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In [1], B. Pearson defined convergence spaces and investigated

some of their structures. It was pointed out that convergence

spaces are much weaker in structure than topological spaces. The

purpose of this paper is to define and investigate convergence semi-

groups along the same line of thought as in chapter 1 of [2]. Al-

though weaker in structure, most of the results discussed in [2] or

[3] on topological semigroups are found to be true on convergence

semigroups.

Definition. The set D is directed by the relation ≥ if (1) for each

m in D, m ≥ m, (2) for each m, n, and p in D, if p ≥ n and n ≥ m,

then p ≥ m, and (3) for each m and n in D, there exists p in D

such that p ≥ m and p ≥ n. If D is directed by the relation ≥

and m ∈ D, then {n ∈ D | n ≥ m} will be denoted by mD. The

domain and range of a relation f will be denoted byD(f) and R(f)

respectively. A net is a map s such that D(s) is a directed set. If
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m ∈ D(s), then s(m) will sometimes be denoted by sm. If X is a

set and s is a net with domain D, then s is in X if R(s) ⊆ X , s

is eventually in X if for some m in D, s(mD) ⊆ X . A net t is a

subnet of s, denoted by t ≤ s, if for each m ∈ D, t is eventually in

s(mD).

Definition. A convergence structure on the set X is a class C of

ordered pairs such that (1) if (s,x) ∈ C, then s is a net in X and

x ∈ X , and (2) if (s,x) ∈ C and t is a net in X such that t ≤ s,

then (t,x) ∈ C. If C is a convergence structure on X , then (X ,C)

or just X is called a convergence space and the statement that s

converges to x, denoted by s → x or lim s = x, means (s,x) ∈ C.

Definition. Suppose X is a convergence space and Y ⊆ X . For

each point x ∈ Y and each net s in Y let s → x in Y if and only

if s → x in X . Then Y is called a subspace of X .

In the following definitions and theorems, X is a convergence

space.

Definition. X is said to have the constant convergence property if

for each x in X and net s in {x}, s → x.

Theorem 1. If X has the constant convergence property and Y is
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a subspace of X , then Y has the constant convergence property.

Proof. Suppose y ∈ Y and s is a net in {y}. Then s is a net in Y .

Since Y ⊆ X and X has the constant convergence property, s → y

in Y . Since Y is a subspace of X , s → y in Y and hence Y has the

constant convergence property.

Definition. If M ⊆ X , then M is the set of all points x such that

some net in M converges to x.

Theorem 2. If X has the constant convergence property and

A ⊆ X, then A ⊆ A.

Proof. Let a ∈ A. Let s be a net such that R(s) = {a}. Since X

has the constant convergence property, it follows from Theorem 1

that s → a in A and hence a ∈ A. Therefore A ⊆ A.

Theorem 3. If f is a map from X to Y , s is a net in X , and

t ≤ f ◦ s, then there is a subnet u of s such that f ◦ u ≤ t.

Proof. Let D = D(s) and F = D(t). Then D(f ◦ s) = D. Let

G = {(m,n) ∈ D × F |tn = f(sm)} with the cross product order.

It is easy to see that G is a directed set. Let u be the net with

domain G defined by u(m,n) = sm. Let p ∈ D. Since t ≤ f ◦ s,

there exists q ∈ F such that t(qF ) ⊆ s(pD). Let (m,n) ≥ (p, q).
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Then m ≥ p and u(m,n) = sm. Thus u ≤ s. Let k ∈ F . Since

t ≤ f ◦ s, there exists q ≥ k such that tq = f(u(p, q)) for some

p in D. Let (m,n) ≥ (p, q). Then n ≥ k and f(u(m,n)) = tn.

Therefore f ◦ u ≤ t.

Definition. Let f be a map from X to Y . Then the statement that

f is strongly continuous means that if x ∈ X and s is a net in X

such that s → x, then f ◦ s → f(x). And, f is continuous means

that if x ∈ X and s is a net in X such that s → x, then some

subnet of f ◦ s converges to f(x).

Definition. The statement that X is pseudotopological at x means

that if s is a net in X such that each universal subnet of s converges

to x, then s → x.

Theorem 4. If f is a continuous map from X to Y and Y is pseu-

dotopological, then f is strongly continuous.

Proof. Let s → x, and let t be a universal subnet of f ◦ s. By

Theorem 3, there is a net u in X such that u ≤ s and f ◦ u ≤t.

Since u → x and f is continuous, there exists a subnet v of f ◦

s such that v → f(x). Since t is universal, t ≤ v and hence

t → f(x). Since every universal subnet of f ◦ s converges to f(x)
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and Y is pseudotopological, f ◦ s → f(x). Therefore f is strongly

continuous.

