ONE-TO-ONE CONTINUOUS EXTENSIONS

OF ANALYTIC FUNCTIONS

Ramesh Garimella

Northwest Missouri State University

Let U be the open unit disc in the complex plane. Let H(U)stand for the space of functions analytic on U. Let

$$A = \{g\varepsilon H(U) : g'(0) \neq 0\} .$$

For $g \in A$,

$$g(z) = \sum_{n=0}^{\infty} a_n z^n \; ,$$

following the lead of Walter Rudin (see [1] problem E3325 p.445), we say g has the property P_t if

$$\sum_{n=2}^{\infty} |a_n| n \le t \; .$$

In this short note we prove the following result which is an extension of the problem E3325 of [1].

<u>Theorem</u>: Let $g \in A$ have the property P_t for some t > 0. Then g is one-to-one and admits a one-to-one continuous extension to the closed unit disc if $t \leq |g'(0)|$. First we prove a lemma.

<u>Lemma</u>: Assume $g \in A$ and has the property P_t for some t > 0. Then g has a continuous extension to the closure of U.

<u>Proof</u>: Let

$$f(z) = (g(z) - g(0))(g'(0))^{-1}$$
.

Obviously $f \in A, f(0) = 0$ and f'(0) = 1 and has the property P_s where $s = t |g'(0)|^{-1}$. Let

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

.

Since f has the property P_s , the series

$$z + \sum_{n=2}^{\infty} a_n z^n$$

is absolutely convergent for every z in the unit circle. Now we show that f is continuous on the closed unit disc. Let z, w be in the closed unit disc. We have,

$$|f(z) - f(w)| = \left| (z - w) + \sum_{n=2}^{\infty} a_n (z^n - w^n) \right|$$

$$= |z - w| \left| 1 + \sum_{n=2}^{\infty} a_n (z^{n-1} + z^{n-2}w + \cdots \right| \right|$$

$$+ zw^{n-2} + w^{n-1} \Big) \Big| \\ \le |z - w| \left[1 + \sum_{n=2} |a_n| (|z|^{n-1} + |z|^{n-2} |w| + \dots + |w|^{n-1}) \right]$$

$$\leq |z - w| \left[1 + \sum_{n=2}^{\infty} n |a_n| \right]$$
$$\leq |z - w| (1 + s) .$$

The next-to-last inequality is true since $|z| \leq 1$, and $|w| \leq 1$. From the above it follows that f has a continuous extension to the closed unit disc. Hence, g has a continuous extension to the closed unit disc. Q.E.D.

<u>Proof of the Theorem</u> : Let

$$f = (g(z) - g(0))^{-1} (g'(0))^{-1}$$
.

Then $f \in A$, f(0) = 0, f'(0) = 1 and has the property P_t where $t \leq 1$. Since f has continuous extension to the closed unit disc (by the lemma), it is enough to show that f is one-to-one and the extension of f is one-to-one on the closed unit disc. Let

$$f(z) = z + \sum_{n=2}^{\infty} a^n z^n.$$

For z, w in the open unit disc, since

$$f(z) - f(w)| = \left| (z - w) + \sum_{n=2}^{\infty} a_n (z^n - w^n) \right|$$
$$= |z - w| \left| 1 + \sum_{n=2}^{\infty} a_n (z^{n-1} + z^{-2}w + \dots + w^{n-1}) \right|$$

,

and since

$$\left|\sum_{n=2}^{\infty} a_n (z^{n-1} + z^{n-2}w + \dots + w^{n-1})\right| < \sum_{n=2}^{\infty} n|a_n| \le t \le 1$$

it follows that f is one-to-one on the open unit disc. Also from the above it follows that $f(z) \neq f(w)$ if one of z, w is in the open unit disc and the other on the unit circle. Now we show that f is one-toone on the unit circle. By the lemma, f has continuous extension to the closed unit disc. Let $f(U) = \Omega$. If possible assume that z, ware distinct points on the unit circle such that f(z) = f(w). Let $z_n = (1 - n^{-1})z, w_n = (1 - n^{-1})w$. Since f is continuous on the closed unit disc, $f(z_n) \to f(z)$ and $f(w_n) \to f(w)$. Since f is a homeomorphism of U onto Ω , f(z)(=f(w)) is a boundary point of Ω . Now for each $n \ge 1$, let

$$s_n = \begin{cases} f(z_n) & \text{if } n \text{ is even} \\ f(w_n) & \text{if } n \text{ is odd.} \end{cases}$$

Clearly s_n is a sequence in Ω converging to the boundary point of Ω . Since f^{-1} from Ω onto U is a homeomorphism, the sequence $f^{-1}(s_n)$ must converge to a point of the unit circle. This is a contradiction because by definition of s_n , the sequence $f^{-1}(s_n)$ has two subsequences converging to two different limits. Hence fis one-to-one on the unit circle. It follows that g is one- to-one in the unit disc and has a one-to-one continuous extension to the closed unit disc. Q.E.D.

<u>Remark</u>: For any t > 1 there exists a function $g \in A$ having the property P_t and fails to be one-to-one (refer to (c) of problem E3325 of [1]). Let t > 1. Write t = 1 + c. Define

$$g(z)=z-\frac{1}{2}z^2+\frac{\alpha}{3}z^3+\frac{\beta}{4}z^4$$

where

$$\alpha = \frac{-72 - 3c}{5}$$
 and $\beta = \frac{8c + 72}{5}$.

Since

$$\sum_{n=2}^{4} n|a_n| = 1 + \alpha + \beta = 1 + c = t ,$$

g has the property P_t . Clearly $g \in A$. Now by the choice of α, β it is easy to verify that g(1/2) = 0. Also g(0) = 0. Hence g is not one-to-one on the unit disc.

References

1. The American Mathematical Monthly, Vol. 96, No. 5, May 1989.