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In the appendix of John L. Kelley’s General Topology there is

a system of axiomatic set theory consisting of eight axioms and an

axiom scheme from the unpublished lecture notes of Anthony P.

Morse. Its presence there poses a puzzle: What is the relation of

axiomatic set theories to general topology? Is it the same as that

of Cantorian set theory? If not, what are the differences and their

consequences for general topology? The answers to these questions

will be given here after this sytem has been compared to the two

standard systems of axiomatic set theory, Zermelo-Fraenkel (abbre-

viated ZF) and von Neumann-Bernays-Gödel (abbreviated VBG)

and the metamathematics of these theories has been discussed in

detail.

These set theories are first order formal theories. A formal

theory consists of three parts, specific rules for the formation of

its language in the setting of symbolic logic, rules for the forma-

tion of sentences (formulas) within this language, and rules for the

formation of theorems as deduced from its axioms. A first order

theory deals with one kind of object only. In these theories that

object is either a set or class. These theories are embedded in first

order logic which gives them an artificial aspect since one formal

theory is then developed within another. This artificialness has

great consequences for these theories.

These axiomatic set theories differ from Cantorian set theory

in another important respect. Only the relationships among sets

or classes are investigated. Thus, they are structural theories in

which elements that are not sets or classes are ignored. Class, as

used here, means a collection that is not necessarily a set.
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The system ZF utilizes one primitive term, set, and eight ax-

ioms. If the axiom of choice is included, the new system is known

as ZFC. There is one binary, predicate, ε, and equality is defined

as: x = y if for all z, zεx if and only if zεy. All sentences are

formed from xεy or x = y by negation, conjunction, disjunction,

and the use of universal and existential quantifiers. A sentence is

open in a variable x if it occurs at least once unquantified. A con-

dition is an open sentence in x. The above considerations apply to

the other two set theories as well, subject to the stipulation that if

the primitive term is class, that equality of classes is as above with

class in place of set.

The axioms of ZF are:

1) Extension: If x = y, then for all w, if xεw, then yεw.

2) Pairing: For any two distinct sets x and y, there is a set

consisting of just these two sets.

3) Union: For any set a which contains at least one element,

there is a set whose members are exactly those members of

elements of a.

4) Power set: For any set a there is the set whose elements are

exactly the subsets of a.

5) Infinity: There is at least one set Z such that φεz and if xεz,

then {x}εz.

6) Schema of Replacement: For any set S and any single valued

predicate f with free (unquantified) variable x, there is the

set of exactly those elements f(x) with xεS.

7) Subsets: For any set a and any condition P (x) on x there is

the set that consists exactly of those elements of a that satisfy

P (x).

8) Regularity: Every nonempty set a contains at least one ele-

ment b such that a and b have no element in common.

To obtain ZFC add:

9) Choice: For each set a there is a function whose domain is the

collection of nonempty sets of a and for each such set b, f(b)εb.
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These axioms are not independent. The schema (6) implies

both (2) and (7). From (7) can be deduced the existence of the

empty set, unit set, the intersection of two sets, and the cartesian

product of the elements of a set. Axiom (5) is needed to guarantee

the existence of infinite sets, (6) is needed to develop a general

theory of ordinal numbers including transfinite induction, and (8)

disallows xεx and places the sets in layers creating a theory of

types.

In VBG there are two primitive terms, set and class. This is in

appearance only since set is defined in terms of class. This system

retains (1), (2), (3), (4), (5), and (8) but (1) and (8) are stated for

classes. There is a set of eight axioms that allow for the existence

of a class A consisting of exactly those elements x which satisfy

P (x), where P (x) is a condition that does not contain quantifiers

over classes. In addition axiom (6) is replaced by assuming that for

any set x and any single-valued A, there is a set y whose elements

are just those sets which bear the relation defined by A to the

members of x. From this axiom and the class theorem may be

obtained each instance of (6). There are two other axioms central

to this sytem:

1) every set is a class, and

2) if xεy, then x is a set where x and y are classes.

Axiom (9) is not part of VBG but Gödel stated it for classes and

included it for reference since he wanted to prove that it was con-

sistent with the other axioms of this sytem.

