull domain.

(2) Every height 1 prime ideal is principal.

The proof is like the commutative case [12].

As in the commutative case, an element x ∈ D is integral over

R if there exist a0 , . . . , an−1 ∈ R such that xn + an−1x
n−1 +

· · ·+ a1x+ a0 = 0 . This definition is symmetric:

xn + an−1x
n−1 + · · ·+ a1x+ a0

= xn + xn−1(xn−1)−1an−1x
n−1 + · · ·+ x(x−1a1x) + a0 ,

and (xj)−1ajx
j ∈ R , since R is duo, for j = 1 , . . . , n−1 . It was

shown in [7] that (noncommutative) valuation rings are integrally

closed. As was shown earlier, when R is Noetherian and integrally

closed, then R is an intersection of valuation rings. It is well

known [12] that an integrally closed commutative integral domain

is an intersection of valuation rings. We have been able to prove

the following:

Theorem 10. Let R be a duo ring satisfying property (A). Then

R is integrally closed if and only if R is an intersection of valuation

rings.

The proof of Theorem 10 will follow from Lemmas 11 and 12.

Lemma 11 [12]. Let I be an ideal in R . Then for any x ∈ D ,
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at least one of R[x]I , R[x−1]I is a proper ideal of R[x] , R[x−1]

respectively.

Proof . The proof is like the commutative case, using property (A)

in R and the invariance of R . See [12, pg. 11].

Lemma 12 [12]. Let P be a prime ideal of R . There exists a

valuation overring V of R (R ⊆ V ⊆ D) with maximal ideal P

such that P ∩R = P .

Proof . We may assume R = RP , so that P is the unique maximal

ideal of R . Let S = {T : T is the overring of R , PT 6= T } , S 6= ∅ .

A Zorn’s lemma argument shows S has a maximal element, say

T . The maximality of P in RP gives that PT is maximal. If

not, then PT < M for some maximal ideal M of T and then

T < TM , TM ∈ S , a contradiction. Clearly PT ∩R = P .

Applying Lemma 11 to R = T , I = PT , as in the commutative

case [12, pg. 12] we get that for x ∈ D , either x ∈ T or x−1 ∈ T ,

and T is a valuation ring, since T is duo.

So if b ∈ D\R , then consider R[b−1] (see [5, pg. 38]). If

b−1
(
∑n

i=0 ai(b
−1)i

)

= 1 , a0 , . . . , an ∈ R , then b is integral over

R , which is not the case if R is integrally closed. So b−1 is not

a unit in R[b−1] . Then b−1 belongs to a maximal, hence prime

ideal of R[b−1] . Applying Lemma 13, we get a valuation ring V ,

R ⊆ R[b−1] ⊆ V ⊆ D with b−1 a nonunit in V . Then b 6∈ V .

So if R is integrally closed it is the intersection of valuation rings.
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Since (noncommutative) valuation rings are integrally closed [7],

this completes the proof of Theorem 10.

Strong use of property (A) was made in the proof. The author

believes the following general case to be true but has been unable

to prove it: For any duo domain R , R is integrally closed if and

only if R is an intersection of valuation rings.

As in the commutative case, R is called a Dedekind domain if

R is a Krull domain in which each height 1 prime ideal is maximal,

i.e., P (v) is maximal for each v ∈ F . Since R satisfies property (A),

all the equivalent conditions for a commutative integral domain to

be a Dedekind domain are satisfied in R . So R is Dedekind if

and only if every nonzero ideal of R is invertible [5], [4].

The following is found in [9]: A (not necessarily commutative)

ring T is called a left AM -ring (respectively right AM -ring) is

for all ideal A < B of T (here < denotes proper containment)

there is an ideal C such that A = BC (respectively A = CB ).

T is an AM -ring if it is both a left and right AM -ring. (In the

commutative case, T is sometimes called a multiplication ring [4,

pg. 209].)

Theorem 3.1 of [9] shows that if R is an AM -ring then R

satisfies property (A). As in the commutative case, we have the

following [4, pg. 210].

Theorem 13. If R is an AM -ring then R is a Dedekind domain.

Proof . Let A be a nonzero ideal of R . If A = Ra then A
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is invertible. If A is not principal, then there is nonzero a ∈ A

such that Ra < A . Then Ra = AC for some ideal C , and A is

invertible, with A−1 = CRa−1 . Thus R is Dedekind.

We call R a Prüfer domain if RM is a (noncommutative)

valuation ring for each maximal ideal M of R . Noncommuta-

tive valuation rings [7] are examples of duo rings which are Prüfer

domains. Ten equivalent conditions for a commutative integral

domain to be a Prüfer domain are given in Theorem 6.6 of [4].

Theorem 6.6 of [4] also holds when R is a duo domain which sat-

isfies property (A). The proof is the same as the commutative case

because of property (A).

An example of a noncommutative valuation ring in which RP

is not a valuation ring for every prime P was given in [7]. Thus

there exist noncommutative valuation rings which do not satisfy

the ten equivalent conditions of Theorem 6.6 of [4].

When R is commutative, it is well known that if R is a Krull

domain, then so is the polynomial ring R[X ] . Commutativity

appears to be necessary, for even when R is duo and satisfies

property (A), R[X ] is in general not a duo ring. For example, if

D is a noncommutative division ring, then D satisfies property

(A) but D[X ] is not a duo ring.

An example of a duo domain which is a Krull domain is the

power series ring D[[X ]] where D is any division ring and X

is a central indeterminate. D[[X ]] is a noncommutative rank one

discrete valuation ring with XD[[X ]] as the unique maximal ideal.
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So D[[X ]] is a noncommutative duo UFD, and a Dedekind domain.

Other examples of integrally closed duo rings which satisfy

property (A) may be constructed from results in [2]. If D is a 2-

finite division algebra over its center k and satisfies the equivalent

conditions of Theorem 1 of [2], then any real valued valuation v

on k may be extended to a valuation w on D . So the valuation

w has Abelian value group, and Rw , the valuation ring of w ,

satisfies property (A) and is integrally closed. If {Rwλ
} is any

collection of such valuation rings, then R = ∩λRwλ
is a duo ring

which satisfies property (A) and is integrally closed.
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