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Historically, differential equations grew into an independent

subject from a branch of calculus. It is very useful to cultivate this

connection in both calculus and differential equations courses, all

the more that today’s changes in calculus teaching will influence

our approach to differential equations. From this standpoint, we

would like to continue the discussion initiated in [1] on the appli-

cation of L’Hospital’s rule to the study of the solutions of linear

differential equations with constant coefficients.

Consider the undamped mass-spring system with a given pe-

riodic external force. The equation of motion is

(1) x′′ + ω2
0x = A cosωt,

where ω0 is the natural frequency of the system and ω is the applied
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frequency. If ω 6= ω0, a particular solution

(2) xp(t) =
A

ω2
0 − ω2

cosωt

can easily be found by the method of undetermined coefficients. If

ω is close to ω0 then xp represents an oscillation with large ampli-

tude. If we think of ω0 as fixed and let ω approach ω0, the am-

plitude of the oscillation becomes unbounded. This phenomenon

is called resonance. If ω = ω0, a particular solution cannot be

obtained from (2). However, since the numerator in (2) tends to

A cosω0t as ω → ω0 and

x0(t) =
A

ω2
0 − ω2

cosω0t

is a solution of the equation x′′ + ω2
0x = 0, it is preferable to take

a particular solution of (1) in the form

(3) x(t, ω) = xp(t)− x0(t) =
A(cosωt− cosω0t)

ω2
0 − ω2

.

Employing L’Hospital’s rule we find the limit of (3) as ω → ω0

which yields a particular solution of (1) in the case ω = ω0:

lim
ω→ω0

x(t, ω) =
At

2ω0
sinω0t.
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Incidentally, a similar situation takes place with the formula for

the power integral

∫

xadx =
xa+1

a+ 1
+ C,

where a 6= −1 is any real number and x > 0. Since xa+1 → 1 as

a → −1, we write

C = −
1

a+ 1
+ C1

and

∫

xadx =
xa+1 − 1

a+ 1
+ C1.

This formula “works” also at a = −1, for L’Hospital’s rule shows

that

lim
a→−1

xa+1 − 1

a+ 1
= lnx.

Now consider, for example, the equation

(4) x′′ − 2ω0x
′ + ω2

0x = Aeωt,

which admits a particular solution

(5) xp(t) =
A

(ω − ω0)2
eωt, ω 6= ω0.

Again, a particular solution cannot be obtained from here at

ω = ω0, and in this case it is impossible to alleviate the difficulty
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by subtracting from (5) the solution

Aeω0t

(ω − ω0)2

of the homogeneous equation corresponding to (4). Indeed, ω0 is a

double root of the denominator (ω−ω0)
2 and only a simple root of

the numerator A
[

eωt − eω0t
]

. To accomplish the task, we expand

eωt as a function of ω in a Taylor series

eωt = eω0t + teω0t(ω − ω0) + · · ·

centered at ω0 and observe that

x0(t) =
A

(ω − ω0)2
[

eω0t + (ω − ω0)te
ω0t

]

is a solution of the equation x′′ − 2ω0x
′ + ω2

0x = 0. Moreover, the

difference

x(t, ω) = xp(t)− x0(t) =
A

(ω − ω0)2
[

eωt − eω0t − (ω − ω0)te
ω0t

]

is a particular solution of equation (4) whose numerator and its

derivative with respect to ω approach zero as ω → ω0. By

L’Hospital’s rule,

lim
ω→ω0

x(t, ω) = lim
ω→ω0

A
[

teωt − teω0t
]

2(ω − ω0)
= lim

ω→ω0

At2eωt

2
=

At2

2
eω0t,
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which is a particular solution of (4) when ω = ω0. This derivation

reveals the nature of the solutions involved and a quick method

for their construction. Assuming ω 6= ω0, we find by the method

of undetermined coefficients solution (5). The sum S2(t, ω) of the

first two terms in the Taylor series, centered at ω0, of its numer-

ator serves as the numerator for the particular solution x0(t) of

the homogeneous equation corresponding to (4). Therefore, the

numerator in the difference xp(t)− x0(t) is the remainder

R2(t, ω) = Aeωt − S2(t, ω) =
At2

2
eω0t(ω − ω0)

2 + · · ·

of the above Taylor series after the second term, and

x(t, ω) =
R2(t, ω)

(ω − ω0)2
.

