SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the editor.

6. Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri State University, Warrensburg, Missouri.

Prove

$$\sum_{n \le x} \frac{1}{3n-2} = \frac{1}{3} \log(3x-2) + \frac{1}{6} \log 3 + \frac{\pi}{6\sqrt{3}} + \frac{\gamma}{3} + O\left(\frac{1}{x}\right) \,,$$

where log is the natural log and γ is Euler's constant.

Solution by the proposers.

We start with the following lemma. $\underline{\mbox{Lemma}}.$

$$\int_{\frac{1}{3}}^{\infty} \frac{u - [u + \frac{2}{3}]}{u^2} \, du = 1 - \gamma - \frac{\pi}{2\sqrt{3}} - \frac{1}{2}\log 3 \; .$$

Proof.

$$\begin{split} &\int_{\frac{1}{3}}^{\infty} \frac{u - [u + \frac{2}{3}]}{u^2} \, du = \int_{\frac{1}{3}}^{1} \frac{u - [u + \frac{2}{3}]}{u^2} \, du + \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{u - [u + \frac{2}{3}]}{u^2} \, du \\ &= \int_{\frac{1}{3}}^{1} \frac{u - 1}{u^2} \, du + \sum_{n=1}^{\infty} \left(\int_{n}^{n+\frac{1}{3}} \frac{u - [u + \frac{2}{3}]}{u^2} \, du + \int_{n+\frac{1}{3}}^{n+1} \frac{u - [u + \frac{2}{3}]}{u^2} \, du \right) \\ &= \log u + \frac{1}{u} \Big|_{\frac{1}{3}}^{1} + \sum_{n=1}^{\infty} \left(\int_{n}^{n+\frac{1}{3}} \frac{u - [u]}{u^2} \, du + \int_{n+\frac{1}{3}}^{n+1} \frac{u - [u] - 1}{u^2} \, du \right) \\ &= \log 3 - 2 + \sum_{n=1}^{\infty} \left(\int_{n}^{n+1} \frac{u - [u]}{u^2} \, du - \int_{n+\frac{1}{3}}^{n+1} \frac{du}{u^2} \right) \\ &= \log 3 - 2 + \int_{1}^{\infty} \frac{u - [u]}{u^2} \, du + \sum_{n=1}^{\infty} \frac{1}{u} \Big|_{n+\frac{1}{3}}^{n+1} \end{split}$$

$$\begin{split} &= \log 3 - 2 + \int_{1}^{\infty} \frac{u - [u]}{u^2} \, du + \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+\frac{1}{3}} \right) \\ &= \log 3 - 2 + (1 - \gamma) + \left(2 - \frac{\pi}{2\sqrt{3}} - \frac{3}{2} \log 3 \right) \\ &= 1 - \gamma - \frac{\pi}{2\sqrt{3}} - \frac{1}{2} \log 3 \; . \end{split}$$

The next to last equality follows from

$$\int_{1}^{\infty} \frac{u - [u]}{u^2} du = 1 - \gamma \qquad [1]$$

and

$$\sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+\frac{1}{3}} \right) = 2 - \frac{\pi}{2\sqrt{3}} - \frac{3}{2}\log 3 \qquad [2] \ .$$

To prove the result, we have by Euler's summation formula $\left[1\right]$ that

$$\begin{split} \sum_{n \le x} \frac{1}{3n-2} &= 1 + \int_1^x \frac{dt}{3t-2} - 3\int_1^x \frac{t-[t]}{(3t-2)^2} dt + \frac{[x]-x}{3x-2} \\ &= \frac{1}{3}\log(3x-2) + 1 - 3\int_1^x \frac{t-[t]}{(3t-2)^2} dt + O\left(\frac{1}{x}\right) \\ &= \frac{1}{3}\log(3x-2) + 1 - 3\int_1^\infty \frac{t-[t]}{(3t-2)^2} dt + 3\int_x^\infty \frac{t-[t]}{(3t-2)^2} dt + O\left(\frac{1}{x}\right) \\ &= \frac{1}{3}\log(3x-2) + 1 - 3\int_1^\infty \frac{t-[t]}{(3t-2)^2} dt + O\left(\frac{1}{x}\right) . \end{split}$$

Next,

$$\begin{split} \int_{1}^{\infty} \frac{t - [t]}{(3t - 2)^2} \, dt &= \frac{1}{9} \int_{1}^{\infty} \frac{t - [t]}{(t - \frac{2}{3})^2} \, dt \\ &= \frac{1}{9} \int_{\frac{1}{3}}^{\infty} \frac{u + \frac{2}{3} - [u + \frac{2}{3}]}{u^2} \, du \\ &= \frac{1}{9} \int_{\frac{1}{3}}^{\infty} \frac{u - [u + \frac{2}{3}]}{u^2} \, du + \frac{2}{27} \int_{\frac{1}{3}}^{\infty} \frac{du}{u^2} \\ &= \frac{1}{9} \int_{\frac{1}{3}}^{\infty} \frac{u - [u + \frac{2}{3}]}{u^2} \, du + \frac{2}{9} \, . \end{split}$$

