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The famous problems of antiquity are three in number and

concern remarkable constructions. These three, the trisecting of

an angle, the duplicating of a cube, and the squaring of a circle,

proved the source of devoted geometric pursuit and serendipitous

findings to generations of mathematicians. Only in the nineteenth

century were all resolved, each one in the negative.

Figure 1. Famous Problems of Antiquity

These longstanding problems all imply extended problems of

a highly generalized kind. Thus, can the general angle be divided

into four or into five “equal” parts? Can a cube be triplicated

or a circle triangulated? Let us now take another look at the

THREE FAMOUS PROBLEMS OF ANTIQUITY, this time in

the generalized setting.

51



Can Any Angle Be Pentasected, . . . ?

Although any angle can be bisected by use of the Euclidean

instruments, namely the unmarked straightedge and the compass,

not all angle divisions are possible. Quite likely, the geometry

student is well aware of the fact that a general method of angle

trisection is impossible. However, what can be said in reference

to higher orders of division? The follow-up questions of quadri-

section, pentasection, and of multisection rarely seem to surface

in the typical discussion of constructions. Yet the answers to such

far-reaching questions prove within the grasp of those studying

elementary geometry.

The ancient Greeks, originators of the famous problems of an-

tiquity, scarcely touched on the generalized subject, even by way of

inquiry. Perhaps their lack of success in the case for angle trisection

served as a brick wall to further pursuits in the overall area.

Any angle can be divided into n congruent (“equal”) parts if

n is a power of 2 simply by repeated bisecting. Hence, the results

n n-section of angle

2 possible
3 impossible
4 possible
5 ?

But what can be said about succeeding entries in the table? For

example, can the general angle be partitioned into five “equal”

parts? Or six? Or seven?

Let us note first that if the angle of 360 degrees cannot be

n-sected, then no method of angle n-section exists. But the prob-
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lem of n-section in reference to a 360 degree angle is precisely the

problem of regular polygon constructibility. For example, if the 360

degree angle can be partitioned into n “equal” parts (n > 2), these

parts thus give rise to appropriate central angles of regular n-sided

polygons. Very simply, the regular n-sided polygon is constructible

if and only if a 360 degree angle can be n-sected (n > 2).

The problem accordingly is to establish the values of n for

which the regular n-sided polygon can be constructed. Such a res-

olution stems from the works of Gauss in 1801 and his slightly

later successors. Without loss of generality, our quest will be re-

stricted to regular polygons of an odd number of sides. Note, for

example, that if an angle cannot be divided into x “equal” parts,

neither can it be divided into 2x “equal” parts. The standard of

constructibility reads as follows:

A regular polygon of an odd number of sides, say
n, is constructible if and only if n is a prime of
the form 2k +1 or the product of distinct primes
all of this form.

Some refer to this as the Gaussian standard. Moreover, primes of

the form 2k + 1 are often called Fermat primes; the exponent k is

of necessity a power of 2. Only five primes of the form 2k + 1 are

today known, namely, 3, 5, 17, 257, and 65537.

The regular five-sided polygon can be constructed as 5 is a

prime of the form 2k + 1, that is, 5 = 22 + 1. Yet the regular

25-sided polygon is not constructible as 25 cannot be expressed

as the product of distinct Fermat primes. Note that 25 = (5)(5)

and that the Fermat prime factors are alike. Should any angle
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be pentasectible, then the repeated dividing of an angle by five

would be possible. In this case, the regular 25-gon, 125-gon, 625-

gon, etc. would be constructible with the Euclidean tools. All of

these numbers violate the distinctness of the prime factors in the

Gaussian standard above.

Note also that the regular seventeen-sided polygon can be con-

structed as 17 is a prime of the form 2k +1, that is, 24 +1. Accord-

ingly, a 360 degree angle can be hepta-deca-sected, forming a cen-

tral angle measuring exactly 21 3
17 degrees in the process. However,

this angle of 21 3
17 degrees cannot be hepta-deca-sected itself as this

would give rise to the central angle of a 289-sided regular polygon.

The impossibility stems from the fact that 289 = (17)(17), a fac-

torization in which the Fermat primes are not distinct. In passing,

the construction of the regular heptadecagon is the achievement of

the young mathematician Carl Friedrich Gauss (in the year 1796

at the age of nineteen).

Figure 2.
–a regular 5-sided polygon which is constructible and
a regular 25-sided polygon which is not constructible–

Hence, there is no general method of angle pentasection.
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By a similar strategy, no general method of angle n-section

exists for a prime of the form 2k + 1 nor for any product of primes

all of this form. Otherwise, successive n-sections would require

a repetition of Fermat primes as factors in the dividing of a 360

degree angle. If n is simply an odd number other than a Fermat

prime or the product of such primes, n-section is obviously impos-

sible. These are unacceptable numbers by the Gaussian standard.

In such a case, the general angle cannot be heptasected (divided by

seven) nor uni-deca-sected (divided by eleven) nor n-sected where

n is any odd integer greater than 1.

Again, even multiples of any odd number n (greater than 1)

give rise to non-constructible divisions also. Obviously, if (2n)-

section is possible for the general angle, so is n-section. As a

consequence of this, the only multi-sections possible are those in-

volving repeated bisections. Hence, in the case for generalized

constructible n-sections, n must be a power of 2.

