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It is well known that the volume of a regular n-simplex with

edge length s is

sn

n!

√

n+ 1

2n
.

But suppose one edge has length b and all the other edges have

length a. Is there a simple formula for the volume of the simplex

in that case? What if all the edges incident at a given vertex have

length b and all the other edges have length a?

It is these questions that motivated the investigation that led

to the following result:

Theorem. Let K be an n-simplex in En. Suppose the vertices of

K are colored with r colors, c1, c2, . . ., cr (1 ≤ r ≤ n+1). Let the

number of vertices colored ci be mi (1 ≤ mi ≤ n + 1). It is given

that if an edge has both its vertices the same color, ci, the length

of that edge is ai. If the two vertices of an edge have different

color, the edge has length s. Then the volume of K is

1

n! 2
n

2

r
∏

i=1

ami−1
i

√

√

√

√(−1)r+1

( r
∏

i=1

(

(mi − 1)a2i −mis2
)

) r
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(mi − 1)a2i −mis2
.
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Proof. The volume, V , of an n-simplex in terms of the edge

lengths, {aij}, is determined by the formula

(1) (−1)n+12n(n!)2V 2 = D

where D is given by the determinant
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0 a212 a213 · · · a21n a21,n+1 1
a221 0 a223 · · · a22n a22,n+1 1
a231 a232 0 · · · a23n a23,n+1 1
...
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...
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a2n+1,1 a2n+1,2 a2n+1,3 · · · a2n+1,n 0 1
1 1 1 · · · 1 1 0
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(See [1] for a proof.)

Now, let us assign the edge lengths as specified in the theorem,

except that to make the computations simpler, let us assume the

edge lengths are
√
ai and

√
s (instead of ai and s). A simple

transformation then will change the result we get into the form

required by the statement of the theorem.

We find that the resulting determinant consists of r square

blocks along the main diagonal and the last row and column being

the same as shown above. The ith block has the form





















0 ai ai ai · · · ai ai
ai 0 ai ai · · · ai ai
ai ai 0 ai · · · ai ai
ai ai ai 0 · · · ai ai
...

...
...

...
. . .

...
...

ai ai ai ai · · · 0 ai
ai ai ai ai · · · ai 0
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and every other element in the determinant has value s. For ex-

ample, if n = 11, r = 3, a1 = a, m1 = 4, a2 = b, m2 = 5, a3 = c,

and m3 = 3, then the determinant is as follows:
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0 a a a s s s s s s s s 1
a 0 a a s s s s s s s s 1
a a 0 a s s s s s s s s 1
a a a 0 s s s s s s s s 1
s s s s 0 b b b b s s s 1
s s s s b 0 b b b s s s 1
s s s s b b 0 b b s s s 1
s s s s b b b 0 b s s s 1
s s s s b b b b 0 s s s 1
s s s s s s s s s 0 c c 1
s s s s s s s s s c 0 c 1
s s s s s s s s s c c 0 1
1 1 1 1 1 1 1 1 1 1 1 1 0
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We now proceed to evaluate this determinant by applying el-

ementary row and column operations. In each group of mi rows

(i = 1, . . . , r), we subtract every row (except the last row) from

the row above it. Then, in each group of mi columns, we subtract

each column (except the last column) from the column to its left.

We wind up with a matrix where each square block along the diag-

onal has been replaced by a matrix whose diagonal entries are all

−2ai, (except for the lower right entry with value 0), and whose

minor diagonals just below and above the main diagonal all have

value ai. Furthermore, all the s entries have disappeared with the

exception of those whose rows and columns are at the end of the

groups of mi. The 1’s in the last row and column have also turned

to 0’s except those occurring at the ends of groups of mi entries.
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In our example, the resulting determinant is
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−2a a 0
a −2a a 0

a −2a a 0
a 0 s s 1

−2b b 0
b −2b b 0

b −2b b 0
b −2b b 0

s b 0 s 1
−2c c 0
c −2c c 0

s s c 0 1
0 0 0 1 0 0 0 0 1 0 0 1 0
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All missing elements in the display are 0’s.

In each square block, we can remove the ai’s situated along the

two minor diagonals by adding in the appropriate multiple of the

preceding row or column, in succession, top to bottom and left to

right. In our example, we would multiply the first row by 1/2 and

add it to the second row, then multiply the first column by 1/2 and

add it to the second column. This leaves us with (12 − 2)a = − 3
2a

in row 2 column 2. Thus, we multiply row 2 by 2/3 and add it to

row 3. Then we multiply column 2 by 2/3 and add it to column 3.

This leaves us with − 4
3a in row 3 column 3, etc.

In general, the multipliers will be 1/2, 2/3, 3/4, . . . ,

(mi − 1) / mi. The final numbers along the main diagonal will

be −2ai/1, −3ai/2, −4ai/3, . . . , −mia/(mi − 1), (mi − 1)a/mi.
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In our example, we get
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−2a
1 0

−3a
2 0

−4a
3 0

3a
4 s s 1

−2b
1 0

−3b
2 0

−4b
3 0

−5b
4 0

s 4b
5 s 1

−2c
1 0

−3c
2 0

s s 2c
3 0

0 0 0 1 0 0 0 0 1 0 0 0 0
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Most of the entries on the major diagonal now have all 0’s in their

rows. We can thus expand the determinant by minors along these

rows and see that the value of the determinant is

r
∏

i=1

(−ai)
mi−1mi

times the following determinant
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s s · · · s 1
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s s (m3−1)a3
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This determinant is simplified by subtracting s times the bottom

row from every other row. We are left with a determinant whose
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last row and column are all 1’s (except for the 0 in the lower right

corner). The remaining elements all lie along the main diagonal,

and are (mi−1)ai

mi

−s, i = 1, 2, . . . , r. In our example, this comes out

to
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Finally, this determinant is evaluated by getting rid of the 1’s in

the final row. To do that, multiply each of the first r rows by the

reciprocal of the diagonal element and subtract the result from the

last row. This changes the 1’s in the last row to 0’s and changes

the 0 to

−
r

∑

i=1

(

(mi − 1)ai
mi

− s

)

−1

.

The determinant is now upper triangular and so its value is the

product of the diagonal elements. We have thus found that

D =

r
∏

i=1

(−ai)
mi−1

(

(mi − 1)ai −mis
)

(

−
r

∑

i=1

mi

(mi − 1)ai −mis

)

.

Comparing this with formula (1) and noting that
∑r

i=1 mi = n+1,

we see that we can move the (−1)n+1 to the right hand side and

wind up with (−1)r+1. Then, solving for V 2 and taking the square

root of both sides proves our theorem.

Letting r = 2 gives us two interesting corollaries.

Corollary 1. An n-simplex in En (n ≥ 1) has one edge of length

b. Every other edge has length a. Then the volume of the simplex
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is

ban−2

n!2
n

2

√

2na2 − (n− 1)b2 .

Corollary 2. An n-simplex in En (n ≥ 1) has every edge incident

at a given vertex of length a. Every other edge has length b. Then

the volume of the simplex is

bn−1

n!2
n

2

√

2na2 − (n− 1)b2 .
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