AN ANALYTICAL APPROACH TO A

TRIGONOMETRIC INTEGRAL

Joseph Wiener

The University of Texas-Pan American

The integral of $\sin ^{2} x$ or $\cos ^{2} x$ between 0 and $\frac{\pi}{2}$ (or 0 and π) is usually calculated by changing the integrand according to the well-known half-angle formula. However, students with a phobia for trigonometry would prefer a simple geometric derivation of the answer suggested in [1]. The result is obtained immediately by noticing the equality of the areas of the regions under the graphs of $\sin ^{2} x$ and $\cos ^{2} x$ and by integrating the basic trigonometric identity $\sin ^{2} x+\cos ^{2} x=1$. This idea is equivalent to the following analytical approach. Let

$$
C=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x, \quad S=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x .
$$

Since the substitution $x=\frac{\pi}{2}-u$ transforms either integral to the other, then $C=S$. Furthermore, integrating the basic identity between 0 and $\frac{\pi}{2}$ yields $C+S=\frac{\pi}{2}$, which implies $C=S=\frac{\pi}{4}$.

Some students even try to use this method for integrals of $\sin ^{4} x$ and $\cos ^{4} x$ between 0 and $\frac{\pi}{2}$. From the start, things evolve as expected, the above substitution again shows the equality of the corresponding integrals, and a few students decide to integrate the "identity" $\sin ^{4} x+\cos ^{4} x=1$. Doubts and questions quickly reveal the error, gradually lead to serious work, and raise new questions on further generalizations. Of course, Wallis's integrals

$$
C_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{2 n} x d x, \quad S_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{2 n} x d x
$$

are too hard for most students but may be suggested as a challenging exercise. The following method of evaluating C_{n} is new and unusual in that it reduces to a minimum the amount of trigonometric transformations and illustrates the interaction between integration and differentiation. It is easy to calculate the improper integral

$$
\int_{0}^{\infty} \frac{d y}{y^{2}+p}=\frac{\pi}{2} p^{-\frac{1}{2}}, \quad p>0
$$

Successively differentiating this relation with respect to p yields

$$
\int_{0}^{\infty} \frac{d y}{\left(y^{2}+p\right)^{n+1}}=\frac{1}{2} \frac{(2 n)!}{4^{n}(n!)^{2}} \pi p^{-\frac{(2 n+1)}{2}}
$$

Letting $p=a^{2}, y=a \tan x$, we obtain the remarkable Wallis's
formulas

$$
C_{n}=S_{n}=\frac{(2 n)!}{4^{n}(n!)^{2}}\left(\frac{\pi}{2}\right)
$$

Reference

1. R. Euler, "A Geometric Approach to a Trigonometric Integral," Missouri J. Math. Sci., Winter 1989, Vol. 1. No. 1, $28-$ 29.
