EXTENSIONS OF TOPOLOGIES

T. L. Hicks

University of Missouri-Rolla

<u>Abstract</u>. The m-extension of a topology is defined, some of its properties are studied, and its relation to a simple extension is noted. Also, an associated closure operation on the lattice of all topologies on a fixed set is studied.

Let X be a set, $m = \{M_{\nu} : \nu \in I\}$ a non-empty collection of subsets of X and, for each $\nu \in I$, t_{ν} a topology for M_{ν} . We define a collection t(m) of subsets of X as follows: $V \in t(m)$ if and only if for each $\nu \in I$, $V \cap M_{\nu} \in t_{\nu}$. It is clear that t(m) is a topology for X.

Unless otherwise specified we adopt the terminology of Gaal [2].

<u>Theorem 1</u>. t(m) is the strongest topology for X such that $t(m) \leq t_{\nu}$ on every M_{ν} .

<u>Proof.</u> If $A \subseteq M_{\nu}$ and A is a member of the subspace topology $t(m) \cap M_{\nu}$ on M_{ν} , then $A = U \cap M_{\nu}$ where $U \in t(m)$. Thus $A \in t_{\nu}$. Suppose t' is a topology for X such that $t' \leq t_{\nu}$ on every M_{ν} . If $V \in t'$ and $\nu \in I$, then $V \cap M_{\nu} \in t' \cap M_{\nu} \leq t_{\nu}$. Hence $V \in t(m)$.

<u>Theorem 2</u>. If there exists a topology t' for X such that $t' = t_{\nu}$ on every M_{ν} , then $t(m) = t_{\nu}$ on every M_{ν} and t(m) is the strongest topology for X with this property.

<u>Proof.</u> If such a topology t' exists, then $t' \leq t(m)$ by Theorem 1. For $\nu \in I$, $t_{\nu} = t' \cap M_{\nu} \leq t(m) \cap M_{\nu} \leq t_{\nu}$. Hence $t(m) = t_{\nu}$ on M_{ν} .

In the remainder of this paper we suppose that t is a topology for X and, for each $\nu \in I$, t_{ν} is the subspace topology $t \cap M_{\nu}$. In this case, t(m) is called the *m*-<u>extension</u> of t. It follows from Theorem 2, that the *m*-extension of t is the strongest topology on X that agrees with t on every M_{ν} . Thus $t \leq t(m)$.

<u>Theorem 3</u>. The following properties hold.

- 1) t(m) is discrete on $X \bigcup \{ M_{\nu} : \nu \in I \}$, and if $X \in m$, t = t(m).
- 2) A subset B of X is t(m) closed if and only if, for every $\nu \in I$, $B \cap M_{\nu}$ is closed in (M_{ν}, t_{ν}) .
- If (X,t) is a compact Hausdorff space, then t = t(m) if and only if t(m) is compact.

4) If m is the collection of all closed compact subsets of (X, t), then t = t(m) if and only if X is a k-space.

<u>Proof.</u> 1 and 2 follow easily. For 3, suppose t(m) is compact. $t \leq t(m)$. t = t(m) since it is not possible to have a Hausdorff topology strictly weaker than a compact topology. For 4, recall that a k-space is one that satisfies the condition: if a subset Aof X intersects each closed compact set in a closed set, then A is closed.

In [1], Levine defined a topology $t^* > t$ to be a simple extension of t if there exists a subset A of X such that $A \notin t$ and $t^* = \{U \cup (V \cap A) : U, V \in t\}$. We write $t^* = t(A)$. Many of his results dealt with the case $X - A \in t$. We need the following results which appear in [1].

- (a) t and t(A) agree on A and also on X A.
- (b) A is closed in (X, t) if and only if A is closed in (X, t(A)). Theorem 4.
- (1) t(A) is the weakest topology on X such that t < t(A) and $A \in t(A)$.
- (2) Let $m = \{A, X A\}$. t(A) = t(m) if and only if $X A \in t$.

<u>Proof.</u> (1) If t' > t and $A \in t'$, let $N \in t(A)$. $N = U \cup (V \cap A)$

where $U, V \in t$. Since $A \in t'$ and $t < t', N \in t'$.

