ONE-TO-ONE CONTINUOUS EXTENSIONS OF ANALYTIC FUNCTIONS

Ramesh Garimella
Northwest Missouri State University

Let U be the open unit disc in the complex plane. Let $H(U)$ stand for the space of functions analytic on U. Let

$$
A=\left\{g \varepsilon H(U): g^{\prime}(0) \neq 0\right\}
$$

For $g \varepsilon A$,

$$
g(z)=\sum_{n=0}^{\infty} a_{n} z^{n},
$$

following the lead of Walter Rudin (see [1] problem E3325 p.445), we say g has the property P_{t} if

$$
\sum_{n=2}^{\infty}\left|a_{n}\right| n \leq t
$$

In this short note we prove the following result which is an extension of the problem E3325 of [1].

Theorem: Let $g \varepsilon A$ have the property P_{t} for some $t>0$. Then g is one-to-one and admits a one-to-one continuous extension to the closed unit disc if $t \leq\left|g^{\prime}(0)\right|$. First we prove a lemma.

Lemma: Assume $g \varepsilon A$ and has the property P_{t} for some $t>0$.

Then g has a continuous extension to the closure of U.

Proof: Let

$$
f(z)=(g(z)-g(0))\left(g^{\prime}(0)\right)^{-1} .
$$

Obviously $f \varepsilon A, f(0)=0$ and $f^{\prime}(0)=1$ and has the property P_{s} where $s=t\left|g^{\prime}(0)\right|^{-1}$. Let

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

Since f has the property P_{s}, the series

$$
z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

is absolutely convergent for every z in the unit circle. Now we show that f is continuous on the closed unit disc. Let z, w be in
the closed unit disc. We have,

$$
\begin{aligned}
& |f(z)-f(w)|=\left|(z-w)+\sum_{n=2}^{\infty} a_{n}\left(z^{n}-w^{n}\right)\right| \\
& =|z-w| \mid 1+\sum_{n=2}^{\infty} a_{n}\left(z^{n-1}+z^{n-2} w+\cdots\right. \\
& \left.\quad+z w^{n-2}+w^{n-1}\right) \mid \\
& \leq|z-w|\left[1+\sum_{n=2}\left|a_{n}\right|\left(|z|^{n-1}+|z|^{n-2}|w|+\cdots+|w|^{n-1}\right)\right] \\
& \leq|z-w|\left[1+\sum_{n=2}^{\infty} n\left|a_{n}\right|\right] \\
& \leq|z-w|(1+s) .
\end{aligned}
$$

The next-to-last inequality is true since $|z| \leq 1$, and $|w| \leq 1$. From the above it follows that f has a continuous extension to the closed unit disc. Hence, g has a continuous extension to the closed unit disc. Q.E.D.

Proof of the Theorem : Let

$$
f=(g(z)-g(0))^{-1}\left(g^{\prime}(0)\right)^{-1}
$$

Then $f \varepsilon A, f(0)=0, f^{\prime}(0)=1$ and has the property P_{t} where $t \leq 1$. Since f has continuous extension to the closed unit disc (by the lemma), it is enough to show that f is one-to-one and the extension of f is one-to-one on the closed unit disc. Let

$$
f(z)=z+\sum_{n=2}^{\infty} a^{n} z^{n}
$$

For z, w in the open unit disc, since

$$
\begin{aligned}
|f(z)-f(w)| & =\left|(z-w)+\sum_{n=2}^{\infty} a_{n}\left(z^{n}-w^{n}\right)\right| \\
& =|z-w|\left|1+\sum_{n=2}^{\infty} a_{n}\left(z^{n-1}+z^{-2} w+\cdots+w^{n-1}\right)\right|
\end{aligned}
$$

and since

$$
\left|\sum_{n=2}^{\infty} a_{n}\left(z^{n-1}+z^{n-2} w+\cdots+w^{n-1}\right)\right|<\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq t \leq 1
$$

it follows that f is one-to-one on the open unit disc. Also from the above it follows that $f(z) \neq f(w)$ if one of z, w is in the open unit disc and the other on the unit circle. Now we show that f is one-toone on the unit circle. By the lemma, f has continuous extension
to the closed unit disc. Let $f(U)=\Omega$. If possible assume that z, w are distinct points on the unit circle such that $f(z)=f(w)$. Let $z_{n}=\left(1-n^{-1}\right) z, w_{n}=\left(1-n^{-1}\right) w$. Since f is continuous on the closed unit disc, $f\left(z_{n}\right) \rightarrow f(z)$ and $f\left(w_{n}\right) \rightarrow f(w)$. Since f is a homeomorphism of U onto $\Omega, f(z)(=f(w))$ is a boundary point of Ω. Now for each $n \geq 1$, let

$$
s_{n}= \begin{cases}f\left(z_{n}\right) & \text { if } n \text { is even } \\ f\left(w_{n}\right) & \text { if } n \text { is odd. }\end{cases}
$$

Clearly s_{n} is a sequence in Ω converging to the boundary point of Ω. Since f^{-1} from Ω onto U is a homeomorphism, the sequence $f^{-1}\left(s_{n}\right)$ must converge to a point of the unit circle. This is a contradiction because by definition of s_{n}, the sequence $f^{-1}\left(s_{n}\right)$ has two subsequences converging to two different limits. Hence f is one-to-one on the unit circle. It follows that g is one- to-one in the unit disc and has a one-to-one continuous extension to the closed unit disc. Q.E.D.

Remark: For any $t>1$ there exists a function $g \varepsilon A$ having the property P_{t} and fails to be one-to-one (refer to (c) of problem

E3325 of [1]). Let $t>1$. Write $t=1+c$. Define

$$
g(z)=z-\frac{1}{2} z^{2}+\frac{\alpha}{3} z^{3}+\frac{\beta}{4} z^{4}
$$

where

$$
\alpha=\frac{-72-3 c}{5} \text { and } \beta=\frac{8 c+72}{5}
$$

Since

$$
\sum_{n=2}^{4} n\left|a_{n}\right|=1+\alpha+\beta=1+c=t
$$

g has the property P_{t}. Clearly $g \varepsilon A$. Now by the choice of α, β it is easy to verify that $g(1 / 2)=0$. Also $g(0)=0$. Hence g is not one-to-one on the unit disc.

References

1. The American Mathematical Monthly, Vol. 96, No. 5, May 1989.
