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Mathematics grows on all levels. One doesn’t need a Ph.D. —
as is the case in other sciences — to make interesting and significant
contributions to the field. Even at the lower levels, students can
be challenged to initiate research projects, and to develop novel
solutions to problems of their own devising.

In this paper, we explore some of the procedures by which
mathematics grows. We also offer several original examples of
varying difficulty that demonstrate these procedures. Our hope
is that instructors can use these examples, and the methodology
that underlies them, to motivate students to think of mathemat-
ics as an enterprise of which they (the students) are a part. If
students (and instructors) feel that there are still many problems
on the lowest levels of mathematics in need of formulation and so-
lution, courses in mathematics can become more stimulating and
alive.

1. Observation and Explanation

Typically, the starting point for the mathematician is observa-
tion. After observing some unusual — or not so unusual — event,
he/she will seek to explain what he/she has observed mathemati-
cally.

As an example, suppose our mathematician visits a Las Vegas
Casino, and observes the following four-card magic trick: the dealer
presents a brand new fifty-two card deck and asks the audience to
cut the cards as many times as they please, once at a time (here,
cutting once at a time means cutting the top of the deck, putting
the cut cards to the right, and placing the bottom cards on top
of them). The dealer then deals four cards to thirteen different
people, and “magically” each person receives four cards of the same
kind — i.e., four aces, four kings, four deuces, etc.

His curiosity piqued, our mathematician might naturally seek
to explain this “phenomenon”. He can do so in a non-technical and
understandable manner using a standard technique of geometric
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analysis.

In a brand new deck, the cards are arranged in the following
order: on top is the ace of hearts, then the deuce of hearts, the
three of hearts, · · ·, the ten of hearts, jack of hearts, queen of
hearts, king of hearts; then the ace of spades, deuce of spades, and
so on. Suppose then that we represent the deck by means of a
circle divided into fifty-two equal parts, denoted respectively by
1H, 2H, 3H, · · ·, 11H, 12H, 13H, 1S, 2S, and so on (note that
“11H” stands for the jack of hearts, “12H” for the queen of hearts,
and “13H” for the king of hearts) and that we sequence the cards
counterclockwise, letting the “top” of the circle represent the top
of the deck.

Figure 1

Since there are thirteen cards in each suit, each 90 degree
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segment of the circle has thirteen parts, and each card in a suit is
separated from its counterpart in the nearest suit by 90 degrees.
And if the cards are dealt to thirteen different people, each person
will then receive the cards that are separated by 90 degrees — the
first person will receive 1H, 1S, 1D, and 1C, the second person
2H, 2S, 2D, and 2C, and so on.

Now cutting the deck amounts simply to rotating the circle
in a clockwise direction. Since each card is separated from its
successor by 90/13 degrees, a cut of three cards amounts to rotating
the deck 3 x (90/13) degrees, a cut of 10 cards by 10 x (90/13)
degrees, and so on. In no case, though, is the order of the cards
disturbed. All that changes is which card is on top. However, so
long as thirteen different people are dealt cards, each person will
still receive cards at 90 degrees to each other — namely, the same
cards in the different suits. If three cards are cut, for example, 4H
is then the top card on the deck and 3H the bottom card. The first
person will then receive four fours and the last person four threes.
In general, if we cut the new deck n times, the first time with n1

cards, and the nth time with nn cards, our action is equivalent to a
clockwise rotation of the circle by an angle of (n1 +n2 + · · ·+nn)x,
where x = 90/13 degrees. However, again it is obvious that no
matter how many times the deck is cut, the sequence of the cards
is not changed, and hence the “trick” will still “work”.

2. Extending Existing Knowledge in Mathematics

Explaining observed phenomena is one method by which
mathematics advances. Another is by extending existing knowl-
edge. For example, after observing and explaining the four card
magic trick, the mathematician might be tempted to ask:

(1) Is it necessary to use a deck arranged as brand new decks
are arranged, or will the trick work with alternative arrangements
of the cards?

