SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the editor.

7. Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

Evaluate

$$L = \lim_{x \to 0} \left[\frac{\sin(\tan x) - \tan(\sin x)}{\sin^{-1}(\tan^{-1} x) - \tan^{-1}(\sin^{-1} x)} \right] \,.$$

Solution by Robert E. Kennedy and Curtis Cooper, Central Missouri State University, Warrensburg, Missouri.

It is well-known that as $x \to 0$

(1)

$$\begin{aligned} \sin x &= x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \frac{1}{5040}x^7 + O(x^9) , \\ \tan x &= x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + O(x^9) , \\ \sin^{-1}x &= x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \frac{5}{112}x^7 + O(x^9) , \\ \tan^{-1}x &= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + O(x^9) . \end{aligned}$$

Using (1), as $x \to 0$

$$\sin(\tan x) = \tan x - \frac{1}{6} \tan^3 x + \frac{1}{120} \tan^5 x$$
$$- \frac{1}{5040} \tan^7 x + O(\tan^9 x)$$
$$= x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + O(x^9)$$
$$- \frac{1}{6} \left(x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + O(x^9)\right)^3$$
$$+ \frac{1}{120} \left(x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + O(x^9)\right)^5$$
$$- \frac{1}{5040} \left(x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + O(x^9)\right)^7$$
$$+ O(x^9)$$

$$= x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + O(x^9)$$

- $\frac{1}{6}(x^3 + x^5 + \frac{11}{15}x^7 + O(x^9))$
+ $\frac{1}{120}(x^5 + \frac{5}{3}x^7 + O(x^9))$
- $\frac{1}{5040}(x^7 + O(x^9)) + O(x^9)$
= $x + \frac{1}{6}x^3 - \frac{1}{40}x^5 - \frac{55}{1008}x^7 + O(x^9)$.

Repeating this result and deriving three others similarly we have that as $x \to 0$

(2)

$$\sin(\tan x) = x + \frac{1}{6}x^3 - \frac{1}{40}x^5 - \frac{55}{1008}x^7 + O(x^9) ,$$

$$\tan(\sin x) = x + \frac{1}{6}x^3 - \frac{1}{40}x^5 - \frac{107}{5040}x^7 + O(x^9) ,$$

$$\sin^{-1}(\tan^{-1}x) = x - \frac{1}{6}x^3 + \frac{13}{120}x^5 - \frac{341}{5040}x^7 + O(x^9) ,$$

$$\tan^{-1}(\sin^{-1}x) = x - \frac{1}{6}x^3 + \frac{13}{120}x^5 - \frac{173}{5040}x^7 + O(x^9) .$$

Therefore, from (2) we have that as $x \to 0$

$$\sin(\tan x) - \tan(\sin x) = -\frac{1}{30}x^7 + O(x^9)$$

and

$$\sin^{-1}(\tan^{-1}x) - \tan^{-1}(\sin^{-1}x) = -\frac{1}{30}x^7 + O(x^9) \; .$$

Thus, as $x \to 0$

$$\frac{\sin(\tan x) - \tan(\sin x)}{\sin^{-1}(\tan^{-1}x) - \tan^{-1}(\sin^{-1}x)} = \frac{-\frac{1}{30}x^7 + O(x^9)}{-\frac{1}{30}x^7 + O(x^9)} .$$

Therefore,

$$L = \lim_{x \to 0} \left[\frac{\sin(\tan x) - \tan(\sin x)}{\sin^{-1}(\tan^{-1} x) - \tan^{-1}(\sin^{-1} x)} \right] = 1 \; .$$

Also solved by the proposer.

8. Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

The Fibonacci numbers F_n satisfy $F_1 = 1$, $F_2 = 1$, and $F_{n+2} = F_{n+1} + F_n$ for $n = 1, 2, 3, \ldots$. Find two solutions of $x^n = F_n x + F_{n-1}$ for all integers $n \ge 2$.

I. Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

We shall show that $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$ are the required solutions. (In fact when n = 2, the given equation becomes $x^2 - x - 1 = 0$ which has α and β as its only solutions.) Since $F_k = \frac{\alpha^k - \beta^k}{\alpha - \beta}$,

$$\alpha^{n} - F_{n}\alpha = \alpha^{n} - \frac{\alpha^{n} - \beta^{n}}{\alpha - \beta}\alpha$$
$$= \frac{\alpha^{n+1} - \alpha^{n}\beta - \alpha^{n+1} + \alpha\beta^{n}}{\alpha - \beta}$$
$$= \frac{(-\alpha\beta)(\alpha^{n-1} - \beta^{n-1})}{\alpha - \beta}$$
$$= F_{n-1} \quad (\text{because } \alpha\beta = -1)$$

Also

$$\beta^{n} - F_{n}\beta = \beta^{n} - \frac{\alpha^{n} - \beta^{n}}{\alpha - \beta}\beta$$
$$= \frac{\alpha\beta^{n} - \beta^{n+1} - \alpha^{n}\beta + \beta^{n+1}}{\alpha - \beta}$$
$$= \frac{(-\alpha\beta)(\alpha^{n-1} - \beta^{n-1})}{\alpha - \beta}$$
$$= F_{n-1}.$$

This completes our solution.

II. Composite solution by Charles J. Allard, Polo R-VII Schools, Polo, Missouri and Enis Alpakin (student), Central Missouri State University, Warrensburg, Missouri (independently).

Suppose x is a solution of $x^n = F_n x + F_{n-1}$ for all integers

 $n \geq 2$. Then for all integers $n \geq 1$,

$$\begin{aligned} x^{n+1} &= F_{n+1}x + F_n ,\\ x \cdot x^n &= F_{n+1}x + F_n ,\\ x(F_n x + F_{n-1}) &= F_{n+1}x + F_n ,\\ F_n x^2 + (F_{n-1} - F_{n+1})x - F_n &= 0 . \end{aligned}$$

Now since $F_n \neq 0$ and $F_{n-1} - F_{n+1} = -F_n$ for $n \ge 1$,

$$x^2 - x - 1 = 0.$$

Therefore,

$$x = \frac{1 \pm \sqrt{5}}{2} \; .$$

III. Composite solution by Joseph E. Chance, Pan American University, Edinburg, Texas; Alejandro Necochea, Pan American University, Edinburg, Texas; Leonard L. Palmer, Southeast Missouri State University, Cape Girardeau, Missouri; W. F. Wheatley III (student), Central Missouri State University, Warrensburg, Missouri; and the proposer (independently).

We will show by induction on n that $x = \frac{1\pm\sqrt{5}}{2}$ are two solutions of $x^n = F_n x + F_{n-1}$ for all integers $n \ge 2$. This statement is true for n = 2.

Assume the result is true for some $n \ge 2$. Then

$$x^{n+1} = x^n \cdot x$$

= $(F_n x + F_{n-1}) \cdot x$
= $F_n x^2 + F_{n-1} x$
= $F_n (x+1) + F_{n-1} x$
= $(F_n + F_{n-1})x + F_n$
= $F_{n+1} x + F_n$,

so the result is true for n + 1. Thus, by induction on n, $\frac{1\pm\sqrt{5}}{2}$ are solutions of $x^n = F_n x + F_{n-1}$ for all integers $n \ge 2$.