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Abstract. The m-extension of a topology is defined, some of
its properties are studied, and its relation to a simple extension is
noted. Also, an associated closure operation on the lattice of all
topologies on a fixed set is studied.

Let X be a set, m =
{

Mν : ν ∈ I
}

a non-empty collection of

subsets of X and, for each ν ∈ I, tν a topology for Mν . We define

a collection t(m) of subsets of X as follows: V ∈ t(m) if and only

if for each ν ∈ I, V ∩Mν ∈ tν . It is clear that t(m) is a topology

for X .

Unless otherwise specified we adopt the terminology of Gaal

[2].

Theorem 1. t(m) is the strongest topology for X such that

t(m) ≤ tν on every Mν .

Proof. If A ⊆Mν and A is a member of the subspace topology

t(m)∩Mν onMν , then A = U∩Mν where U ∈ t(m). Thus A ∈ tν .

Suppose t′ is a topology for X such that t′ ≤ tν on every Mν . If
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V ∈ t′ and ν ∈ I, then V ∩Mν ∈ t′ ∩Mν ≤ tν . Hence V ∈ t(m).

Theorem 2. If there exists a topology t′ forX such that t′ = tν

on everyMν , then t(m) = tν on everyMν and t(m) is the strongest

topology for X with this property.

Proof. If such a topology t′ exists, then t′ ≤ t(m) by Theorem

1. For ν ∈ I, tν = t′ ∩Mν ≤ t(m) ∩Mν ≤ tν . Hence t(m) = tν on

Mν .

In the remainder of this paper we suppose that t is a topology

for X and, for each ν ∈ I, tν is the subspace topology t ∩Mν .

In this case, t(m) is called the m-extension of t. It follows from

Theorem 2, that the m-extension of t is the strongest topology on

X that agrees with t on every Mν . Thus t ≤ t(m).

Theorem 3. The following properties hold.

1) t(m) is discrete on X −
⋃
{

Mν : ν ∈ I
}

, and if X ∈ m,

t = t(m).

2) A subset B of X is t(m) closed if and only if, for every ν ∈ I,

B ∩Mν is closed in (Mν , tν).

3) If (X, t) is a compact Hausdorff space, then t = t(m) if and

only if t(m) is compact.
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4) If m is the collection of all closed compact subsets of (X, t),

then t = t(m) if and only if X is a k-space.

Proof. 1 and 2 follow easily. For 3, suppose t(m) is compact.

t ≤ t(m). t = t(m) since it is not possible to have a Hausdorff

topology strictly weaker than a compact topology. For 4, recall

that a k-space is one that satisfies the condition: if a subset A

of X intersects each closed compact set in a closed set, then A is

closed.

In [1], Levine defined a topology t∗ > t to be a simple extension

of t if there exists a subset A of X such that A 6∈ t and

t∗ =
{

U ∪
(

V ∩A
)

: U, V ∈ t
}

. We write t∗ = t(A). Many of his

results dealt with the caseX−A ∈ t. We need the following results

which appear in [1].

(a) t and t(A) agree on A and also on X −A.

(b) A is closed in (X, t) if and only if A is closed in (X, t(A)).

Theorem 4.

(1) t(A) is the weakest topology on X such that t < t(A) and

A ∈ t(A).

(2) Let m =
{

A,X −A
}

. t(A) = t(m) if and only if X −A ∈ t.
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Proof. (1) If t′ > t and A ∈ t′, let N ∈ t(A). N = U ∪
(

V ∩A
)

where U, V ∈ t. Since A ∈ t′ and t < t′, N ∈ t′.

(2) By (a), t and t(A) agree on every set of m. Hence

t(A) ≤ t(m) by Theorem 1. Suppose X − A ∈ t. If U ∈ t(m),

U ∩ A ∈ t ∩ A = t(A) ∩ A. Since A ∈ t(A), U ∩ A ∈ t(A). Also,

X − A ∈ t(A) implies that U ∩ (X − A) ∈ t(A). Therefore,

U = (U ∩ A) ∪ (U ∩X −A) ∈ t(A).

X −A ∈ t(m), so that if t(m) = t(A), X −A ∈ t(A).

Theorem 5.

(1) t ≤ t(m) and, in general, t 6= t(m). In fact, if m consists only

of singleton subsets, then t(m) is the discrete topology.

(2) (t(m))(m) = t(m) and if m ⊆ n, then t(m) = (t(m))(n).

(3) If m ⊆ n, t(m) ≥ t(n).

(4) If X ∈ m, t(m) = t.

(5) If m =
{

Mν : ν ∈ I
}

is a collection of t open sets such that

⋃
{

Mν : ν ∈ I
}

= X , then t = t(m).

(6) If u is a topology for X and t ≤ u, then t(m) ≤ u(m).

