EXTENSIONS OF TOPOLOGIES

T. L. Hicks

University of Missouri-Rolla

Abstract. The m-extension of a topology is defined, some of
its properties are studied, and its relation to a simple extension is
noted. Also, an associated closure operation on the lattice of all
topologies on a fixed set is studied.

Let X be a set, m = {M,j 1V E I} a non-empty collection of
subsets of X and, for each v € I, ¢, a topology for M,. We define
a collection ¢(m) of subsets of X as follows: V' € ¢(m) if and only
if for each v € I, VN M, € t,. It is clear that t(m) is a topology

for X.

Unless otherwise specified we adopt the terminology of Gaal

Theorem 1. #(m) is the strongest topology for X such that

t(m) < t, on every M,,.

Proof. If A C M, and A is a member of the subspace topology
t(m)NM, on M,, then A = UNM, where U € t(m). Thus A € t,.

Suppose t’ is a topology for X such that ¢ < ¢, on every M,. If
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Vet andvel then VNM, et’ N M, <t,. Hence V € t(m).
Theorem 2. If there exists a topology ¢’ for X such that ¢’ = ¢,
on every M, then ¢t(m) = t, on every M,, and t(m) is the strongest
topology for X with this property.
Proof. If such a topology t' exists, then ' < t(m) by Theorem
1. Forvel t,=t'N"M, <t(m)nM, <t,. Hence t(m)=1t, on
M,.
In the remainder of this paper we suppose that ¢ is a topology
for X and, for each v € I, t, is the subspace topology t N M,.
In this case, t(m) is called the m-extension of ¢. It follows from
Theorem 2, that the m-extension of ¢ is the strongest topology on
X that agrees with ¢ on every M,,. Thus t < ¢(m).
Theorem 3. The following properties hold.
1) t(m) is discrete on X — J{M, : v € I}, and if X € m,
t =t(m).
2) A subset B of X is t(m) closed if and only if, for every v € I,
BN M, is closed in (M,,t,).
3) If (X,t) is a compact Hausdorff space, then ¢t = ¢(m) if and

only if ¢(m) is compact.
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4) If m is the collection of all closed compact subsets of (X,1),
then ¢t = ¢(m) if and only if X is a k-space.

Proof. 1 and 2 follow easily. For 3, suppose t(m) is compact.
t < t(m). t = t(m) since it is not possible to have a Hausdorff
topology strictly weaker than a compact topology. For 4, recall
that a k-space is one that satisfies the condition: if a subset A
of X intersects each closed compact set in a closed set, then A is
closed.

In [1], Levine defined a topology t* > ¢ to be a simple extension
of ¢ if there exists a subset A of X such that A ¢ ¢ and
t*={UU(VNA):UV et} We write t* = t(A). Many of his
results dealt with the case X — A € t. We need the following results
which appear in [1].

(a) t and t(A) agree on A and also on X — A.
(b) A is closed in (X,t) if and only if A is closed in (X, t(A)).

Theorem 4.

(1) t(A) is the weakest topology on X such that ¢t < ¢(A) and

A e t(A).

(2) Let m = {A, X — A}. t(A) = t(m) if and only if X — A € t.
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Proof. (1)Ift > tand A€ t/,let N € t(A). N=UU(VNA)
where U,V €t. Since Aet' andt <t', N et
(2) By (a), t and t(A) agree on every set of m. Hence
t(A) <t(m) by Theorem 1. Suppose X — A € t. If U € t(m),
UnAetnA=t(A)NA. Since A € t(A), UN A € t(A). Also,
X — A € t(A) implies that U N (X — A) € ¢(A). Therefore,
U=UnAUUNX—A)et(A).
X — A €t(m), so that if t(m) = t(A), X — A € t(A4).
Theorem 5.
(1) t < t(m) and, in general, t # t(m). In fact, if m consists only
of singleton subsets, then ¢(m) is the discrete topology.
(2) (4(m))(m) = t(m) and if m C n, then t(m) = (t(m))(n).
(3) If m C n, t(m) > t(n).
(4) If X € m, t(m) =t.
(5) Ifm = {Ml, 1V E I} is a collection of ¢ open sets such that
U{M, :v eI} =X, thent = t(m).
(6) If u is a topology for X and t < u, then t(m) < u(m).
Proof. Since the properties are easily established, we only

offer a proof for 2. t(m) < (¢(m))(n) by 1. If A € (t¢(m))(n) and
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m C n, then AN M, € t(m) N M, = t, for every v € I. Thus

A € t(m) and equality holds.