(2) Can we use algebraic methods to predict that the trick will
still work?

and

(3) Can we arrange the deck in some other specific order so
that everyone receives two different pairs?

In fact, the answer to each of these questions is “yes” [1]. Using
our circle diagram, for example, we can see that the trick could
be made to work if we eliminated the picture cards from the deck

30



and dealt out the remaining cards to ten different people. In this
case, each 90 degree segment of the circle would be divided into ten
equal parts. We could insure that each person received two pairs if
we arranged the standard fifty-two card deck in, for example, the
following manner:

Figure 2

In fact, the reader ought to be able to work out the many variations
on the “standard” trick from which this discussion began, and
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teachers might want to assign the development of such variations
as exercises for their students.

Another (slightly more complex) example of extending exist-
ing knowledge can be drawn from the study of quadratic equations.
College algebra shows us that the solutions for a quadratic equa-
tion ax2 + bx + c = 0 are (−b ±

√
b2 − 4ac)/2a(a 6= 0). If the

discriminant D = (b2 − 4ac) ≥ 0, then we have two real solutions
or a double real solution. College algebra also shows us how to see
the graphical representation of two real solutions or one double real
solution by looking at the intersection of the points of the graph
of f(x) = ax2 + bx + c and the x-axis (Figure 3):

Figure 3

Students learning to solve quadratic equations should not,
however, be satisfied with learning only this standard part of the
curriculum. They should, rather, seek to extend their knowledge
by asking “what happens if the discriminant (D = b2− 4ac) < 0?”
Of course, the graph of f(x) = ax2 + bx + c does not intersect the
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x-axis when (D = b2 − 4ac) < 0 (Figure 4).

Figure 4

Instead, if D = (b2 − 4ac) < 0, we have two conjugate complex
roots, namely, x = (−b ±

√
4ac− b2 i)/2a. The question then

becomes “how can the two conjugate complex roots of the equation
be graphically represented?”

To see how this question can be answered, it will be useful
to consider a particular case and then generalize. Let us then
consider the particular equation x2 − 2x + 5 = 0. x1 = 1 + 2i,
and x2 = 1 − 2i are the two conjugate complex solutions of this
equation. To graphically represent these solutions, we then, first,
construct a three-dimensional coordinate-system xyz, in which the
plane spanned by ox and oy is the complex plane, and ox represents
the real part of the complex numbers. Observing that f(x) =
x2−2x+5 = (x−1)2+4, we next graph the function F1(x) = x2+4
in the coordinate-system o′XY . The graph of this function is a
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parabola, concave up, with its vertex at (0,4).

Figure 5

The next step is to rotate F1, an angle of 90 degrees coun-
terclockwise about the Y -axis. The result is F2 in the coodinate
system o′XY . Note that in this coordinate-system, the graph of
F2 is exactly the graph of the function F2(x) = x2 +4. Now we flip
the graph F2 over on the straight line Y = 4 in o′XY , and obtain
the graph F3, which is the graph of the function F3(x) = −x2 + 4
in the coordinate system o′XY . It is easy to see that the intersec-
tion points of F3 and the X-axis are the two points A(2, 0), and
B(−2, 0). In fact, A and B represent the two complex numbers
1 + 2i and 1− 2i, respectively, in the complex plan oxy. The two
complex conjugate roots of the equation x2 − 2x + 5 are thus rep-
resented by the two intersection points A and B of the graph F3
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and the X-axis. The reader should now see that it is not diffi-
cult to generalize this technique for any two complex solutions of
ax2 + bx + c = 0.

This example was, again, given to illustrate the concept of ex-
tending existing knowledge in mathematics. In this case, we sought
to extend our knowledge of how to represent real solutions of the
quadratic equation ax2+bx+c = 0 to the graphical representation
of two conjugate complex solutions of ax2 + bx + c = 0. At this
point, we should, of course, wonder about how we might further
extend our knowledge; i.e., we should wonder whether our solution
can be further extended to the geometrical representation of com-
plex roots of any polynomial f(x) = anx

n + an−1x
n−1 + · · ·+ a0.