(2) By (a), t and t(A) agree on every set of m. Hence $t(A) \leq t(m)$ by Theorem 1. Suppose $X - A \in t$. If $U \in t(m)$, $U \cap A \in t \cap A = t(A) \cap A$. Since $A \in t(A)$, $U \cap A \in t(A)$. Also, $X - A \in t(A)$ implies that $U \cap (X - A) \in t(A)$. Therefore, $U = (U \cap A) \cup (U \cap X - A) \in t(A)$. $X - A \in t(m)$, so that if t(m) = t(A), $X - A \in t(A)$.

<u>Theorem 5</u>.

- (1) $t \leq t(m)$ and, in general, $t \neq t(m)$. In fact, if *m* consists only of singleton subsets, then t(m) is the discrete topology.
- (2) (t(m))(m) = t(m) and if $m \subseteq n$, then t(m) = (t(m))(n).
- (3) If $m \subseteq n$, $t(m) \ge t(n)$.
- (4) If $X \in m$, t(m) = t.
- (5) If $m = \{M_{\nu} : \nu \in I\}$ is a collection of t open sets such that $\bigcup \{M_{\nu} : \nu \in I\} = X$, then t = t(m).
- (6) If u is a topology for X and $t \le u$, then $t(m) \le u(m)$.

<u>Proof.</u> Since the properties are easily established, we only offer a proof for 2. $t(m) \leq (t(m))(n)$ by 1. If $A \in (t(m))(n)$ and $m \subseteq n$, then $A \cap M_{\nu} \in t(m) \cap M_{\nu} = t_{\nu}$ for every $\nu \in I$. Thus

 $A \in t(m)$ and equality holds.

<u>Definition</u>. By a <u>closure operation</u> on a partially ordered set (P, \leq) we mean a mapping $\psi : P \to P$ such that:

- (1) $x \le y$ implies $\psi(x) \le \psi(y)$.
- (2) $x \leq \psi(x)$ for every $x \in P$.
- (3) $\psi(\psi(x)) = \psi(x)$ for every $x \in P$.

Suppose $m = \{M_{\nu} : \nu \in I\}$ is fixed. If we look at properties 1, 2, and 6 in the above theorem we see that m defines a closure operation $(t \to t(m))$ on the lattice P^* of all topologies on X.

<u>Theorem 6</u>. Suppose $\{t_{\alpha} : \alpha \in J\}$ is a non-empty collection of topologies on X.

- (1) $(\underset{\alpha}{\operatorname{glb}} t_{\alpha})(m) \leq \underset{\alpha}{\operatorname{glb}} t_{\alpha}(m) = (\underset{\alpha}{\operatorname{glb}} t_{\alpha}(m))(m).$
- (2) $(\lim_{\alpha} t_{\alpha})(m) = (\lim_{\alpha} t_{\alpha}(m))(m).$

<u>Proof.</u> (1) The equality in (1) is a special case of a Theorem of Ward [4, p. 68 or 5], but the reader can easily verify (1).

(2) For each α , $t_{\alpha} \leq \lim_{\alpha} t_{\alpha}$ so that $t_{\alpha}(m) \leq (\lim_{\alpha} t_{\alpha})(m)$.

Hence $\lim_{\alpha} t_{\alpha}(m) \leq (\lim_{\alpha} t_{\alpha})(m)$ and consequently $(\lim_{\alpha} t_{\alpha}(m))(m) \leq (1 + 1) \sum_{\alpha} t_{\alpha}(m)$

 $(\underset{\alpha}{\text{lub}} t_{\alpha})(m)$. Also, $\underset{\alpha}{\text{lub}} t_{\alpha} \leq \underset{\alpha}{\text{lub}} t_{\alpha}(m)$ implies that $(\underset{\alpha}{\text{lub}} t_{\alpha})(m) \leq (\underset{\alpha}{\text{lub}} t_{\alpha}(m))(m)$.

<u>Example 1.</u> The \leq in (1) of Theorem 6 may be <. Put $X = \{a, b, c, d\}$ and $m = \{M\}$ where $M = \{a, b, c\}$. Let $t = \{\{c\}, X, \emptyset\}$ and $u = \{\{d, c\}, X, \emptyset\}$. Then $(t \cap u)(m) < t(m) \cap u(m)$.

Corollary.

