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The investigation of plethysms (inner and outer) in the repre-

sentation theory of finite classical groups has been one of the im-

portant outstanding problems in the representation theory of the

symmetric group [5], [7] and [8]. The fundamental theorem of the

representation theory of the symmetric group has been more or less

known since the origins of the subject with Frobenius at the turn of

the century. This theorem states there is an isomorphism between

the representation ring of the symmetric groups Sn and the ring

of symmetric polynomials in an infinite number of variables. But

for various reasons this isomorphism in its pure form seems not

to have appeared until Atiyah [2] introduced the Steenrod power

operations in K-Theory around 1966. In [2] Atiyah described how

to use the complex representations of the symmetric group Sk, to

* This research was partially supported by Emporia State Uni-
versity summer fellowship.
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define and investigate operations inK-Theory. Atiyah’s main tech-

nical tool is the notation of λ-ring introduced by Grothendieck [3]

in 1956 in an algebraic-geometric context. The notation of λ-ring

has been used by Knutson [6], to study the fundamental theorem of

the representation theory of the symmetric group which has been

translated into that of plethysms by Hoffman [4], Uehara and my-

self [1] and [9]. The main purpose of this paper is to define and

investigate the inner plethysm in the representation ring R(An),

where An = GL(n,K) in the nth general linear group over a finite

field K. In the case An = Sn, the symmetric group, Hoffman [4]

investigated the inner and outer plethysms in the frame work of

τ -rings. The authors of [1] and [9] studied the outer plethysms for

An = Sn, An = GL(n,K) and An = [G]Sn, the wreath product of

a finite group G by the symmetric group Sn.

Let An = GL(n,K) be the nth general linear group over a

finite field K. The wreath product [An]Sn of An by the symmetric

group Sk (the usual notation for [An]Sk is An ≀Sk) is the set A
k
n×Sk

with a multiplication defined by (a1, . . . , ak;σ)(a
′
1, . . . , a

′
k;σ

′) =

(a1a
′
σ−1(1), . . . , aka

′
σ−1(k);σσ

′) where ai, a
′
i ∈ An for k ≥ i ≥ 1
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and σ, σ′ ∈ Sk. For a representation M of An and for k ≥ 1,

the kth tensor product of M , M⊗k = M ⊗M ⊗ · · · ⊗M (k fac-

tors) is a representation of [An]Sk with a group action given by

(a1, . . . , ak;σ)(m1 ⊗m2⊗ · · · ⊗mk) = a1mσ−1(1) ⊗ · · ·⊗ akmσ−1(k)

for any (a1, . . . , ak;σ) ∈ [An]Sk and mi ∈ M . In what follows ⊗

means ⊗c and we interpret M⊗0 as the An-representation C, on

which An acts trivially.

For any finite group G let R(G) be the Grothendieck represen-

tation group of G, R(G) is the free abelian group generated by the

isomorphism classes of irreducible complex representations of G.

It is a ring with respect to the tensor product. For every integer

k ≥ 1 we have a map

⊗k : R(An) → R([An]Sk)

defined by ⊗k([M ]) = [M⊗k], where [M ] ∈ R(An) is the class of

M .

First we are going to show ⊗k is well defined (compare Atiyah

[2], proposition 2.2). Let G be any finite group and consider the

semiring M(G) = {(M,N)|M,N are G−modules } with addition
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and multiplication defined by

(M,N) + (M ′, N ′) = (M ⊕M ′, N ⊕N ′)

and

(M,N).(M ′, N ′) = (M ⊗M ′ ⊕N ⊗N ′,M ⊗N ′ ⊕M ′ ⊗N) .