Definition. By a closure operation on a partially ordered set

(P, <) we mean a mapping ¢ : P — P such that:
(1) = <y implies ¢(z) < (y).

(2) = < ¢(x) for every z € P.

(3) ¥(¢(x)) = 1(x) for every x € P.

Suppose m = {M,j NS I} is fixed. If we look at properties
1, 2, and 6 in the above theorem we see that m defines a closure
operation (¢t — t(m)) on the lattice P* of all topologies on X.

Theorem 6. Suppose {ta ta € J } is a non-empty collection

of topologies on X.
(1) (glb ta)(m) < glb ta(m) = (glb ta(m))(m).
(2) (1ub ta)m) = (1 t0 (1)) ().

Proof. (1) The equality in (1) is a special case of a Theorem
of Ward [4, p. 68 or 5], but the reader can easily verify (1).

(2) For each a, t, < luol[o to so that t,(m) < (lu(lo to)(m).
Hence luab ta(m) < (lu(lo to)(m) and consequently (luot) ta(m))(m) <
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(lu(lo to)(m). Also, luol[o ta < luol[o to(m) implies that (lu(lo to)(m) <
(1ub £ (m)) (m)

Example 1. The < in (1) of Theorem 6 may be <. Put
X = {a,b, c,d} and m = {M} where M = {a,b,c}. Let
t={{c},X,0} and v = {{d,c},X,0}. Then (¢t N u)(m) <
t(m) Nu(m).

Corollary.

(1) (luoP to)(m) = 1u§> to(m) if and only if 1u§> to(m) is a fixed

point of m.

(2) If luolto to is a fixed point of m, then so is 1u§> ta(m).

Proof. In general, luab ta(m) < (lu(lo to)(m) = (luOE) to(m))(m).

Theorem 7. If (glb to) N M, = glb (to N M,) for every v € I,
then glb t,(m) = (glb ty)(m).

Proof. Suppose U € t,(m) for every a and let v be fixed.
Since UNM, € ta NM,, UNM, € glb (ta NM,) = (glb to) N M,.
Hence U € (glb to)(m) and glb t,(m) < (glb to)(m).

Question. Is every closure operation on P* of the above form?
That is, given a closure operation 1) on P* does there exist a col-

lection m = { M, } of subsets of X such that 1(t) = t(m) for every
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te P*?

Theorem 8. Suppose @ is given. If there exists a class
m = {M, : v € I} such that o(t) = t(m) for every t € P*,
then ¢(t) = t(m*) for every t € P* where m* = {M C X :
t and 1(t) agree on M for every t € P*}.

Proof. Since ¢t < 9(t) = t(m), t and (t) agree on every
M € m. Hence m C m* and consequently ¢(m) > t(m*). By
Theorem 2, t(m*) > 1(t). We have 9(t) = t(m) > t(m*) > ¥(t)
for every t € P*.

Example 2. This example shows that the answer to the above
question is no. Let X denote an infinite set, ¢* the discrete topol-
ogy, t' the indiscrete topology, and u the topology of finite com-
plements. Define 9 as follows: ¥(t) = u if t < v and ¥(t) = t*
otherwise. The reader can easily verify that v is a closure oper-
ation on P*. We show that m*, defined in the above theorem,
consists of all singleton subsets. Then since ¢(m*) is the strongest
topology that agrees with ¢ on every M € m*, t(m*) = t* for every
t € P* and consequently ¢(t) # t(m*) for any t < w.

Suppose = # y and let A = {a:, y} It suffices to prove that

68



P(t') =w and ¢’ do not agree on A. AN (X — {y}) = {«} so that
{z} eunA. {z} €t'NA.

Problem. Characterize every closure operation on P*.
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