ON THE COMMON ZEROES OF

FINITE BLASCHKE PRODUCTS

Ramesh Garimella
Northwest Missouri State University

In [1] it has been shown that if K is any non-empty closed subset of the complex plane without any interior, and $P_{1}, P_{2}, \cdots, P_{n}$ are polynomials with complex coefficients such that any complex linear combination of P_{i} 's has a zero in K, then P_{i} 's must have a common zero in K. In this short note we prove a similar result for finite Blaschke products on the unit disc U of the complex plane. More precisely, if \mathcal{B} is a finite dimensional vector space of analytic functions on U consisting of a basis of finite Blaschke products, and K is a non-empty closed set in $U-\{0\}$ with empty interior such that each element of \mathcal{B} has a zero in K, then there exists a z_{0} in K such that $g\left(z_{0}\right)=0$ for every g in \mathcal{B}. Refer to [2], for results on Blaschke products.

Theorem. Let $\left\{k_{i}\right\}_{i=1,2, \cdots, n}$ be a sequence of positive integers and, $\left\{l_{i}\right\}_{i=1,2, \cdots, n}$ be sequences of non-negative integers. Let K be a
non-empty closed set in $U-\{0\}$ such that $K^{0}=\Phi$. For each $i, 1 \leq i \leq n$, let $S_{i}=\left\{\alpha_{i j} \in U-\{0\}: 1 \leq j \leq k_{i}\right\}$ and

$$
B_{i}(z)=z^{l} i \prod_{j=1}^{k_{i}} \frac{\alpha_{i j}-z}{1-\overline{\alpha_{i j}} z} \frac{\left|\alpha_{i j}\right|}{\alpha_{i j}} \text { for all } z \text { in } U
$$

Further assume that

$$
\sum_{i=1}^{n} \omega_{i} B_{i}
$$

has a zero in K for any given complex numbers $\omega_{i}, 1 \leq i \leq n$. Then

$$
\bigcap_{i=1}^{n} S_{i} \cap K \neq \Phi
$$

As mentioned in the introduction we prove the above theorem using the following lemma.

Lemma. Let K be any non-empty closed subset of the complex plane such that $K^{0}=\Phi$. Let $P_{i}, 1 \leq i \leq k$ be non-constant polynomials with complex coefficients. Further assume

$$
\sum_{i=1}^{n} \omega_{i} P_{i}
$$

has a zero in K for any complex numbers $\omega_{i}, 1 \leq i \leq k$. Then there exists a z_{0} in K such that $P_{i}\left(z_{0}\right)=0$ for $1 \leq i \leq n$.

Proof. Refer for Lemma 1.1 of [1].

Proof of the theorem.

Let

$$
P_{i}(z)=z^{l} i \prod_{j=1}^{k_{i}}\left(\alpha_{i j}-z\right) \frac{\left|\alpha_{i j}\right|}{\alpha_{i j}} \prod_{\substack{t=1 \\ t \neq i}}^{n}\left(\prod_{j=1}^{k_{t}}\left(1-\overline{\alpha_{t j}} z\right)\right)
$$

for each $i, 1 \leq i \leq n$. Let $c_{1}, c_{2}, \cdots, c_{n}$ be any arbitrary complex numbers. Since $c_{1} B_{1}+c_{2} B_{2}+\cdots+c_{n} B_{n}$ has at least one zero in K, it follows that $c_{1} P_{1}+c_{2} P_{2}+\cdots+c_{n} P_{n}$ which is the numerator of $c_{1} B_{1}+c_{2} B_{2}+\cdots+c_{n} B_{n}$, has at least one zero in K. Thus $P_{i}, 1 \leq i \leq n$ satisfies the hypothesis of the lemma. Hence by the lemma $P_{i}, 1 \leq i \leq n$ have at least one common zero in K. Since $\left|\alpha_{i j}\right|^{-1}>1$ for each i and j, and K is contained in $U-\{0\}$, the polynomials

$$
\prod_{j=1}^{k_{i}}\left(\alpha_{i j}-z\right)
$$

for each $i, 1 \leq i \leq n$, have a common zero in K. This obviously implies that

$$
\bigcap_{i=1}^{n} S_{i} \cap K \neq \Phi . \quad \text { Q.E.D. }
$$

References

1. R. Garimella and N. V. Rao, "Closed Subspaces of Finite Codimension in Some Function Algebras," Proc. Amer. Math. Soc., 101(1987), 657-661.
2. J. B. Garnett, "Bounded Analytic Functions," Academic Press, New York, 1981.