We define an equivalence relation∼ onM(G) by (M,N) ∼ (M ′, N ′)

if and only if M ⊕ N ′ ≃ M ′ ⊕ N . We denote by [(M,N)] the

equivalence class of (M,N) ∈ M(G). Then R(G) = M(G)/ ∼ is

a ring with 0 = [(D,D)] and −[(M,N)] = [(N,M)]. It is clear

from the construction that the map h : R(G) → R(G) defined

by h([(M,n)]) = [M ] − [N ] is a ring isomorphism. For each in-

teger k ≥ 1, we define a map △k : M(An) → M([An]Sk) by

△k(M,N) = (M,N)k.

Lemma 1. The map△k is compatible with the equivalence relation

∼ on M(An).

Proof. We have to show that if D is any An-module and

(M,N) ∈M(An) then △k(M,N) ∼ △k(M ⊕ D,N ⊕ D). This
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can be proved by induction on k. If k = 1,

△1(M⊕D,N⊕D) = (M⊕D,N⊕D) = (M,N)+(D,D) = (M,N) .

Assume the hypothesis is true for k − 1, then

△k(M ⊕D,N ⊕D) = (M ⊕D,N ⊕D)k−1.(M ⊕D,N ⊕D)

= (M,N)k−1((M,N) + (D,D))

= (M,N)k−1(M,N) = △k(M,N) .

Now consider the diagram

M(An)
△k
−→ M([An]Sk)





y
P





y
P

R(An)
⊗k
−→ R([An]Sk)





y
h





y
h

R(An)
⊗k
−→ R([An]Sk)

where ⊗k is the map induced by △k and P is the projection map.

h ◦ p ◦ △k(M, 0) = h ◦ p(M, 0)k = h ◦ p(M⊗k, 0)

= h([(M⊗k, 0)] = [M⊗k] = ⊗k[M ] .
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Similarly ⊗k ◦ h ◦ p(M, 0) = ⊗k[M ]. Thus it follows that the

diagram commutes and ⊗k is also induced by △k, and hence the

map ⊗k is well defined.

Before we state the next result we recall the following.

Definition. Let H be a subgroup of a finite group G and M is a

complex representation of H the representation of G induced by

M is given by IndGHM = CG⊗CH M .

Lemma 2. If (M,N) ∈M(An), then for any k ≥ 1,

△k(M,N) =
(

k
∑

i=0
i even

Ind
[An]Sk

[An]Sk−i×[An]Si
(M⊗(k−i) ⊗N⊗i),

k
∑

j=1
j odd

Ind
[An]Sk

[An]Sk−j×[An]Sj
(M⊗(k−j) ⊗N⊗j)

)

.

Proof. The proof is by induction on k. If k = 1, this is evident.

Assume that the hypothesis is true for all integers m ≤ k. Then

we have
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△k+1 (M,N) = (M,N)k(M,N)

=
(

k
∑

i=0
i even

Ind
[An]Sk

[An]Sk−i×[An]Si
(M⊗(k−i) ⊗N⊗i),

k
∑

j=1
j odd

Ind
[An]Sk

[An]Sk−j×[An]Sj
(M⊗(k−j) ⊗N⊗j))(M,N)

)

= (

k
∑

i=0
i even

Ind
[An]Sk

[An]Sk−i×[An]Si
(M⊗(k−i) ⊗N⊗i)⊗M⊕

k
∑

j=1
j odd

Ind
[An]Sk

[An]Sk−j×[An]Sj
(M⊗(k−j) ⊗N⊗j)⊗N,

k
∑

i=0
i even

Ind
[An]Sk

[An]Sk−i×[An]Si
(M⊗(k−i) ⊗N⊗i)⊗N ⊕M⊗

k
∑

j=1
j odd

Ind
[An]Sk

[An]Sk−j×[An]Sj
(M⊗(k−j) ⊗N⊗j))

= (
k+1
∑

i=0
i even

Ind
[An]Sk+1

[An]Sk+1−i×[An]Si
(M⊗(k+1−i) ⊗N⊗i),

k+1
∑

j=1
j odd

Ind
[An]Sk+1

[An]Sk+1−j×[An]Sj
(M⊗(k+1−j) ⊗N⊗j)) .
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Corollary 3. For any [M ]− [N ] ∈ R(An) and k ≥ 1,

⊗k([M ]− [N ]) =

k
∑

i=0

(−1)i[Ind
[An]Sk

[An]Sk−i×[An]Si
(M⊗(k−i) ⊗N⊗i)] .