As yet, this question remains to be explored.

3. Looking for Applications

Finally, another method by which mathematics advances is by
attempting to apply theorems to new domains — i.e., by looking for
applications of existing knowledge. As an illustration, let’s consider
yet another example. The following theorem is a consequence of
the distributive laws governing real numbers:

Theorem: For any real numbers x and y, where 5 < x ≤ 10, and
5 < y ≤ 10, xy = 10((x− 5) + (y − 5)) + ((10− x)(10− y)).

Most mathematical theorems make sense if one can see their ap-
plications, and this theorem leads to an interesting application
concerning multiplication of two real numbers from six to ten.

First, we number the finger of the two hands as follows:

Figure 6
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That is to say, with palms facing inward, we number the thumb
of each hand 10, the index finger 9, the middle finger 8, the ring
finger 7, and the little finger 6. We are now prepared to use our
fingers (and the theorem mentioned above) to multiply numbers
between 6 and 10.

Suppose, for example, that we want to compute the product of
6 and 9. Keeping the palms facing inward, touch the index finger
(9) of the right hand to the little finger (6) of the left hand,

Figure 7

count the number of fingers below and including the touching fin-
gers (there are five), and multiply by 10 (the result is of course 50).
Next, multiply the number of fingers of the left hand about (but
not including) the touching fingers (there is one) by the number
of fingers of the right hand above (but not including) the touch-
ing fingers (there are four), and add the product (4x1 = 4) to the
previous result. The final answer is of course 54.

It is easy to verify that this technique works for products of all
numbers between six and ten. To multiply six by six, for example,
we touch the little fingers of both hands, noting that there are two
fingers below and including those touching, and four above on each
hand. Then we multiply two by ten, and four by four, and add the
products to arrive at our answer: 36. To multiply six by seven, we
touch the ring finger of the left hand to the little finger of the right
hand, noting three fingers below those touching, three above on
the right hand, and four above on the left hand. We then multiply
three by ten, and three by four, and add the products to arrive at
our answer: 42.

Having mastered this application of an already known theo-
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rem, the mathematician should now look for ways to extend what
he has discovered. He might wonder, for example, if a more general
method for multiplying by hand can be devised that works for any
real numbers. One fairly simple extension involving multiplication
of numbers between 10 and 15 can, for example, be devised using
the following theorem:

Theorem: For any real numbers x and y, where 5 < x ≤ 10 and
10 < y ≤ 15, xy = 10(x− 5 + y − 10)(15− y) + 5x.

In order to make use of this theorem, we number the fingers of the
left hand as before, but number the fingers of the right hand as
illustrated below:

Figure 8

The technique for computing products is identical to the previous
technique except that now we must add 5x (where x is our initial
multiple) to our result. For example, suppose we want to multiply
7 by 12. First we touch the ring fingers of both hands together,
noting that there are two fingers below and including those touch-
ing, and three above, on each hand. Next we multiply 10 by 4 and
3 by 3, and add the results (49). Finally, we multiply the initial
multiple (7) by 5, and add this product (35) to the previous sum.
Our answer is then 40 + 9 + 35 = 84.

Mathematics grows from the attempt to answer the sorts of
questions raised in this paper: how can we explain what we ob-
serve? how can we extend what we have learned? and how can we
apply what we now know? As should be obvious, the process has
no fixed limit; there is no point at which mathematics will stop
growing, no completion, even ideally, to the mathematical enter-
prise. It make sense — at least according to some — to talk about
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an “ideally completed” physics or psychology or biology, about an
ideal physical or psychological or biological theory that explains
and predicts all of the facts falling under the discipline. But no
such ideal applies to mathematics. As long as mathematicians con-
tinue to ask and to answer questions, the discipline will continue
to grow.
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