
SOLUTIONS

No problem is ever permanently closed. Any comments, new
solutions, or new insights on old problems are always welcomed by
the editor.

3. Proposed by Curtis Cooper and Robert E. Kennedy, Central
Missouri State University, Warrensburg, Missouri.

The Fibonacci numbers Fn satisfy F0 = 0, F1 = 1, and

Fn+2 = Fn+1 + Fn for n = 0, 1, 2, . . . .

Show that

n
∑

i=1

F 3
i =

1

10
F3n+2 +

3

5
(−1)n−1Fn−1 +

1

2
.

Solution by Joe Flowers, Northeast Missouri State University,
Kirksville, Missouri and Dale Woods, Central (Oklahoma) State
University, Edmond, Oklahoma (jointly).

The proof is by induction on n and use of the well-known

explicit formula Fn = 1
√

5
(an−bn) where a = 1+

√

5
2 and b = 1−

√

5
2 .

Note that a · b = −1.

For n = 1,

1

10
F5 +

3

5
F0 +

1

2
=

5

10
+ 0 +

1

2
= 1,

as required. Now assume that

k
∑

i=1

F 3
i =

1

10
F3k+2 +

3

5
(−1)k−1Fk−1 +

1

2
for some k ≥ 1 .
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Then

F 3
k+1 =

1

5
√
5
(ak+1 − bk+1)3

=
1

5
√
5
(a3k+3 − 3a2k+2bk+1 + 3ak+1b2k+2 − b3k+3)

=
1

5
√
5
(a3k+3 − b3k+3)− 1

5
√
5
(3ak+1bk+1)(ak+1 − bk+1)

=
1

5
F3k+3 −

3

5
(−1)k+1Fk+1,

and therefore

k+1
∑

i=1

F 3
i =

k
∑

i=1

F 3
i + F 3

k+1

=
1

10
F3k+2 +

3

5
(−1)k−1Fk−1 +

1

2
+

1

5
F3k+3 −

3

5
(−1)k+1Fk+1

=
1

10
F3k+2 +

1

10
F3k+3 +

1

10
F3k+3 +

3

5
(−1)k(Fk+1 − Fk−1) +

1

2

=
1

10
F3k+4 +

1

10
F3k+3 +

3

5
(−1)kFk +

1

2

=
1

10
F3k+5 +

3

5
(−1)kFk +

1

2
.

Also solved by Russell Euler, Northwest Missouri State University,
Maryville, Missouri and the proposers.

4. Proposed by Curtis Cooper, Central Missouri State Univer-
sity, Warrensburg, Missouri.

Let n be a positive integer and P be a permutation on

{1, . . . , n}. Which permutations result in non-contradictory lists

of n statements where statement i in the list is

i. Statement P (i) is false.

Solution by Charles J. Allard, Polo R-VII High School, Polo,
Missouri.
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The permutations leading to non-contradictory lists of n state-

ments are the ones which are the products of disjoint cycles of even

length.

To see this, let (i1, i2, . . . , im) be one of the cycles in the fac-

torization of P. Then

i1. Statement i2 is false.

i2. Statement i3 is false.

...

im. Statement i1 is false.

Now all the statements cannot be false (since that would imply

all the statements are true). Without loss of generality, suppose

statement i1 is true. Then statement i2 is false so statement i3 is

true. Continuing in the above manner; if m is even, statement im

is false; whereas if m is odd, statement im is true. Thus if m is

even, statement i1 is true; but if m is odd, statement i1 is false, a

contradiction.

Therefore, the only non-contradictory permutations are the

ones which are the product of disjoint cycles of even length. It

might be noted that if n is odd, none of the permutations are

non-contradictory.

Also solved by the proposer.

33



5. Proposed by Curtis Cooper and Robert E. Kennedy, Central
Missouri State University, Warrensburg, Missouri.

Show

10
∑

j=0

(

2 cos
2πj

11

)11

= 22 .

Solution I. by Larry Eifler, University of Missouri - Kansas
City, Kansas City, Missouri.

Let n be a positive integer and set ω = e
2πi

n . Then

Sn =

n−1
∑

j=0

(

2 cos
2π

n
j

)n

=

n−1
∑

j=0

(

ωj + ω−j
)n

=

n−1
∑

j=0

[ n
∑

k=0

(

n

k

)

ωjkω−j(n−k)

]

=

n−1
∑

j=0

[ n
∑

k=0

(

n

k

)

ω2jk

]

=
n
∑

k=0

[(

n

k

) n−1
∑

j=0

ω2kj

]

.