Proof. Since △k induces ⊗k, apply h◦p to △k(M,N) as given

in the Lemma and we are done.

By construction [An]Sk is the semi-direct product Ak
n ×θ Sk,

where θ : Sk → Aut (Ak
n) is a group homomorphism given by

θ(σ)((a1, . . . , ak)) = (aσ−1(1), . . . , aσ−1(k))

for σ ∈ Sk, ai ∈ An. In other words, the short exact sequence

1 → Ak
n → [An]Sk → Sk → 1

is split by the obvious maps α : Sk → [An]Sk where α(σ) =

(1, 1, . . . , 1;σ). Also the image of An in [An]Sk as the diagonal

subgroup

{(a, a, . . . , a)|a ∈ An}

of Ak
n, commutes elementwise with the image of Sk thus we get an

embedding ψ : An×Sk → [An]Sk. Hereafter, An×Sk is considered

as a subgroup of [An]Sk.
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Definition. By the inner plethysm Tφ associated with an element

φ ∈ R∗
c(Sk) = Hom c(R(Sk), C), we mean the map

Tφ : R(An)
R

−→(An)⊗ C ≃ R(An)




y
⊗k

R(An)⊗R(Sk)

defined by Tφ = (1⊗φ) ◦ (⊗k). In the sequel for any [M ] ∈ R(An)

we denote Tφ([M ]) by φ([M ]), if no confusion arises. For a par-

tition π = {1π1, 2π2, . . . , kπk} of k (in notation π ⊢ k ), let

Sπ = Sπ1
1 × Sπ2

2 × · · · × Sπk
k . Then a trivial representation and

a sign representation of Sπ are denoted by 1Sπ
and Alt Sπ respec-

tively. Let ρπ = [IndSk

Sπ
1Sπ

] and ηπ = [IndSk

Sπ
Alt Sπ].

Lemma 3.

{ρπ|π ⊢ k} and {ηπ|π ⊢ k} are bases for R(Sk) .

This fact is known, for example, see Knutson [6]. Let us consider

the elements λπ and σπ in R∗(Sk) defined by

λπ([M ]) =

{

1, if M = Alt Sπ;
0, otherwise.

and

σπ([M ]) =

{

1, if M = 1Sπ
;

0, otherwise.
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Define a map µ : R(Sk) → R∗(Sk) by µ([M ])([N ]) =< M,N > for

[M ], [N ] ∈ R(Sk) where <, > is the Schur inner product in R(Sk).

Then it is known that µ is a ring isomorphism and µ(ρπ) = σπ and

µ(ηπ) = λπ , where π ⊢ k. If E is an An-representation and V is

an Sk-representation, then HomSk
(V,E⊗k) can be considered as an

An-representation when a group action is defined by a•f = a⊗k ◦f

for all f ∈ HomSk
(V,E⊗k) and a ∈ An. It is well known that if

{Vπ|π ⊢ k} is a complete set of irreducible Sk-representations then

there exists an An × Sk-isomorphism.

θ :
∑

π⊢k

HomSk
(Vπ , E ⊗ k)⊗ Vπ → E⊗k

defined by θ(f ⊗ x) = f(x) for f ∈ HomSk
(Vπ , E

⊗k) and x ∈ Vπ.

Theorem 5. For any λτ ∈ R∗(Sk) with τ ⊢ k and for any An-

module M , we have

λτ ([M ])[HomSk
(IndSk

Sτ
Alt Sτ ,M

⊗k)]

Proof. First consider the An × Sk decomposition

M⊗k ≃
∑

π⊢k

HomSk
(Vπ,M

⊗k)⊗ Vπ .

