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In [1] it has been shown that ifK is any non-empty closed sub-

set of the complex plane without any interior, and P1, P2, · · · , Pn

are polynomials with complex coefficients such that any complex

linear combination of Pi’s has a zero in K, then Pi’s must have a

common zero in K. In this short note we prove a similar result for

finite Blaschke products on the unit disc U of the complex plane.

More precisely, if B is a finite dimensional vector space of analytic

functions on U consisting of a basis of finite Blaschke products,

and K is a non-empty closed set in U − {0} with empty interior

such that each element of B has a zero in K, then there exists a z0

in K such that g(z0) = 0 for every g in B. Refer to [2], for results

on Blaschke products.

Theorem. Let {ki}i=1,2,···,n be a sequence of positive integers and,

{li}i=1,2,···,n be sequences of non-negative integers. Let K be a
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non-empty closed set in U − {0} such that K0 = Φ. For each

i, 1 ≤ i ≤ n, let Si = {αij ∈ U − {0} : 1 ≤ j ≤ ki} and

Bi(z) = z
l

i

ki
∏

j=1

αij − z

1− αijz

|αij |

αij

for all z in U .

Further assume that

n
∑

i=1

ωiBi

has a zero in K for any given complex numbers ωi, 1 ≤ i ≤ n. Then

n
⋂

i=1

Si ∩K 6= Φ.

As mentioned in the introduction we prove the above theorem

using the following lemma.

Lemma. Let K be any non-empty closed subset of the complex

plane such that K0 = Φ. Let Pi, 1 ≤ i ≤ k be non-constant poly-

nomials with complex coefficients. Further assume

n
∑

i=1

ωiPi

has a zero in K for any complex numbers ωi, 1 ≤ i ≤ k. Then there

exists a z0 in K such that Pi(z0) = 0 for 1 ≤ i ≤ n.

Proof. Refer for Lemma 1.1 of [1].
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Proof of the theorem.

Let

Pi(z) = z
l

i

ki
∏

j=1

(αij − z)
|αij |

αij

n
∏

t=1

t6=i

( kt
∏

j=1

(1− αtjz)

)

for each i, 1 ≤ i ≤ n. Let c1, c2, · · · , cn be any arbitrary complex

numbers. Since c1B1 + c2B2 + · · ·+ cnBn has at least one zero in

K, it follows that c1P1 + c2P2 + · · ·+ cnPn which is the numerator

of c1B1 + c2B2 + · · · + cnBn, has at least one zero in K. Thus

Pi, 1 ≤ i ≤ n satisfies the hypothesis of the lemma. Hence by the

lemma Pi, 1 ≤ i ≤ n have at least one common zero in K. Since

|αij |
−1 > 1 for each i and j, and K is contained in U − {0}, the

polynomials

ki
∏

j=1

(αij − z)

for each i, 1 ≤ i ≤ n, have a common zero in K. This obviously

implies that

n
⋂

i=1

Si ∩K 6= Φ. Q.E.D.
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