Definition. X is Hausdorff if no net in X converges to two distinct

points of X and X is compact if each net in X has a convergent

subnet.

Definition. A convergence semigroup is a semigroupX with a con-

vergence structure and the multiplication defined on X is strongly

continuous, which means that if s and t are nets in X with the

same domain such that s → x and t → y, then st → xy.

Definition. LetA be a nonempty subset of a convergence semigroup

X . Then A is called a convergence subsemigroup of X if aA ⊆ A

for each a ∈ A and A is called a convergence subgroup of X if

aA = Aa = A for each a ∈ A.

In the following theorems and definitions, X is a convergence

semigroup.

Theorem 5. Let X be a convergence semigroup with more than

one element. Then X contains a convergence subsemigroup A such

that A 6= X .

Proof. Suppose A = X for every convergence subsemigroup A
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of X . Then xX = X = Xx for every x in X and therefore X

is a group. Let e be the identity of X . It is clear that {e} is a

subsemigroup of X . According to Theorem 1, {e} is a subspace

of X and hence {e} is a convergence subsemigroup of X . By the

supposition, {e} = X . But this contradicts the assumption that

X has more than one element.

Theorem 6. If s and t are nets in X with domains D and E respec-

tively, then there exists nets u and v in X such that D(u) = D(v),

u ≤ s, and v ≤ t.

Proof. Let D = D(s) and let F = D(t). Let G = D × F with

the cross product order. Then it is clear that G is a directed set.

Let u and v be nets with domain G such that u(m,n) = sm and

v(m,n) = tn. Let p ∈ D. Then for each m ∈ F and q ≥ p,

u(m, q) ∈ s(pD). Therefore u ≤ s. Similarly, v ≤ t.

The next theorem follows immediately from Theorem 6 and

the definition of convergence semigroup.

Theroem 7. If s and t are nets in X such that s → x and t → y,

then there exist nets u and v in X such that u ≤ s, v ≤ t, and

uv → xy.
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Theorem 8. If A is a convergence subsemigroup of X , then A is a

convergence subsemigroup of X .

Proof. Let x, y be elements of A. Then there exist nets s and t in

A such that s → x and t → y. According to Theorem 7, there exist

nets u and v in X such that u ≤ s, v ≤ t and uv → xy. Therefore

xy ∈ A and hence A is a convergence subsemigroup of X .

The proof of the next theorem is the same as the proof of

Theorem 1.1.3 in [2].

Theorem 9. Each subgroup of a convergence semigroup X is con-

tained in a (unique) maximal subgroup, and no two maximal sub-

groups of X intersect.

Definition. M is said to be closed in X if M ⊆ M .

Theorem 10. Let X be a compact, Hausdorff convergence semi-

group with the constant convergence property. If A is a subgroup

of X and a ∈ A, then b ∈ aA (b ∈ Aa) for every b in A.

Proof. Let a ∈ A. Then there exists a net s in A with domain D

such that s → a. Let t be the net with domain D such that for

each i ∈ D, ti = s−1

i . Since X is compact, there exists a subnet

t′ of t such that t′ → x for some x in A. By Theorem 7, there
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exist subnets u and v of s and t′ respectively such that uv → ax.

Let e be the identity of A. Then uv is a net in {e}. Since X is

Hausdorff and X has the constant convergence property, it follows

that ax = e. Similarly, xa = e and hence x = a−1. Let b ∈ A.

Then there exists a net w in A such that w → b. By Theorem

7, there exist subnets v′ and w′ of v and w respectively such that

v′w′ → a−1b and a−1b ∈ A. Since b = aa−1b, b ∈ aA. The proof

of the statement b ∈ Aa is somewhat similar.

Theorem 11. If X is a Hausdorff, compact convergence semigroup,

then each maximal subgroup of X is closed.

Proof. Let A be a maximal subgroup of X and let x, y be elements

of A. According to Theorem 8, xy ∈ A. Thus xA ⊆ A and Ay ⊆ A.

Let z ∈ A. By Theorem 10, A ⊆ zA and A ⊆ Az. Therefore

zA = A = Az for every z ∈ A and hence A is a subgroup of X

containing A. By the maximality of A, A = A.

Definition. A convergence group is a group with a convergence

structure and the multiplication defined on X is strongly continu-

ous.

Definition. An element e of a convergence semigroupX is called an
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idempotent if e2 = e. We shall denote by E the set of idempotents

in X .

Theorem 12. If X is a Hausdorff convergence semigroup, then the

set E of all idempotents of X is closed.