In Morse’s system (abbreviated QM) the one primitive term

is class. In this system the statment “If xεy, then x is a set,” is, of

course, a definition. The system retains (1), (3), (4), (5), (8), and

adds (9). Axioms (1), (8), and (9) are stated for classes. Axiom

(6) is handled as in VBG. That is, it is replaced by a single axiom

which was given above. Axiom (2) is replaced by: If x and y are

sets, then x∪y is a set. This axiom implies (2). Finally, there is the

Classifier Axiom-Scheme. After preliminaries stating under what
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conditions sentences (formulas) can be formed using the classifier,

{xεX}, it is stated as follows:

An axiom results if in the following ‘α’ and ‘β’

are replaced by variables, ‘A’ by a formula

and ‘B’ by the formula obtained from by

replacing each occurrence of the variable which

replaced α by the variable which replaced β:

For each β, βε{α : A} if and only if β is a

set and B.

This is the classifier analogue of the definition of set and al-

lows classes to be predicated by assuming the existence of a class

A which consists exactly of those elements x which satisfy P (x),

where P (x) is any condition. Since this is stronger than the class

theorem in VBG, it may be used to obtain each instance of (6).

A theory of classes may be developed in ZF by extending the

language of the system and endowing class abstracts, {x|P (x)}

with the desired properties. Thus, there are three distinct theories

of classes. In QM {x|P (x)} always represents a class (as a concept

apart from formalism) but this is not so in the other two theories.

It is not known whether any of these systems are consistent.

However, ZF and VBG are equiconsistent and the consistency of

QM implies the consistency of the other two systems. Moreover,

every theorem ZF is a theorem of VBG, and any theorem of VBG

concerned only with sets is a theorem of ZF. On the other hand,

there are an infinite number of theorems in QM not provable in

either ZF or VBG.

None of these systems are categorical. One way to show this

is by using the Löwenheim-Skolem Theorems. The first states that

in first order logic, if a set of propositions has a model, it has a

countable model (in axiomatic set theories, a denumerable model)

and the second that under the same hypotheses, that if the set of
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propositions has a model of some infinite cardinality, it also has a

model of every larger cardinality.

In the case of axiomatic set theories the first theorem is known

as the Skolem Paradox. It is so called since within each of the

theories we may prove the existence of a nondenumerable infinite

set. That it is actually not a paradox follows from axiom (7) (and

the predication of classes in the other sytems) since sets (or classes)

may be predicated in at most a denumerable number of ways.

Gödel’s First Incompleteness Theorem provides a second

method of demonstrating the noncategoricalness of systems. Let

Z be the system of arithmetic that is based on Peano’s axioms

and the usual recursive definitions of addition and multiplication.

Then if S is a system that contains Z and is consistent, there ex-

ists a statement of the form “for all n,G(n)” which is undecidable

in S although G(0), G(0′), — are provable in S. Here, 0′ is the

successor of 0. The noncategoricalness then follows from two con-

siderations. First, each of the systems is as above, and second, if

the axiom system is categorical then it is complete. Not only is

such a system S incomplete but it is incompletable.

This famous theorem, proved by Gödel in 1931, goes to the

heart of axiomatic set theories. Gödel demonstrated in 1936 that

the axiom of choice, the continuum hypothesis, and the generalized

continuum hypothesis are consistent with ZF. In 1963, Paul Cohen,

using his forcing technique proved that the negations of these state-

ments are consistent with ZF. Therefore, each of these statements

is undecidable in ZF. This means that if any of them are adopted

as axioms, they are independent of those of ZF. This precipitated

a crisis in the mathematical community since it shows the inade-

quacy of axiomatic theories. Worse was yet to come! The following

statements from analysis, algebra, and topology have shown, using

Cohen’s technique to be consistent with ZF or VBG:

a) R is the countable union of countable sets. If this is accepted

as an axiom, it can be proved that Lebesque measure is not
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countably additive.

b) There exists a free group whose commutator subgroup is not

free. It is known that any subgroup of a free group is free!

c) The negation of Urysohn’s Lemma.