Since the first term of R2(t, ω) includes the factor (ω − ω0)
2 and

all other terms include higher powers of ω − ω0, we conclude that

the desired solution of (4) for ω = ω0 is simply the first term of

R2(t, ω) divided by (ω − ω0)
2.

A more general equation

(6) L[x] = Aeωt,
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where L is a linear differential operator with constant coefficients,

can be treated similarly. Assuming ω is not a characteristic root,

that is L(ω) 6= 0, we find by the method of undetermined coeffi-

cients a particular solution of (6),

(7) xp(t) =
A

L(ω)
eωt.

If ω0 is a characteristic root of order m, a particular solution of

equation (6) cannot be obtained from (7) when ω = ω0. To resolve

the difficulty, we expand Aeωt in a Taylor series centered at ω0 and

note that the partial sum of the first m terms,

Sm(t, ω) = Aeω0t

m−1
∑

i=0

ti

i!
(ω − ω0)

i,

is a particular solution of the homogeneous equation L[x] = 0. If

L(ω) 6= 0, then

x0(t) =
Sm(t, ω)

L(ω)

is also a solution of the equation L[x] = 0 and

(8) x(t, ω) = xp(t)− x0(t) =
Rm(t, ω)

L(ω)

is a particular solution of (6), where

Rm(t, ω) = Aeωt − Sm(t, ω).
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The limit of (8) as ω → ω0 represents a particular solution of (6)

for the case ω = ω0. Successively applying L’Hospital’s rule to (8)

gives

(9) lim
ω→ω0

x(t, ω) =
Atm

L(m)(ω0)
eω0t.

This provides another explanation to the student why a particu-

lar solution of (6) must be sought in the form Btmeωt if ω is a

zero of the characteristic polynomial. The reason why solution (8)

“works” for all ω also becomes clear from the structure of its nu-

merator and denominator. Indeed, since Rm(t, ω) is the remainder

of the power series for Aeωt after the mth term and the polynomial

L(ω) has a root of order m at ω0, we can write

Rm(t, ω) =
Atm

m!
eω0t(ω − ω0)

m + · · · ,

L(ω) =
L(m)(ω0)

m!
(ω − ω0)

m + · · · ,

where the derivative L(m)(ω0) 6= 0 and all missing terms contain

powers of ω−ω0 higher than m. Substituting these expressions in

(8) and approaching ω to ω0 yields (9).

The above results may be viewed as an application to differen-

tial equations of the powerful method of differentiation with respect
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to a parameter, which is important in the theory of improper inte-

grals. This method can also be used to find particular solutions of

linear differential equations in the “non-resonance” cases. Assume

we want to find a particular solution of the equation

(10) x′′ + 2x′ − 3x = t2e5t.

The usual way is to apply the method of undetermined coefficients

but we can achieve the result also by differentiating twice a par-

ticular solution of the equation

(11) y′′ + 2y′ − 3y = eωt

with respect to the parameter ω. The roots of the corresponding

characteristic equation k2 + 2k − 3 = 0 are k = 1,−3. Therefore,

to avoid the “resonance” case in (11), we take ω 6= 1,−3. A par-

ticular solution of (11) is sought in the form yp(t, ω) = Beωt, and

substituting it in (11) gives

yp(t, ω) =
1

ω2 + 2ω − 3
eωt

or

yp(t, ω) =
1

4

[

1

ω − 1
−

1

ω + 3

]

eωt.
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Differentiating yp(t, ω) twice with respect to ω provides a particular

solution xp(t, ω) of the equation

x′′ + 2x′ − 3x = t2eωt,

that is,

xp(t, ω) =
1

4

[

1

ω − 1
−

1

ω + 3

]

t2eωt

−
1

2

[

1

(ω − 1)2
−

1

(ω + 3)2

]

teωt

+
1

2

[

1

(ω − 1)3
−

1

(ω + 3)3

]

eωt.

To obtain from here a particular solution of (10), it remains to put

ω = 5. Then

xp(t) =
32t2 − 24t+ 7

1024
e5t.
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