It is important to keep in mind that the impossibility of

generalized n-section does not rule out the construction of the

regular n-sided polygon. As shown above, the regular pentagon

is clearly constructible, yet no general method of angle penta-

section exists. Too, the equilateral triangle is constructible in

spite of the fact that no general method of angle trisection exists.

Figure 3.

No general method of pentasecting an angle exists.
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All of the multisections of this discussion have been in ref-

erence to angles and not to line segments. As is well-known, a

line segment can be divided into n “equal” parts for any natural

number n.

Can a Cube Be Triplicated, . . . ?

Even as the famous trisection problem from antiquity gives

rise to generalized questions, so does the problem of duplicating

a cube. A cube can be duplicated only if its edge length can be

multiplied by the cube root of 2. It is easily shown that 3
√

2 denotes

a non-constructible length, and as a consequence, the duplicating

of a cube proves impossible.

By constrast, the square root of any given length can be con-

structed. The availability thus of
√

2 readily permits the dupli-

cating of a square, that is, the constructing of a square having

twice the area of a given square. A vastly different situation exists

however in the case for cube roots.

In the event length x is restricted to the positive integers, it is

possible to construct 3
√
x only as x is an exact third power. Hence,

3
√

8 is constructible (being given a unit length) but 3
√

2 is not. The

problem of triplicating a cube with edge x necessitates constructing

a length y such that y = 3
√

3(x). But a length equal to 3
√

3 is not

constructible (by the rule above). In light of this, it is apparent

that a cube cannot be triplicated. That is, no construction permits

constructing a cube having three times the volume of a given cube.

The generalized question has a simple answer. No valid Eu-

clidean construction exists by which a cube’s volume can be mul-

tiplied by any natural number other than an exact third power.
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Figure 4.

No method of triplicating a cube exists.

Can A Circle Be Triangulated, . . . ?

In 1882, C. F. Lindemann proved that the squaring of a cir-

cle is impossible. Such a construction demanded the constructing

of π (pi). In demonstrating the fact that π could not occur as

a root of an algebraic equation with integral coefficients, its non-

constructibility followed. The longstanding problem of the quadra-

ture of a circle was at last resolved. Pi (π) falls into a class of num-

bers called transcendental; moreover, no transcendental length is

constructible.

But, can an equilateral triangle be constructed whose area is

the same as that of a given circle? Or can a regular pentagon be

constructed with the same equal area property? The answer hinges

on the fact that any polygon can be transformed into a triangle of

equal area, and moreover, that any triangle can be squared.

Consider any polygon of n sides where n is greater than 3. It

is possible to construct a polygon of (n− 1) sides so that the two

polygons will have the same area. An illustration of this technique

is provided by the pentagon on the following page.
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Figure 5.
Given: pentagon PQRST

Problem: to construct a quadrilateral having the same area as the given
pentagon

Steps: Extend side QR to intersect a parallel through S to diago-
nal TR. Let the point of intersection be U. Then pentagon
PQRST will have the same area as quadrilateral PQUT.

Proof: Both the pentagon PQRST and the quadrilateral PQUT have
the region PQRT in common.

Area PQRST = area PQRT + area RST.

Area PQUT = area PQRT + area RUT.

Moreover, triangles RST and RUT have equal areas as they
have the same base RT and equal altitudes through S and U
respectively (recall that SU and TR are parallel).

Therefore, pentagon PQRST has the same area as quadrilat-
eral PQUT.
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By a repetition of this procedure, any polygon can eventu-

ally be reduced to a triangle of equal area. As any triangle can

be squared, it follows that any polygon can be squared. Clearly

then, no circle can be transformed into a polygon, regular or not,

of equal area. Otherwise, a squaring of the polygon would in ef-

fect constitute a squaring of the circle. Not only is it impossi-

ble to square a circle, it is also impossible to construct a regu-

lar polygon of any kind having the same area as a given circle.

Figure 6.

No method of triangulating a circle exists.

It should be kept in mind that all Euclidean constructions

must be performed in a finite number of steps. Should a regular

polygon be inscribed in a circle and the number of sides of the

polygon repeatedly increased (still preserving the regular and in-

scribed features), the polygonal area would approach the circle’s

area as a limit. As any of these inscribed polygons can be squared,

it is evidently the case that many find approximations exist in the

case for squaring a circle.

An intriguing outgrowth of this problem is one of a three

dimensional kind. A step-up dimensionally from the problem of

squaring a circle is that of cubing a sphere. As this latter con-

struction requires the constructing of π, it too is impossible.
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Figure 7.
No method of cubing a sphere exists. The reader
may wish to pursue this problem in reference to

the other regular polyhedra.

The breakthroughs which resolved the THREE FAMOUS

PROBLEMS OF ANTIQUITY were advances of a far-reaching

kind. Theorems, powerful but concise, were of sufficient generality

to dispose not only of precise, highly specific problems but more.

Much more! Insightful relationships encompassed such results as

“If a cubic equation with integral coeffi-
cients has no rational roots, then none of its
roots are constructible,” and

“No transcendental length is constructible.”

Remarkable too is the unity of mathematics demonstrated by

an algebraic disposition of that which is purely geometric. Brought

to mind in the glowing picture are such names as those of Galois,

Wantzel, Hermite, Lindemann, and Gauss. Open doors, as a con-

sequence of the advances above, thus led the solver ever farther

along the paths of abstraction, rigorization, and generalization.
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