Each of these statements is a candidate for an undecidable

statement in ZF or VBG.

The incompleteness of ZF may be exploited to demonstrate its

relative consistency. The sentence stating the existence of a least

inaccessible cardinal α is undecidable in ZFC. Form a new axiom

system consisting of ZFC and the negation of this axiom. If R(α)

is defined by R(0) = φ and R(α) =
⋃

β<α(P (R(β))) where α and

β are ordinals, then R(α) is a model for this new system. P (R(β))

is the power set of R(β). Hence, ZFC is consistent relative to this

new system. Since the continuum hypothesis is undecidable in ZF,

ZF is consistent relative to ZFC and this new system.

Finally, using recursive function theory, it can be shown that

none of these systems develop arithmetic in its customary form.

Nor is it possible to develop category theory in them. However, it

is possible to modify them to handle this discipline.

At last we can examine the relationship of axiomatic set theo-

ries to general topology. The applications of ZF, or equivalently by

VBG, to general topology depend on the use of cardinal functions.

Two examples are the weight and Lindelöff number of a topologi-

cal space. The weight of a topological space is the least cardinality

of a basis for the space. A second countable space has weight ω

where ω is finite or denumerable. The Lindelöff number of a topo-

logical space is the least cardinal α such that every open cover of

the space has a subcover of cardinality not exceeding α. Compact

and Lindelöff spaces have Lindelöff number ω. These and related

functions are most useful in problems of metrization, normality,

and compactification. The tools for applying such ideas are the

usual methods of axiomatic set theory: forcing, trees, and models.

The useful models are ZF with Martin’s axiom and the negation
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of the continuum hypothesis and Gödel’s constructible universe.

Martin’s Axiom states that the following is true for c ≤ κ < 2ω

where ω is the first infinite cardinal: ax(κ) : If P is a nonempty par-

tially ordered set satisfying the countable chain condition (CCC),

and {Di|iεI} is a family of dense subsets of P having cardinality

not exceeding κ, then there is a subnet Q of P which intersects

each Di.

D is dense in P if for every pεP there is a qεD such that p ≤ q.

If p and q are in P they are said to be incompatible if there is no

rεP with p ≤ r and q ≤ r. P satisfies the CCC if every pairwise

incompatible subset of P is countable.

This axiom is known to be true if κ = ω so that Martin’s

Axiom generalizes this result. The continuum hypothesis and ZF

imply Martin’s Axiom. Its topological form is that no compact

CCC Hausdorff space is the union of less than c nowhere dense

sets. Assuming the continuum hypothesis, this form of the axiom

is a form of the Baire Category theorem. We can deduce if we have

ZF, the negation of the continuum hypothesis, and this axiom that

every product of CCC spaces is CCC. From ax(κ) with ZF it can

be shown that if a topological space has a countable base, then the

union of not more than κ meager sets is meager and the product

of not more than κ compact metric spaces is sequentially compact.

The following questions, given by Mary Ellen Rudin were open

questions in 1977:

1) Is there a normal nonmetrizable image of a metric space under

a compact open map?

2) Is every normal Moore space compact?

All spaces are Hausdorff. With ZF, the negation of the contin-

uum hypothesis, and Martin’s Axiom the first is known to be true

and the second false. This goes to the heart of the matter. Ax-

iomatic set theories are of service to general topology by suggesting

avenues by which such questions might be answered without uti-

lizing it. In other words, it helps us formulate useful conjectures.
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In the first of his seven papers on axiomatic set theory, Paul

Bernays observed that which system of set theory one uses depends

on what use you are to make of it. Since the time of Cohen’s forcing

method it is clear that the uses are to demonstrate consistency and

independence results. It is these results that find application in

general topology.

Three axiomatic set theories have been examined here. There

are many others. As Quine has observed, there are radically in-

equivalent axiomatic set theories and there is no optimal one.

This is due to the great equalizer, Gödel’s First Incompleteness

Theorem. Such theories demonstrate the limits of the axiomatic

method. Thus, axiomatic set theories are very unlike Cantorian set

theory both in content and applications. Nowhere is this clearer

than in their connection with general topology.
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