Thus by the lemma,

$$\int_{1}^{\infty} \frac{t - [t]}{(3t - 2)^2} dt = \frac{1}{9} \left(1 - \gamma - \frac{\pi}{2\sqrt{3}} - \frac{1}{2} \log 3 \right) + \frac{2}{9}$$
$$= \frac{1}{3} - \frac{\gamma}{9} - \frac{\pi}{18\sqrt{3}} - \frac{1}{18} \log 3 ,$$

 \mathbf{SO}

$$\sum_{n \le x} \frac{1}{3n - 2} = \frac{1}{3} \log(3x - 2) + 1 - 3\left(\frac{1}{3} - \frac{\gamma}{9} - \frac{\pi}{18\sqrt{3}} - \frac{1}{18}\log 3\right) + O\left(\frac{1}{x}\right) = \frac{1}{3} \log(3x - 2) + \frac{1}{6}\log 3 + \frac{\pi}{6\sqrt{3}} + \frac{\gamma}{3} + O\left(\frac{1}{x}\right) .$$

References

- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1984, pp. 56,54.
- 2. D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Vol. 1, Second Edition, Addison-Wesley, p. 94.
 - 9. Proposed by Robert E. Shafer, Berkeley, California.

Let p be a prime. Prove that

$$(p-1)! \equiv (p+1) \left(1^{p-1} + 2^{p-1} + 3^{p-1} + \dots + (p-1)^{p-1} \right) \pmod{p^2}.$$

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

The problem as stated above is incorrect. Letting p = 2 yields a counterexample. In the remainder of our solution we shall assume that p is an odd prime number. We shall use the following known result. If p is an odd prime number, then

(*)
$$1^{p-1} + 2^{p-1} + \dots + (p-1)^{p-1} \equiv p + (p-1)! \pmod{p^2}$$
.

[For a proof of (*), see exercise 5 and its solution on p. 211 of Sierpinski, <u>Elementary Theory of Numbers</u>, Hafner Publishing Company, New York, 1964.] We may now construct the following collection of equivalent congruences.

$$\begin{array}{l} (p-1)! \equiv (p+1)(1^{p-1}+2^{p-1}+\dots+(p-1)^{p-1}) \pmod{p^2} \\ (p-1)! \equiv (p+1)(p+(p-1)!) \pmod{p^2} \quad [by \ (*)] \\ (p-1)! \equiv p^2 + p(p-1)! + p + (p-1)! \pmod{p^2} \\ p(p-1)! \equiv -p \pmod{p^2} \\ (p-1)! \equiv -1 \pmod{p} \ . \end{array}$$
But $(p-1)! \equiv -1 \pmod{p}$ follows from Wilson's Theorem so our

solution is complete.

Also solved by the proposer.

12. Proposed by Robert E. Shafer, Berkeley, California.

Evaluate

$$\int_0^1 e^{1/\log x} \, dx \; ,$$

where log denotes the natural log.

Solution by Mark Ashbaugh, University of Missouri, Columbia, Missouri.

The integral evaluates to $2K_1(2) \approx .2797318$ where K_1 denotes one of the two standard modified Bessel functions of order 1. It would be surprising though perhaps not impossible for there to be a more elementary expression for the value of this integral.

Let I denote the given integral. Then under the substitution $t = -1/\log x \text{ it becomes}$

$$I = \int_0^\infty t^{-2} e^{-(t+1/t)} dt$$

= $\int_0^1 t^{-2} e^{-(t+1/t)} dt + \int_1^\infty t^{-2} e^{-(t_1/t)} dt$.

Now change variables to s = 1/t in the first of these integrals to arrive at

$$\begin{split} I &= \int_{1}^{\infty} e^{-(s+1/s)} \, ds + \int_{1}^{\infty} t^{-2} e^{-(t+1/t)} \, dt \\ &= \int_{1}^{\infty} (1+t^{-2}) e^{-(t+1/t)} \, dt \; . \end{split}$$

Finally, put $t = e^u$ in this integral, obtaining

$$I = 2 \int_0^\infty \cosh u e^{-2\cosh u} \, du \; .$$

Since one of the standard integral representations for the modified

Bessel function $K_{\nu}(z)$ is

$$K_{\nu}(z) = \int_{0}^{\infty} e^{-z \cosh t} \cosh(\nu t) dt$$

[Abramowitz and Stegun, p. 376, eq. 9.6.24] we can identify the value of our integral as

$$I = 2K_1(2)$$

= $2\left[\gamma I_1(2) + \frac{1}{2} - \sum_{n=0}^{\infty} \frac{H_n + H_{n+1}}{n!(n+1)!}\right]$

where $\gamma \approx .5772157$ is Euler's constant,

$$H_n \equiv \sum_{m=1}^n \frac{1}{m}$$

with the convention that $H_0 = 0$, and I_1 represents the other standard modified Bessel function of order 1 and thus, in particular,

$$I_1(2) = \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}$$

In an analogous fashion one can show that the function I(a)defined by the integral

$$I(a) = \int_0^1 e^{a/\log x} \, dx \quad \text{for } a > 0$$

is given by

$$I(a) = 2\sqrt{a}K_1(2\sqrt{a}) \ .$$

The sequence of substitutions to be used is now $t=-\sqrt{a}/\log x$,

s=1/t , and $t=e^u$.

Also solved by the proposer.