124



Then by definition

λτ ([M ]) = (1⊗ λτ ).(⊗k)([M ])

= (1⊗ λτ )([M
⊗k])

=
∑

π⊢k

HomSk
(Vπ ,M

⊗k)λτ ([Vπ ])

= [HomSk
(
∑

λτ ([Vπ ])Vπ ,M
⊗k)]

However,

∑

π⊢k

λτ ([Vπ ])Vπ =
∑

π⊢k

µτ (ητ )([Vπ ])Vπ

=
∑

π⊢k

< IndSk

Sτ
Alt Sτ , Vπ > Vπ

= IndSk

Sτ
Alt Sτ .

Hence we obtain λτ ([M ]) = [HomSk
(IndSk

Sτ
Alt Sτ ,M

⊗k)].

Theorem 6. For any partition τ = {1τ1, 2τ2, . . . , kτk} ⊢ k and for

any An-representation M , we have

λτ ([M ]) = λ1([M ])τ1λ2([M ])τ2 · · ·λk([M ])τk .

Proof. By the Frobenius reciprocity law we have

HomSk
(Ind Alt Sτ ,M

⊗k) ≃ Hom(Alt Sτ ,Res
Sk

Sτ
M⊗k)

since

Alt Sτ ≃ (Alt S1)
⊗τ1 ⊗ · · · ⊗ (Alt Sk)

⊗τk
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and

ResS
k

Sπ
(M⊗k)M⊗τ1 ⊗ (M⊗2)⊗τ2 ⊗ · · · ⊗ (M⊗k)⊗τk ,

we obtain

Homsτ (Alt Sτ
,ResSk

sτ
M⊗k) ≃ ⊗k

i=1(HomSi
(Alt Si,M

⊗i))⊗τi

By Theorem 5 we have

λτ ([M ]) = HomSk
(IndSk

Sτ
Alt Sτ ,M

⊗k))]

=

k
∏

i=1

[HomSi
((Alt Si,M

⊗i))]⊗τi

= λ1([M ])τ1λ2([M ])τ2 · · ·λk([M ])τk .

This completes the proof.

Theorem 7. For any στ ∈ R∗(Sk) where τ = {1τ1, . . . , kτk} and

any An-representation M , we have

στ ([M ]) = [HomSk
(ρτ ,M

⊗k)]

= σ1([M ])τ1σ2([M ])τ2 · · ·σk([M ])τk

The proof is similar to that of Theorem 5 and Theorem 6.

To compute the inner plethysm associated with λk and σk for a

general element [M ]− [N ] ∈ R(An), we need the following lemmas:
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Lemma 8. Let H ⊆ G ⊆ Sn be groups and let N be a representa-

tion of H . Then HomG(Alt G, Ind
G
HN) and HomH(Alt H,N) are

isomorphic.

Proof. We construct a linear map

p : HomG(Alt G, Ind
G
HN) → HomH(Alt H,N)

and its inverse σ. Let {e = r0, r1, . . . rt} be a complete set of coset

representatives for G/H . Then

IndG
HN ≃ N ⊕ r1N ⊕ · · · ⊕ rtN .

If U ∈ HomG(Alt G, Ind
G
HN) then there are ni ∈ Ni such that

U(1) = n0 + r1n1 + · · ·+ rtnt .

We let p be the linear map from C to N defined by p(U)(1) = n0.

p is an H-homomorphism because if h ∈ H , then

hp(U)(1) = hn0 = sgn(h)n0 = p(u)(sgn(h)) = p(f)(h1) .

We now construct σ. If ω ∈ HomH(Alt H,N) and ω(1) = n0, let

σ be the linear map from C to N ⊕ r1N ⊕ · · · ⊕ rtN defined by

σ(ω)(1) =

t
∑

i=0

sgn(ri)rin0 .
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σ is a G-homomorphism because if g ∈ G, then

gσ(ω)(1) =

t
∑

i=0

sgn(ri)rin0 .