Proof. Since the properties are easily established, we only

offer a proof for 2. t(m) ≤ (t(m))(n) by 1. If A ∈ (t(m))(n) and
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m ⊆ n, then A ∩Mν ∈ t(m) ∩Mν = tν for every ν ∈ I. Thus

A ∈ t(m) and equality holds.

Definition. By a closure operation on a partially ordered set

(P,≤) we mean a mapping ψ : P → P such that:

(1) x ≤ y implies ψ(x) ≤ ψ(y).

(2) x ≤ ψ(x) for every x ∈ P .

(3) ψ(ψ(x)) = ψ(x) for every x ∈ P .

Suppose m =
{

Mν : ν ∈ I
}

is fixed. If we look at properties

1, 2, and 6 in the above theorem we see that m defines a closure

operation (t→ t(m)) on the lattice P ∗ of all topologies on X .

Theorem 6. Suppose
{

tα : α ∈ J
}

is a non-empty collection

of topologies on X .

(1) (glb
α

tα)(m) ≤ glb
α

tα(m) = (glb
α

tα(m))(m).

(2) (lub
α

tα)(m) = (lub
α

tα(m))(m).

Proof. (1) The equality in (1) is a special case of a Theorem

of Ward [4, p. 68 or 5], but the reader can easily verify (1).

(2) For each α, tα ≤ lub
α

tα so that tα(m) ≤ (lub
α

tα)(m).

Hence lub
α

tα(m) ≤ (lub
α

tα)(m) and consequently (lub
α

tα(m))(m) ≤
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(lub
α

tα)(m). Also, lub
α

tα ≤ lub
α

tα(m) implies that (lub
α

tα)(m) ≤

(lub
α

tα(m))(m).

Example 1. The ≤ in (1) of Theorem 6 may be <. Put

X =
{

a, b, c, d
}

and m =
{

M
}

where M =
{

a, b, c
}

. Let

t =
{

{c}, X, ∅
}

and u =
{

{d, c}, X, ∅
}

. Then (t ∩ u)(m) <

t(m) ∩ u(m).

Corollary.

(1) (lub
α

tα)(m) = lub
α

tα(m) if and only if lub
α

tα(m) is a fixed

point of m.

(2) If lub
α

tα is a fixed point of m, then so is lub
α

tα(m).

Proof. In general, lub
α

tα(m) ≤ (lub
α

tα)(m) = (lub
α

tα(m))(m).

Theorem 7. If (glb
α

tα) ∩Mν = glb
α

(tα ∩Mν) for every ν ∈ I,

then glb
α

tα(m) = (glb
α

tα)(m).

Proof. Suppose U ∈ tα(m) for every α and let ν be fixed.

Since U ∩Mν ∈ tα ∩Mν , U ∩Mν ∈ glb
α

(tα ∩Mν) = (glb
α

tα)∩Mν .

Hence U ∈ (glb
α

tα)(m) and glb
α

tα(m) ≤ (glb
α

tα)(m).

Question. Is every closure operation on P ∗ of the above form?

That is, given a closure operation ψ on P ∗ does there exist a col-

lection m =
{

Mν

}

of subsets of X such that ψ(t) = t(m) for every
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t ∈ P ∗?

Theorem 8. Suppose ψ is given. If there exists a class

m =
{

Mν : ν ∈ I
}

such that ψ(t) = t(m) for every t ∈ P ∗,

then ψ(t) = t(m∗) for every t ∈ P ∗ where m∗ =
{

M ⊆ X :

t and ψ(t) agree on M for every t ∈ P ∗
}

.

Proof. Since t ≤ ψ(t) = t(m), t and ψ(t) agree on every

M ∈ m. Hence m ⊆ m∗ and consequently t(m) ≥ t(m∗). By

Theorem 2, t(m∗) ≥ ψ(t). We have ψ(t) = t(m) ≥ t(m∗) ≥ ψ(t)

for every t ∈ P ∗.

Example 2. This example shows that the answer to the above

question is no. Let X denote an infinite set, t∗ the discrete topol-

ogy, t′ the indiscrete topology, and u the topology of finite com-

plements. Define ψ as follows: ψ(t) = u if t ≤ u and ψ(t) = t∗

otherwise. The reader can easily verify that ψ is a closure oper-

ation on P ∗. We show that m∗, defined in the above theorem,

consists of all singleton subsets. Then since t(m∗) is the strongest

topology that agrees with t on everyM ∈ m∗, t(m∗) = t∗ for every

t ∈ P ∗ and consequently ψ(t) 6= t(m∗) for any t ≤ u.

Suppose x 6= y and let A =
{

x, y
}

. It suffices to prove that
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ψ(t′) = u and t′ do not agree on A. A ∩ (X − {y}) = {x} so that

{x} ∈ u ∩ A. {x} 6∈ t′ ∩A.

Problem. Characterize every closure operation on P ∗.
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