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In this article, first we briefly reintroduce the Frattini sub-

group Φ(G), and the lower near Frattini subgroup λ(G), of a group

G. Second, we prove a lemma, due to C. Y. Tang, concerning the

Frattini subgroups and splitting groups. Also, we prove the ex-

act analog of Tang’s lemma for the lower near Frattini subgroups

and nearly splitting groups. Finally, we propose a question for the

reader.

The Frattini Subgroup. The Frattini subgroup, Φ(G) of

a group G, was introduced into the group theory first in 1885 by

the Italian mathematician Giovanni Frattini (1852–1925). Φ(G) is

the intersection of all maximal proper subgroups of G (if there are

no maximal proper subgroups of G, then Φ(G) = G ). It is easy

to see that Φ(G) is the set of all nongenerators of G. (Recall: An

element g of a group G is a nongenerator of G if for every subset S
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of G such that < S, g > = G, then < S > = G ). For more results

concerning Φ(G) see [5].

The Lower Near Frattini Subgroup. As it appears from

the name, the lower near Frattini subgroup of a group G is a close

analog of the Frattini subgroup of G in many ways. The lower near

Frattini subgroup of a group was first published in 1969 by J. B.

Riles. All definitions in this article (except definitions 4 and 5) are

due to him [3].

Definition 1. An element g of a group G is a near generator

of G if there is a subset S of G such that |G : < S >| is infinite,

but |G : < g, S >| is finite.

Definition 2. An element g of a group G is a non− near

generator of G if S ⊆ G and |G : < g, S >| is finite imply that

|G : < S >| is finite.

Observe that if G is a finite group, then every element of G is

a non-near generator of G.

The idea for Propositions 1 and 2 came from [3].

Proposition 1. The set of all non-near generators of a group

G is a subgroup of G.
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Proof. Since the identity of G is a non-near generator of G,

the set of non-near generators of G is not empty. Therefore, it is

enough to show that, if x and y are any two non-near generators

of G, then so is xy−1. Let S ⊆ G be such that |G : < xy−1, S >|

is finite. (In what follows, ≤ will denote the subgroup relation.)

From < xy−1, S > ≤ < x, y, S > it follows that |G : < x, y, S >|

is finite. Thus, |G : < S >| is finite. Hence, xy−1 is a non-near

generator of G. This completes the proof.

Defintion 3. The set of all non-near generators of a group G

is called the lower near Frattini subgroup of G, denoted by λ(G).

The Main Result. In 1972, C. Y. Tang published the follow-

ing lemma (without proof) concerning the Frattini subgroups and

splitting groups [6, Lemma 2.6, p. 570]. We restate this lemma for

the lower near Frattini subgroups and nearly splitting groups (as

a theorem), and we prove both the lemma and the theorem. But

first we need the following three well-known definitions.

Definition 4. If H is a subgroup of a group G, then

K(G,H) =
⋂

g∈G

g−1Hg
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is called the core of H in G. K(G,H) is the unique largest normal

subgroup of G contained in H .

Definition 5. Let H be a normal subgroup of a group G. We

say that G splits over H if there is a subgroup K of G such that

G = HK and H ∩K = 1. Any such subgroup K is said to be a

complement to H in G.

Definition 6. Let G be a group and H a normal subgroup

of G. We say that G nearly splits over H if there exists a sub-

group K of G such that |G : K| is infinite, |G : HK| is finite and

K(G,H ∩K) = 1.

Lemma. Let G be any group and H a normal subgroup of

prime order. Then Φ(G) ∩H = 1 if and only if G splits over H .

Proof. If Φ(G)∩H = 1, then there exists a maximal subgroup

M of G, not containing H . Thus, G = MH . Also, since H is of

prime order and it is not contained in M , we have H ∩M = 1.

Therefore, G splits over H .

Conversely, if G splits over H , then there exists a subgroup

K of G such that G = HK and H ∩ K = 1. Now, if h is any

non-trivial element of H , then < h,K > = HK = G, but G 6= K.
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Hence, h is not a nongenerator of G. Thus, Φ(G) ∩H = 1. This

completes the proof.

Theorem. Let G be any group and H a normal subgroup of

prime order. Then λ(G)∩H = 1 if and only if G nearly splits over

H .

Proof. Suppose λ(G)∩H = 1, so that all non-trivial elements

of H are near generators. Then, for any element 1 6= x ∈ H , there

exists a proper subset S of G such that |G : < S > | is infinite,

but |G : < S, x >| is finite. Now, since H is a normal subgroup of

prime order, < x > = H and, therefore,

(1) |G : < S, x >| = |G : < S > < x >| = |G : < S > H |

is finite. To prove that G nearly splits over H , we need only show

that K(G,H∩ < S >) = 1. If not, then K(G,H∩ < S >) = H , so

that H ≤ < S >. This implies that

|G : < S, x >| = |G : < S > H | = |G : < S >|

is infinite, contradicting finiteness of |G : < S > H | in (1).

Conversely, suppose G nearly splits over H ; that is, there

exists a subgroup K of G such that |G : HK| is finite, |G : K|
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is infinite and K(G,H ∩K) = 1. To prove λ(G) ∩H = 1, we need

to show that every non-trivial element x of H is a near generator;

that is, we need to show that there exists a proper subset S of G

such that |G : < S >| is infinite, but |G : < S, x >| is finite. We are

done if we choose the subset S so that < S > = K. This completes

the proof.

Note that for the proof of λ(G) ∩ H = 1, we did not make

use of the fact that K(G,H ∩K) = 1. Thus, nearly splitting is a

stronger condition than we need.

Remark. The subgroup H in both the lemma and the theorem

must be a proper subgroup of G. Otherwise, Φ(G) ∩H = G 6= 1,

and λ(G) ∩H = G 6= 1.

The Question. Before stating the question, we need two

more definitions as well as a proposition.

Definition 7. A subgroupM of a groupG is nearly maximal in

G if |G :M | is infinite, but |G : N | is finite, for every subgroup N

of G properly containing M . That is, M is maximal with respect

to being of infinite index in G.

Definition 8. The intersection of all nearly maximal subgroups
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of a group G is called the upper near Frattini subgroup of G, de-

noted by µ(G).

Proposition 2. For every group G, λ(G) ≤ µ(G).

Proof. Let g ∈ λ(G), and let M be any nearly maximal sub-

group of G. If g /∈ M , then < M, g > properly contains M , and

thus |G : < M, g > | is finite. Now, since g ∈ λ(G), it follows

that |G : M | is finite, which is impossible. Hence, g lies in every

nearly maximal subgroup of G. Thus, g ∈ µ(G), and consequently,

λ(G) ≤ µ(G).

Note that λ(G) and µ(G) need not coincide. An example of a

group G in which λ(G) is a proper subgroup of µ(G) is given by B.

Huppert [3, Example 1, p. 162]. However, λ(G) and µ(G) coincide

for large classes of groups (see [3]). If λ(G) = µ(G), then their

common value is called the near Frattini subgroup of G, denoted

by ψ(G).

Finally, we are ready to state the question: Is the statement

of the above theorem still true, if λ(G) is replaced by µ(G)?
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