- (1) $(\underset{\alpha}{\text{lub}} t_{\alpha})(m) = \underset{\alpha}{\text{lub}} t_{\alpha}(m)$ if and only if $\underset{\alpha}{\text{lub}} t_{\alpha}(m)$ is a fixed point of m.
- (2) If $\lim_{\alpha} t_{\alpha}$ is a fixed point of m, then so is $\lim_{\alpha} t_{\alpha}(m)$. <u>Proof</u>. In general, $\lim_{\alpha} t_{\alpha}(m) \leq (\lim_{\alpha} t_{\alpha})(m) = (\lim_{\alpha} t_{\alpha}(m))(m)$. <u>Theorem 7</u>. If $(\operatorname{glb}_{\alpha} t_{\alpha}) \cap M_{\nu} = \operatorname{glb}_{\alpha} (t_{\alpha} \cap M_{\nu})$ for every $\nu \in I$, then $\operatorname{glb}_{\alpha} t_{\alpha}(m) = (\operatorname{glb}_{\alpha} t_{\alpha})(m)$.

<u>Proof.</u> Suppose $U \in t_{\alpha}(m)$ for every α and let ν be fixed. Since $U \cap M_{\nu} \in t_{\alpha} \cap M_{\nu}, U \cap M_{\nu} \in \underset{\alpha}{\text{glb}} (t_{\alpha} \cap M_{\nu}) = (\underset{\alpha}{\text{glb}} t_{\alpha}) \cap M_{\nu}.$ Hence $U \in (\underset{\alpha}{\text{glb}} t_{\alpha})(m)$ and $\underset{\alpha}{\text{glb}} t_{\alpha}(m) \leq (\underset{\alpha}{\text{glb}} t_{\alpha})(m).$

<u>Question</u>. Is every closure operation on P^* of the above form? That is, given a closure operation ψ on P^* does there exist a collection $m = \{M_\nu\}$ of subsets of X such that $\psi(t) = t(m)$ for every $t \in P^*$?

<u>Theorem 8.</u> Suppose ψ is given. If there exists a class $m = \{M_{\nu} : \nu \in I\}$ such that $\psi(t) = t(m)$ for every $t \in P^*$, then $\psi(t) = t(m^*)$ for every $t \in P^*$ where $m^* = \{M \subseteq X : t \text{ and } \psi(t) \text{ agree on } M \text{ for every } t \in P^*\}.$

<u>Proof.</u> Since $t \leq \psi(t) = t(m)$, t and $\psi(t)$ agree on every $M \in m$. Hence $m \subseteq m^*$ and consequently $t(m) \geq t(m^*)$. By Theorem 2, $t(m^*) \geq \psi(t)$. We have $\psi(t) = t(m) \geq t(m^*) \geq \psi(t)$ for every $t \in P^*$.

Example 2. This example shows that the answer to the above question is no. Let X denote an infinite set, t^* the discrete topology, t' the indiscrete topology, and u the topology of finite complements. Define ψ as follows: $\psi(t) = u$ if $t \leq u$ and $\psi(t) = t^*$ otherwise. The reader can easily verify that ψ is a closure operation on P^* . We show that m^* , defined in the above theorem, consists of all singleton subsets. Then since $t(m^*)$ is the strongest topology that agrees with t on every $M \in m^*$, $t(m^*) = t^*$ for every $t \in P^*$ and consequently $\psi(t) \neq t(m^*)$ for any $t \leq u$.

Suppose $x \neq y$ and let $A = \{x, y\}$. It suffices to prove that

- $\psi(t') = u$ and t' do not agree on A. $A \cap (X \{y\}) = \{x\}$ so that
- $\{x\} \in u \cap A. \ \{x\} \not\in t' \cap A.$

<u>Problem</u>. Characterize every closure operation on P^* .

References

- N. Levine, "Simple Extensions of Topologies," Amer. Math. Monthly, 71(1964), 22–25.
- 2. S. A. Gaal, *Point Set Topology*, Academic Press, New York, 1964.
- 3. J. L. Kelley, General Topology, Van Nostrand, New York, 1955.
- G. Szasz, Introduction to Lattice Theory, Third Edition, Academic Press, 1963.
- M. Ward, "The Closure Operators of a Lattice," Annals Math., 43(1942) 191–196.