
SOLUTIONS

No problem is ever permanently closed. Any comments, new
solutions, or new insights on old problems are always welcomed by
the editor.

10. Proposed by Curtis Cooper and Robert E. Kennedy, Cen-
tral Missouri State University, Warrensburg, Missouri.
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Solution by the proposers.
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But w4m−2j = 1 iff 2m−j
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is an integer. Also, if n | 2m − j, then

there exists an integer k such that 2m− j = kn. Therefore,

0 ≤ j = 2m− kn ≤ 4m
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Using the above,
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The last equality follows from examining limits, signs, and co-
efficients of the previous sum. Next, using Problem 14(a) from
Chapter 2 [1] and the above results
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Finally, applying this result when n = 45 and m = 2 we have
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11. Proposed by Stanley Rabinowitz, Westford, Massachusetts.

A strip is the closed region bounded between two parallel lines
in the plane. Prove that a finite number of strips cannot cover the
entire plane.

Solution by the proposer.

Since there are only a finite number of strips, there must be

some line, L, that is not parallel to the bounding lines of any of

the strips. Each strip intersects L in a finite line segment. These

line segments cannot completely cover L, so there must be some

point of L that is not in any of these line segments. This point is

not covered by any of the strips.

The proposer also submitted a second solution.

13. Proposed by James H. Taylor, Central Missouri State Uni-
versity, Warrensburg, Missouri.
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for any non-negative integer l.

(b) For any positive integer n, define

(2n− 1)!! = 1 · 3 · · · · · (2n− 1)

and
(2n)!! = 2 · 4 · · · · · (2n) .
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Solution I to part (a) by Joseph E. Chance, Pan American
University, Edinburg, Texas.

The result follows from successive Cauchy Products of the
series
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∞
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The last series and series (2) represent the same function, thus
must have identical coefficients. Therefore
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Solution II to part (a) by the proposer.

We prove this result by induction on l. The result is true for
l = 0. Suppose the result is true for some l = k ≥ 0. Then by
rearranging terms and using the induction hypothesis
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Solution I to part (b) by Joseph E. Chance, Pan American
University, Edinburg, Texas.

From the binomial theorem
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Composite Solution II to part (b) by Russell Euler, Northwest
Missouri State University, Maryville, Missouri and the proposer.

The result will be established by using mathematical induction
on n. For n = 1, both sides of the alleged identity equal 1

2 .
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88


