ONE-TO-ONE CONTINUOUS EXTENSIONS
OF ANALYTIC FUNCTIONS

Ramesh Garimella
Northwest Missouri State University

Let U be the open unit disc in the complex plane. Let $H(U)$ stand for the space of functions analytic on U. Let

$$A = \{ g \in H(U) : g'(0) \neq 0 \} .$$

For $g \in A$,

$$g(z) = \sum_{n=0}^{\infty} a_n z^n ,$$

following the lead of Walter Rudin (see [1] problem E3325 p.445), we say g has the property P_t if

$$\sum_{n=2}^{\infty} |a_n| n \leq t .$$

In this short note we prove the following result which is an extension of the problem E3325 of [1].

Theorem: Let $g \in A$ have the property P_t for some $t > 0$. Then g is one-to-one and admits a one-to-one continuous extension to the closed unit disc if $t \leq |g'(0)|$. First we prove a lemma.
Lemma: Assume \(g \in A \) and has the property \(P_t \) for some \(t > 0 \).

Then \(g \) has a continuous extension to the closure of \(U \).

Proof: Let

\[
f(z) = (g(z) - g(0))(g'(0))^{-1}.
\]

Obviously \(f \in A \), \(f(0) = 0 \) and \(f'(0) = 1 \) and has the property \(P_s \) where \(s = t|g'(0)|^{-1} \). Let

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n.
\]

Since \(f \) has the property \(P_s \), the series

\[
z + \sum_{n=2}^{\infty} a_n z^n
\]

is absolutely convergent for every \(z \) in the unit circle. Now we show that \(f \) is continuous on the closed unit disc. Let \(z, w \) be in
the closed unit disc. We have,

\[|f(z) - f(w)| = |(z - w) + \sum_{n=2}^{\infty} a_n(z^n - w^n)| \]

\[= |z - w|\left[1 + \sum_{n=2}^{\infty} a_n(z^{n-1} + z^{n-2}w + \cdots + zw^{n-2} + w^{n-1}) \right] \]

\[\leq |z - w|\left[1 + \sum_{n=2}^{\infty} n|a_n| \right] \]

\[\leq |z - w|(1 + s) . \]

The next-to-last inequality is true since \(|z| \leq 1, \) and \(|w| \leq 1\). From the above it follows that \(f\) has a continuous extension to the closed unit disc. Hence, \(g\) has a continuous extension to the closed unit disc. Q.E.D.

Proof of the Theorem: Let

\[f = (g(z) - g(0))^{-1}(g'(0))^{-1} . \]
Then \(f \in A, f(0) = 0, f'(0) = 1 \) and has the property \(P_t \) where \(t \leq 1 \). Since \(f \) has continuous extension to the closed unit disc (by the lemma), it is enough to show that \(f \) is one-to-one and the extension of \(f \) is one-to-one on the closed unit disc. Let

\[
f(z) = z + \sum_{n=2}^\infty a_n z^n.
\]

For \(z, w \) in the open unit disc, since

\[
|f(z) - f(w)| = |z - w + \sum_{n=2}^\infty a_n (z^n - w^n)|
\]

\[
= |z - w| \left(1 + \sum_{n=2}^\infty a_n (z^{n-1} + z^{-2} w + \cdots + w^{n-1})\right),
\]

and since

\[
\left|\sum_{n=2}^\infty a_n (z^{n-1} + z^{-2} w + \cdots + w^{n-1})\right| < \sum_{n=2}^\infty n |a_n| \leq t \leq 1
\]

it follows that \(f \) is one-to-one on the open unit disc. Also from the above it follows that \(f(z) \neq f(w) \) if one of \(z, w \) is in the open unit disc and the other on the unit circle. Now we show that \(f \) is one-to-one on the unit circle. By the lemma, \(f \) has continuous extension
to the closed unit disc. Let \(f(U) = \Omega \). If possible assume that \(z, w \) are distinct points on the unit circle such that \(f(z) = f(w) \). Let \(z_n = (1 - n^{-1})z, \ w_n = (1 - n^{-1})w \). Since \(f \) is continuous on the closed unit disc, \(f(z_n) \to f(z) \) and \(f(w_n) \to f(w) \). Since \(f \) is a homeomorphism of \(U \) onto \(\Omega \), \(f(z)(= f(w)) \) is a boundary point of \(\Omega \). Now for each \(n \geq 1 \), let

\[
s_n = \begin{cases}
 f(z_n) & \text{if } n \text{ is even} \\
 f(w_n) & \text{if } n \text{ is odd}.
\end{cases}
\]

Clearly \(s_n \) is a sequence in \(\Omega \) converging to the boundary point of \(\Omega \). Since \(f^{-1} \) from \(\Omega \) onto \(U \) is a homeomorphism, the sequence \(f^{-1}(s_n) \) must converge to a point of the unit circle. This is a contradiction because by definition of \(s_n \), the sequence \(f^{-1}(s_n) \) has two subsequences converging to two different limits. Hence \(f \) is one-to-one on the unit circle. It follows that \(g \) is one-to-one in the unit disc and has a one-to-one continuous extension to the closed unit disc. Q.E.D.

Remark: For any \(t > 1 \) there exists a function \(g \in A \) having the property \(P_t \) and fails to be one-to-one (refer to (c) of problem
Let $t > 1$. Write $t = 1 + c$. Define

$$g(z) = z - \frac{1}{2}z^2 + \frac{\alpha}{3}z^3 + \frac{\beta}{4}z^4$$

where

$$\alpha = \frac{-72 - 3c}{5} \quad \text{and} \quad \beta = \frac{8c + 72}{5}.$$

Since

$$\sum_{n=2}^{4} |a_n| = 1 + \alpha + \beta = 1 + c = t,$$

g has the property P_t. Clearly $g \in A$. Now by the choice of α, β it is easy to verify that $g(1/2) = 0$. Also $g(0) = 0$. Hence g is not one-to-one on the unit disc.

References