Since

(ω2k − 1)

n−1
∑

j=0

ω2kj = ω2kn − 1 = 0 ,

we have

n−1
∑

j=0

ω2kj =

{

n, if ω2k = 1;
0, if ω2k 6= 1 .

Thus,

Sn =

{

2n, if n is odd;
2n+ n

(

n
n

2

)

, if n is even .
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Solution II. by James Horner, Central Missouri State Univer-
sity, Warrensburg, Missouri.

Let

S(m, q) =

m−1
∑

j=0

(

2 cos
qπj

m

)m

where q is an even integer and q and m are relatively prime. Also,

let x = exp
(

qπi
m

)

and note that xp = 1 if and only if p is an integer

multiple of m.

Now,

S(m, q) =

m−1
∑

j=0

(

xj + x−j
)m

=

m−1
∑

j=0

x−mj
(

x2j + 1
)m

=

m−1
∑

j=0

(

x2j + 1
)m

=

m−1
∑

j=0

m
∑

k=0

(

m

k

)

x2jk

=

m
∑

k=0

(

m

k

)m−1
∑

j=0

x2kj .

For 0 ≤ k ≤ m, x2k = 1 only when k = 0 and k = m. Then,

m−1
∑

j=0

x2kj =

{

m, if k = 0 or k = m;
1−x2km

1−x2k = 0, if k 6= 0 and k 6= m .

Thus,

S(m, q) =

[(

m

0

)

+

(

m

m

)]

·m = 2m .

Solution III. by James Horner, Central Missouri State Uni-
versity, Warrensburg, Missouri.
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Let q and m be positive integers with qm even. With

x = exp
(

qπi
m

)

,

S(m, q) =

m−1
∑

j=0

(

2 cos
qπj

m

)m

=

m−1
∑

j=0

(

xj + x−j
)m

=

m−1
∑

j=0

x−mj
(

x2j + 1
)m

=

m−1
∑

j=0

x−mj

m
∑

k=0

(

m

k

)

x2jk

=
m
∑

k=0

(

m

k

)m−1
∑

j=0

x(2k−m)j .

We note that xp = 1 if and only if qp

m
is an even integer, and

consider two cases.

When q is even, x2k−m = 1 if and only if qk

m
is an integer.

Also, 0 ≤ k ≤ m. So, x2k−m = 1 only when k = 0 or k is of the

form m
p
, where p is a common divisor of m and q.

Let 1 = p1 < p2 < p3 < · · · < pn be the common divisors of

m and q and let k0 = 0 and ki =
m
pi

for 1 ≤ i ≤ n. Then,

m−1
∑

j=0

x(2k−m)j =

{

m, if k ∈ {ki : 0 ≤ i ≤ n};
1−x(2k−m)m

1−x2k−m = 0, otherwise .

Thus, when q is even,

S(m, q) = m

n
∑

i=0

(

m

ki

)

.

We note that ifm and q are relatively prime (as, for example, q = 2

and m = 11), S(m, q) = 2m).

36



Suppose now that q is odd and m is even. In this case,

x2k−m = 1 if and only if (2k
m

− 1) is an even integer. So, we

must have 2k
m

an odd integer and we have 0 ≤ k ≤ m. The only

choice is k = m
2 .

Thus, in this case, S(m, q) = m
(

m
m

2

)

.

Also solved by James Horner, Central Missouri State Uni-
versity, Warrensburg, Missouri (three solutions); Joseph Chance,
Pan American University, Edinburg, Texas; Alejandro Necochea,
Pan American University, Edinburg, Texas; Edward Wang, Wil-
frid Laurier University, Waterloo, Ontario, Canada, and the pro-
posers.

Wang notes that there is a well-known identity

n
∏

j=1

sin
πj

n
=

n

2n−1

for all integers n. Thus from this and the problem we obtain the

interesting identity

(∗)
n−1
∑

j=0

(

cos
2πj

n

)n

=

n
∏

j=1

sin
πj

n
.

for all odd integers n. Wang asks if there is a direct proof of (*).
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