Furthermore, since {gr0, gr1, . . . grt} is a set of coset representa-

tives for G/H , there exist elements h0, . . . , ht ∈ H and there is a

permutation τ of {0, . . . , t} such that gri = rτ (i)hi. Hence,

t
∑

i=0

sgn(ri)grin0 =

t
∑

i=0

sgn(ri)rτ (i)hin0

=

t
∑

i=0

sgn(ri)sgn(hi)rτ (i)n0

=
t

∑

i=0

sgn(g)sgn(rτ (i))rτ (i)no

=

t
∑

i=0

sgn(g)sgn(ri)rino

= sgn(g)σ(ω)(1) = σ(ω)(sgn(g)) = σ(ω)(g • 1) .

We now show that σ ◦ p is the identity. Consider

U(1) =

t
∑

i=1

rini

and

σ ◦ p(U)(1) =

t
∑

i=0

sgn(ri)rin0 .
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It suffices to show that sgn(rk)n0 = nk for all k. Since U is a

G-homomorphism,

rkU(1) = U(rk1) = U(sgn(rk)) = sgn(rk)
t

∑

i=0

rini .

On the other hand,

rkU(1) =

t
∑

i=0

rkrini .

Hence sgn(rk)rknk = rkn0 and sgn(rk)nk = 0. The proof is com-

plete, since it is obvious that P ◦ σ is the identity.

Lemma 9. Let H ⊆ G ⊆ Sn be groups and let N be a repre-

sentation of H . Then HomG(1G, Ind
G
HN) and HomH(1H , N) are

isomorphic.

Proof. Similar to the proof of Lemma 8.

Theorem 10. For any [M ]− [N ] ∈ R(An), where M is assumed to

have even grading and N to have odd grading, we have:

(i) λk([M ]− [N ]) =
k

∑

i=0

(−1)iλk−i([M ])σi([N ])

(ii) σk([M ])− [N ]) =

k
∑

i=0

(−1)iσk−i([M ])λi([N ]) .

Proof. (i) By definition and since N have odd grading,
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λk([M ]− [N ]) = (1⊗ λk) ◦ (⊗k)([M ]− [N ])

= (1⊗ λk)(

k
∑

i=0

(−1)i[Ind
[An]Sk

[An]Sk−i×[An]Si
(M⊗(k−i) ⊗N⊗i)])

=

k
∑

i=0

(−1)i(1⊗ λk)[Ind
[An]Sk

[An]Sk−i×[An]Si
(M⊗(k−i) ⊗N⊗i)]

=
k

∑

i=0

(−1)i[HomSk
(Alt Sk, Ind

[An]Sk

[An]Sk−i×[An]Si
(M⊗(k−i) ⊗N⊗i))]

=

k
∑

i=0

(−1)i[HomSk−i×Si
(Alt (Sk−i × Si),M

⊗(k−i) ⊗N⊗i)]

=

k
∑

i=0

(−1)i[HomSk−i×Si
(Alt Sk−i ⊗ Si,M

⊗(k−i) ⊗N⊗i)]

=

k
∑

i=0

(−1)i[HomSk−i
(Alt Sk−iM

⊗(k−i))⊗HomSi
(Alt Si, N

⊗i)]

=

k
∑

i=0

(−1)i[HomSk−i
(Alt Sk−iM

⊗(k−i))][Homsi(Alt Si, N
⊗i)]

=
k

∑

i=0

(−1)i[HomSk−i
(Alt Sk−iM

⊗(k−i))][HomSi
(1Si

, N⊗i)]

=

k
∑

i=0

(−1)iλk−i(([M ]σi([N ]) .
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The proof of (ii) is similar to (i). Hence, the proof is complete.
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