Proof. If E = ∅, then the theroem is trivial. Let x ∈ E. Then

there is a net s in E such that s → x. Since lim ss = xx = x2 and

lim ss = lim s = x, x2 = x and so x ∈ E. Therefore E is closed.

The proof of the following theorem is the same as the proof of

Theorem 1.8 in [3].

Theorem 13. If X is a compact convergence semigroup, then X

contains at least one idempotent.

Theorem 14. Let X be a Hausdorff, compact, pseudotopological

convergence semigroup with the constant convergence property. If

X is an abstract group, then X is a convergence group.

Proof. Let m be the map from X×X to X and n be the map from

X to X such that if x, y are elements of X , then m(x, y) = xy and

n(x) = x−1. Since X is a convergence semigroup, m is strongly

continuous. Let a ∈ X and let s be a net with domain D such that

s → a. Then it is obvious that D(n ◦ s) = D and for each k ∈ D,
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n(sk) = s−1

k . Since X is compact, there exists a subnet t of n ◦ s

such that t → b for some b in X . By Theorem 7, there exist nets

u and v such that u ≤ s and v ≤ t and uv → ab. Let e be the

identity of X . Since uv is a net in {e}, X is Hausdorff, and X has

the constant convergence property, ab = e. Similarly, ba = e and

hence b = a−1. Therefore n is continuous. It follows from Theorem

4 that n is strongly continuous and thus X is a convergence group.

Theorem 15. If X is a convergence semigroup with the constant

convergence property and X ′ is a compact convergence subsemi-

group of X , then xX ′ is a compact convergence subsemigroup of

X for every x in X ′.

Proof. Let x ∈ X ′ and let xa and xb be elements of xX ′. Then

axb ∈ X ′ and hence xaxb ∈ xX ′. It follows that xX ′ is a conver-

gence subsemigroup of X . Let s be a net in xX ′ with domain D.

Then for each i ∈ D, si = xai for some ai in X ′. Let t be the

net with domain D such that for each i ∈ D, ti = ai. Then t is a

net in X ′. Since X ′ is compact, there exists a subnet t′ of t with

domain F such that t′ → y for some y in X ′. Let u be the net with

domain F such that R(u) = {x}. Let s′ = s|F . Since X has the
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constant convergence property, u → x. Since X ′ is a convergence

subsemigroup, lim s′ = lim ut = xy. Therefore xX ′ is a compact

convergence subsemigroup of X .

Theorem 16. Let X be a compact, convergence semigroup with

the constant convergence property and X ′ be a compact conver-

gence subsemigroup of X . If X is an abstract group, then X ′ is a

subgroup.

Proof. According to Theorem 13, X ′ contains an idempotent e

which is the identity of X . Let x ∈ X ′. By Theorem 15, xX ′

is a compact convergence subsemigroup of X . Applying Theorem

13 to xX ′, there is an idempotent e′ in xX ′. Since ee′ = e′e′,

e = e′ and hence e ∈ xX ′. Therefore X ′ = eX ′ ⊆ xX ′. Since

X ′ is a subsemigroup, xX ′ ⊆ X ′ and thus xX ′ = X ′. Similarly,

X ′x = X ′. Therefore X ′ is a subgroup.

Definition. Let X be a semigroup. The statement that X satisfies

the two− sided cancellation law means that for all a, b, and c in

X , ac = bc implies a = b and ca = cb implies a = b.

Theorem 17. If X is a compact, pseudotopological convergence

semigroup, and X satisfies the constant convergence property and
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the two-sided cancellation law, then X is a convergence semigroup.

Proof. Let x ∈ X . It is clear that xX ⊆ X and Xx ⊆ X .

According to Theorem 16, X contains at least one idempotent.

Let e and e′ be idempotents in X . Since eee′ = ee′ and ee′e′ = ee′,

it follows from the two-sided cancellation law that ee′ = e′ and

hence e = e′. Therefore there is only one idempotent, denoted by

1, in X . Now 12x = 1x. It follows from the two-sided cancellation

law that 1x = x. Similarly, x1 = x. Therefore 1 is the identity

of X . Since x = x1 = 1x, X ⊆ xX and X ⊆ Xx and hence

xX = Xx = X . According to Theorem 14, X is a convergence

group.

References

1. B. J. Pearson, “Spaces Defined by Convergence Classes of
Nets,” Glasnik Matematicki, Vol. 23 (43)(1988) 135–142.

2. A. B. Paalman-De Miranda, “Topological Semigroup,” Math-

ematical Centre Tracts, 2nd Edition, Mathematiche Centrum
Amsterdam, 1970.

3. J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory

of Topological Semigroups, Marcel Dekker, Inc., New York,
New York, 1983.

22


