FIBONACCI DECIMAL NUMBER PATTERNS

VIA THE GENERATING FUNCTION

Russell Euler
Northwest Missouri State University

The Fibonacci sequence is defined recursively by $F_{1}=F_{2}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for $n \geq 1$. The first few terms of this sequence are $1,1,2,3,5,8,13,21,34,55,89, \cdots$ To six decimal places, the decimal expansion of $1 / 89$ is .011235 . Similarly,

$$
\begin{gathered}
\frac{1}{9899} \simeq .0001010203050813213455, \quad \text { and } \\
\frac{1}{998999} \simeq .000001001002003005008013021034055
\end{gathered}
$$

Ignoring zeros, the occurrence of Fibonacci numbers in the above decimal expansions is apparent. If the decimal expansion of $1 / 89$ is carried out to one more digit, the digit in the seventh decimal place is 9 , not 8 . The purpose of this paper is to explain these phenomena.

In $[1$, p. 3] , the generating function for the Fibonacci sequence
$\left\{F_{n}\right\}$ was given to be

$$
\begin{equation*}
\sum_{n=1}^{\infty} F_{n} x^{n}=\frac{x}{1-x-x^{2}} \tag{1}
\end{equation*}
$$

The function defined by $f(x)=\frac{x}{1-x-x^{2}}$ has singularities at $(-1 \pm \sqrt{5}) / 2$. In magnitude, $(-1+\sqrt{5}) / 2$ is the smallest of these two singularities. As a result, the interval of convergence of the series in (1) is $|x|<(\sqrt{5}-1) / 2$. Replacing x with $1 / x$ in (1) leads to

$$
\sum_{n=1}^{\infty} \frac{F_{n}}{x^{n}}=\frac{x}{x^{2}-x-1}
$$

and the region of convergence will be $|x|>(1+\sqrt{5}) / 2$. So, in the region of convergence,

$$
\sum_{n=1}^{\infty} \frac{F_{n}}{x^{n+1}}=\frac{1}{x^{2}-x-1}
$$

Since $x=10^{k}$ is within the region of convergence for $k \geq 1$,

$$
\begin{gather*}
\left.\frac{1}{x^{2}-x-1}\right|_{10^{k}}=\sum_{n=1}^{\infty} \frac{F_{n}}{10^{k(n+1)}} \\
=\frac{1}{10^{2 k}}+\frac{1}{10^{3 k}}+\frac{2}{10^{4 k}}+\frac{3}{10^{5 k}}+\frac{5}{10^{6 k}}+\cdots . \tag{2}
\end{gather*}
$$

In particular, if $k=1$, then

$$
\begin{aligned}
& \frac{1}{89}=\frac{1}{10^{2}}+\frac{1}{10^{3}}+\frac{2}{10^{4}}+\frac{3}{10^{5}}+\frac{5}{10^{6}}+\cdots \\
&=.01+.001+.0002+.00003+.000005+.0000008 \\
&+.00000013+\cdots \\
& \simeq .01123593
\end{aligned}
$$

Equation (2) explains why the Fibonacci numbers occur in the decimal expansions mentioned earlier - including the spacing of the digits with zeros. Furthermore, it is clear why the digit in the seventh decimal place of $1 / 89$ is 9 instead of 8 - in the addition of the decimals in the terms of the series there is a 'carry over' of a 1 from the next term, 13, of the Fibonacci sequence.

Reference

1. M. K. Azarian, "The Generating Function for the Fibonacci Sequence," Missouri Journal of Mathematical Sciences, 2 (1990) 3-4.
